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Chapter

Multi-Scale Mathematical
Modeling of Prion Aggregate
Dynamics and Phenotypes in
Yeast Colonies
Mikahl Banwarth-Kuhn and Suzanne Sindi

Abstract

Prion diseases are a multi-scale biological phenomenon that requires under-
standing intracellular processes as well as how cells interact with each other and
their environment. In mammals, prion diseases are progressive, untreatable, and
fatal. Yeast prion phenotypes are harmless and reversible, which suggests a deep
understanding of the reversal of prion phenotypes in yeast may be informative to
mammalian diseases. In yeast, the loss of some prion phenotypes appears to be
stochastic and spatially dependent, suggesting a cell-based model of yeast prion
dynamics would be a powerful tool for comparisons with experimental results and
hypothesis generation. In this work, we consider the components necessary to
develop such a model that depicts both the biochemical-, intracellular-, and colony-
level scales in yeast prion phenotypes. We first review the literature of mathemat-
ical models of the intracellular processes of prion disease. We then review common
approaches to cell-based modeling of multicellular systems and how they have led
to biological insights in other systems. This chapter ends with a discussion of future
studies aimed at motivating how these two types of models can be coupled to
produce multi-scale models of prion phenotypes.

Keywords: agent-based models, cell-based model, prion disease dynamics,
protein aggregation, multi-scale models

1. Introduction

Prion proteins are most commonly associated with fatal progressive neurode-
generative diseases in humans and other mammals [1–4]. Intriguingly, all mamma-
lian prion diseases are the result of a single host expressed protein, PrP. In
mammalian prion disease, a misfolded form of PrP appears, and rather than being
cleared by protein quality control mechanisms, this misfolded form persists and
associates into aggregates. These aggregates then act as templates that convert
normally folded protein to the misfolded form and may break into multiple aggre-
gates further amplifying the conversion of normal protein [5, 6]. The initiating
event of prion disease, the initial appearance of an infectious protein agent, can
occur spontaneously, as in sporadic Creutzfeldt-Jakob disease [7]; because of a
genetic mutation, as in fatal familial insomnia [8]; and through interaction with
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another infected host from the same (as in scrapie [9], chronic wasting disease [10],
or Kuru [11]) or different species, as in when Bovine spongiform encephalopathy
(“mad cow” disease) is acquired by humans [12] or scrapie is spread from sheep to
goats [13]. Further, some prion diseases can occur through multiple modes, such as
Creutzfeldt-Jakob which has been associated with each of these modes of transmis-
sion [14]. More generally, the amyloid structure of prion aggregates is common to
non-prion proteins associated with neurodegenerative disorders such as
Alzheimer’s, Parkinson’s, and Huntington’s disease, and evidence continues to sug-
gest commonalities between such disorders and prions [15, 16], including their
transmissibility [17]. At present, prion disease, and other amyloid disease such as
Alzheimer’s [18], has no effective methods for treatment or early detection. How-
ever, one potential source to gain insight into these pathogenic phenotypes is to
study instances in biology where amyloids confer beneficial consequences, such as
growth advantages in yeast and long-term memory storage in mammals [19], and
therefore the amyloid dynamics can be studied absent of the disease state [16, 20].

One promising candidate for probing the mechanisms behind prion-associated
phenotypes is the yeast S. cerevisiae [21–23]. In yeast, prion proteins were first
identified in the 1980s when interrogating the genetic basis for non-Mendelian
phenotypes [21, 23]. Today, nearly a dozen harmless phenotypes in yeast are known
to propagate through misfolded protein aggregates [6]. Unlike their mammalian
counterparts, yeast prion phenotypes have been associated with many different
proteins including Sup35 ( PSIþ½ � phenotype), Rnq1 ( PIN½ � phenotype), and Ure2
( URE3½ � phenotype). As for mammalian prions, each of these phenotypes has mul-
tiple variants (or strains) which themselves are associated with different properties
such as infectivity and phenotype presentation. However, unlike mammalian prion
disease, which can take months of years to present, yeast prion phenotypes mani-
fest quickly and, most remarkably, can be made to appear or disappear through
mild experimental manipulations which do not impact the host cell [6, 16, 24, 25].
The underlying aggregate dynamics are the same regardless of organism. As shown
in Figure 1, the establishment of prion phenotypes in yeast (and of course mam-
mals) is an inherent multi-scale process. First, there is the biochemistry of the
interactions between normal and misfolded protein. Then, there is the level of an
individual cell where these protein aggregates interact not only with the cellular
environment including molecular chaperones and protein degradation factors.

Figure 1.
Multi-scale dynamics of yeast prion Phenotypes. (A) Prion aggregates are thought to be ordered linear structures
(squares) capable of converting normally folded protein (circles) to the prion form and fragmenting into
multiple aggregates. Prion aggregates are thought to have a minimal stable size n0 below which the aggregate
structure will not be stable. (B) Aggregate dynamics occur within an individual yeast cell (large circle) but are
spread to daughter cells through transmission through the bud neck. (C) Phenotypes in yeast are observed at the
level of a colony which consists of thousands of individual cells. PSIþ½ � phenotypes are associated with a color red
( psi�½ � or no prion), pink ( PSIþ½ �), or sectored (mixture of phenotypes).
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Then, these protein aggregates must be transmitted to other cells. Note that in
yeast, this transmission occurs between mother and daughter cells during division
[26, 27], while in mammals, this transmission typically occurs between cells in a
tissue [28, 29]. Finally, prion phenotypes are determined by examining populations
of cells. In yeast, prion phenotypes are assayed at the level of a yeast colony, and
mammalian prion phenotypes are typically distinguished by their patterns of neu-
rological decay [14].

Although there is growing appreciation for the multi-scale nature of mammalian
and yeast prion phenotypes, the vast majority of mathematical models developed
for studying such phenotypes typically focus on only one scale. In particular, the
majority of mathematical model have focused on the isolated prion aggregate
dynamics. While these models have been particularly useful in comparisons to
in vitro prion aggregation, they are limited in their ability to insight to the in vivo
systems. In a population of living cells, different cell behaviors such as growth,
diffusion, and division are known to impact the abundances and concentrations of
reactants and could have a large impact on protein aggregation or more specifically
propagation of prion aggregates. Moreover, in the case of yeast, since the proteins
are only transmitted during cell division [6] and yeast have an asymmetric cell cycle
[30], a colony of yeast with a prion phenotype will exhibit considerable heteroge-
neity in prion aggregates and potentially other relevant cellular constitutes [27].

One particular yeast prion phenotype that is intimately linked to population
heterogeneity and yet to be mathematically characterized is that of colony sectoring
for the PSIþ½ � yeast prion phenotype (Figure 1(C)). The PSIþ½ � phenotype is asso-
ciated with the color of a colony: a red colony indicates a psi�½ � (prion-free) phe-

notype and PSIþ½ � colony is in a shade of white or pink. The actual color displayed
by the colony is associated with a loss of function of the normal Sup35 protein as in
when in a prion aggregate the Sup35 monomers have greatly reduced normal func-
tion [31]. A sectored colony represents a case when cells in the colony display both
psi�½ � and PSIþ½ � phenotypes. Such a colony is thought to appear when the founding
cell contains prion aggregates, but at some point through division of cells and
growth of the colony, some cells lose the ability to propagate the prion phenotype.
Because spontaneous appearance of Sup35 prion aggregates is a rare event, any
subsequent daughter cells will also lack prion aggregates. These sub-colonies asso-
ciated with the loss of the prion phenotypes are thought to correspond to the red
sectors. Since the number and pattern of red sectors is fairly similar under the same
condition, this suggests an intimate connection between the lineage of ancestry of
the cells which were the first to lose the ability to propagate the prion phenotype.
Indeed a previous study that did not consider the spatial distribution of individual
cells suggested that loss of prion aggregates for a particular variant of PSIþ½ �
occurred in a lineage-dependent fashion [27]. What is the mechanistic basis for this
partial loss? Can these mechanisms be exploited in the context of mammalian prion
diseases? Answering these questions requires developing mathematical frameworks
that accurately represent all scales of the yeast prion system.

Beyond mammalian prion disease, yeast prions offer a particularly unique
opportunity to investigate and model the emergence and role of heterogeneity in
cellular populations. In the past, our knowledge of individual cell behaviors was
based on ensemble measurements that do not account for effects of cellular hetero-
geneity within a population. However, emerging technologies such as single-cell
gene expression analysis, single-cell genome sequencing, and single-cell imaging
technologies [32] provide an unprecedented opportunity to quantitatively measure
heterogeneity at the single-cell level. Molecular and live imaging experiments
investigating growth and development of multicellular systems provide rich data
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sets that can be used for the first time to understand the different signaling cascades
and components that are necessary for cell behaviors to arise. This new level of
insight makes it possible to reveal a more accurate picture of cellular behavior and
highlights the importance of understanding cellular variation in a wide range of
biological contexts. Developing models that describe heterogeneity throughout an
entire population provides a quantitative way to understand the dynamical behav-
ior of heterogeneous cell population characteristics/biological importance of
heterogeneity.

In this chapter, we consider the different tools available for developing a math-
ematical framework for distinct scales of prion dynamics. We first review mathe-
matical models for prion disease dynamics and discuss the few models which have
considered multiple scales of prion aggregation. We then discuss cell-based models
as a promising approach for coupling intracellular and intercellular scales. We
discuss several common classes of cell-based models and emphasize the contribu-
tions they have made to the understanding of biological systems. We conclude with
a discussion how one could build a multi-scale model for prion disease dynamics in
yeast that couples current models for aggregation of proteins with a spatial model of
yeast growth and proliferation on the scale of an entire population.

2. Intracellular dynamics

As we discussed in Section 1, prion dynamics is an inherently multi-scale pro-
cess. However, the bulk of mathematical modeling on prion aggregation has con-
sidered only the microscopic scale, intracellular dynamics. Because the formation of
the initial stable aggregate is a rare occurrence, most of these models have focused
on the dynamics of the prion aggregates themselves in a well-mixed compartment
leading to models that reflect what occurs microscopically within a single cell or are
taken to be the average behavior of a population or tissue. In addition, these models
assume either discrete or continuous aggregate sizes employing ordinary differen-
tial equations (ODEs) or partial differential equations (PDEs), respectively. This
literature has emphasized establishing results on the global stability of prion aggre-
gates as well as their asymptotic size distribution. More recently, mathematical
approaches have been developed to consider the spread of prions between cells in a
tissue or even organisms, but only under severely simplified molecular scales. At
present, no single multi-scale framework has yet been formulated for prion
dynamics leaving many unexplained phenotypes, such as yeast sectored colony
phenotypes (see Figure 1(C)).

In this section we review the development of mathematical models in the study
of prion dynamics. (Readers interested in a more detailed view on mathematical
models of prion disease can consult [33].) Although many of these models share
commonality with more general aggregation processes in neurodegenerative dis-
ease, we focus only on prion aggregation. (Readers interested in mathematical
models of more general neurodegenerative phenomena can consult [34].)

2.1 Intracellular models of prion phenotypes

The prion hypothesis, the idea that proteins themselves could encode informa-
tion about their structure without a DNA intermediary, was first suggested by
experimental studies in 1966–1967 (see [35–37]). Remarkably, the first mathemati-
cal formulation of prion aggregation was published in 1967 when Griffiths [38]
offered a simple mathematical autocatalytic process that was consistent with a
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protein-based infectious agent of scrapie. Since then, a large number of mathemat-
ical models have emerged which track the size density of prion aggregates under
different biochemical processes but typically include conversion of normal protein
to prion aggregates and fragmentation of aggregates. Most are based whole or in
part on the notion of the nucleated polymerization model (NPM).

Nowak and colleagues developed the NPM in a series of papers [39, 40] based on
a model previously introduced by Eigen [41]. In this mathematical formulation, the
state of the system at time t is the concentration of proteins in the normal confor-
mation, x tð Þ, and prion aggregates of every discrete size i, yi tð Þ. Protein in the
normal conformation is assumed to be created at rate λ and decays at rate d, while
aggregates of all sizes decay at rate a (see Figure 2) Conversion occurs through
contact between aggregates and protein in the normal conformation at a rate
depending on the size of the aggregate, βi. Finally, the total number of aggregates
increases through fragmentation. In their most general formulation, Nowak et al.
specify the rate that aggregates of size j fragment to create an aggregate of size i as
b j,i and that during fragmentation no mass is lost, i.e., an aggregate of size j is
always fragmented into two aggregates of size i and j� ið Þ. Translating these bio-
chemical kinetic assumptions into a set of differential equations results in the
following infinite system of ordinary differential equations:

dx

dt
¼ λ� dx tð Þ �

X

∞

i¼1

βix tð Þ yi tð Þ (1)

dyi
dt

¼ βi�1x tð Þ yi�1 tð Þ � βix tð Þ yi tð Þ � ayi tð Þ þ
X

∞

j¼iþ1

b j,i þ b j,i� j

� �

y j tð Þ �
X

i�1

j¼1

bi, j yi tð Þ

(2)

Figure 2.
Nucleated polymerization model. The NPM (see [39, 40]) is the canonical model for prion aggregate dynamics.
In this formulation normally folded protein (circles) can be created with rate λ, decayed with rate d, converted
to the misfolded form, and added onto the end of an existing aggregate (linear complex of squares) with rate β.
Aggregates have their own degradation rate, a, that is independent of aggregate size, and number of aggregates
increases through fragmentation which occurs at a rate b times the number of fragmentation sites in an
aggregate. (Note that in this diagram, we allow normal protein to be recovered if an aggregate is fragmented
below the minimal nucleus size n0 ¼ 2 depicting the aggregate dynamics evolving according to Eqs. (7)–(9).)
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for i ¼ 1, 2,… , since there could possibly be infinitely many aggregate sizes.
They then considered two simplifying assumptions that allowed a moment closure.
First, the conversion rate is assumed to be independent of aggregate size. This
occurs when assuming that the templated conversion of normal protein to the
misfolded state can only occur when interacting with either end of a linear aggre-
gate. Second, the fragmentation of an aggregate is assumed to be linearly propor-
tional to its size, and the fragmentation kernel is assumed to be uniform (i.e.,
fragmentation is equally likely to occur at any monomer junction in a linear aggre-
gate). Under these two simplifications, the infinite system of differential equations
has the following three-dimensional moment closure:

dx

dt
¼ λ� dx tð Þ � βx tð ÞY tð Þ (3)

dY

dt
¼ bZ tð Þ � aþ bð ÞY tð Þ (4)

dZ

dt
¼ βx tð ÞY tð Þ � aZ tð Þ (5)

where Y tð Þ ¼
P

∞

i¼1 yi tð Þ represents the total number of aggregates and Z tð Þ ¼
P

∞

i¼1iyi tð Þ represents the total amount of prion protein. We note that mathemati-
cally Y tð Þ and Z tð Þ correspond to the zeroth and first moments of the distribution of
aggregate sizes and, as such, the time evolution under these kinetic simplifications
is determined by the zeroth and first moments.

Nowak and colleagues demonstrated this model (Eqs. (3)–(5)) was mathemati-
cally equivalent to previously developed viral models studied in mathematical epi-
demiology and derived a basic reproductive number for their model. The basic
reproductive number, or R0, is a common parameter in epidemiology and specifies
the number of secondary infections (in this case infectious aggregate) created by an
infectious aggregate in an initially susceptible population. In the case that R0. 1, we
expect exponential growth of aggregates and therefore a stable nontrivial prion
aggregate distribution. If R0, 1, we expect the prion aggregates to exponentially
decay in number and the system to return to the aggregate-free state.

In their final formalization, Nowak and colleagues [39] considered the nucleated
polymerization assumption of prion aggregates. Namely, it is believed that aggre-
gates below a critical size are not thermodynamically stable. (This is thought to be
part of the reason spontaneous appearance of prion disease is so rare because it is a
nucleation-limited process [42, 43].) Since Nowak and colleagues did not consider
spontaneous nucleation, the nucleus size enters only when aggregate fragmentation
would create an aggregate of size below the minimum stable nucleation size n0. In
this case, the monomers in that aggregate return to the pool of normally folded
protein. Under the previous simplifications on kinetic rates, this changes the
resulting moment closure of the infinite system of ODEs as follows:

Y tð Þ ¼
X

∞

i¼n0

yi tð Þ and Z tð Þ ¼
X

∞

i¼n0

iyi tð Þ (6)

dx

dt
¼ λ� dx tð Þ � βx tð ÞY tð Þ þ b n0ð Þ n0 � 1ð ÞY tð Þ (7)

dY

dt
¼ bZ tð Þ � aþ b 2n0 � 1ð Þð ÞY tð Þ (8)

dZ

dt
¼ βx tð ÞY tð Þ � aZ tð Þ � b n0ð Þ n0 � 1ð ÞY tð Þ: (9)

6

Apolipoproteins,Triglycerides and Cholesterol



Eqs. (7)–(9) (or appropriately modified Eqs. (1) and (2)) are referred to as the
nucleated polymerization model (NPM). The dynamics of the NPM are similar to
those presented in Nowak’s first model; however, the minimal nucleus size modifies
the resulting equations slightly. First, the quantities Y tð Þ and Z tð Þ now represent the
aggregates above this critical minimal size, n0.

The NPM, and its variants, has been extensively studied. In their paper, Masel,
Jensen, and Nowak conducted an detailed analysis of the NPM [39] including
extensive linking of experimental observations on the time to appearance of prion
disease symptoms with the kinetic parameters of the NPM and determining a viable
range of minimal nucleus sizes n0. Overall, there was remarkable consistency
between parameters predicted from different experimental data sets analyzed pro-
viding support at the time for this mathematical formulation. In addition, Masel
et al. [39] (and then Greer and colleagues with a generalization [44]) demonstrated
that the dynamics of aggregates under the NPM are consistent with the long incu-
bation time observed for prion phenotypes. If prion disease begins with the intro-
duction of a small amount of prion protein (in the form of aggregates), those
aggregates will first have to increase in size until there are enough fragmentation
sites to permit aggregate amplification through fragmentation.

Mathematicians continued to formalize the NPM through the twenty-first cen-
tury. Prüss and colleagues [45] demonstrated that the prion phenotypes were glob-
ally asymptotically stable, and not merely locally stable, through deriving a
Lyapunov function. Engler et al. [46] analyzed the well-posedness of a generaliza-
tion of the NPM where aggregate sizes were continuous, instead of discrete. As
such, rather than an infinite system of ordinary differential equations, the system
consisted of a single ODE for protein in the normal configuration and a PDE
specifying the distribution of aggregate sizes. While this formulation departs from
the physically discrete nature of aggregates, in the limit of large aggregate sizes,
these formalisms are provably equivalent [47], and the use of PDEs permits a wider
array of mathematical techniques. Most notably, the continuous relaxation on
aggregate sizes has permitted determination of the explicit asymptotic density
[44, 46]. In comparison, the asymptotic density for the aggregate model with
discrete aggregate sizes, while first approximated in 2003 by Pöschel et al. [48], was
derived only recently by Davis and Sindi and required special functions [49].
Mathematical models of prion aggregate dynamics have been formulated under
many more general kinetic assumptions such as nonlinear conversion rates, aggre-
gate joining, and general fragmentation kernels (see [50–53]). More recently,
models have been developed which consider prion aggregates along with other
intracellular species (such as molecular chaperones) which impact their biochemical
dynamics [54, 55], and others have considered interactions between prions and
other protein aggregation diseases such as Alzheimer’s [56].

2.2 Multicellular models

While some of the models discussed in the previous section were not explicit
about their biological context, in nearly all cases the mathematical models of prion
aggregation processes neglected the multicellular scale of the establishment of prion
phenotypes. However, there is an emerging literature onmulticellular models of prion
disease dynamics. In all cases, the intracellular scale is either simplified or ignored.

2.2.1 Multicellular yeast colonies

Several models have emerged to consider the special case of heterogeneity of
prion aggregates in yeast colonies. Such models have benefitted from the extensive
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work on yeast cell division which has facilitated the cellular scale of prion dynamics.
We discuss two approaches taken to model this heterogeneity.

First, a number of models have emerged that allow for direct comparison
between yeast “aggregate counting assays” [26, 57–60]. In such assays, an original
cell is sampled, and and it is exposed to GdnHCl which is thought to severely reduce
the fragmentation rate without altering the ability of cells to divide. Because the
number of aggregates remains (relatively) constant while the number of cells
increases exponentially, eventually each cell in the population is assumed to have at
most one aggregate. When these resulting cells are restored to normal growth
conditions (i.e., aggregate fragmentation is normal) and allowed to find their own
independent colony, the number of PSIþ½ � colonies observed is taken as reflective of
the number of aggregates in the original cell. (For the purpose of narrative simplic-
ity, we have greatly simplified both the experimental assay and its conclusions
assay. Technically this assay counts the number of “propagons” in a cell, and here
we assume that propagon is synonymous with prion aggregate although the true
case is more complicated [6, 60].) Because the number of aggregates does not
increase in most aggregate counting assays, this allows the intracellular processes to
be greatly simplified. That is, the number of aggregates changes only through cell
division when aggregates are distributed perhaps according to experimentally
observed biases in cell division.

One recent study took a different approach by considering the related aggregate
recovery assay using a generation and aggregate structured population model [61].
(Once again, the experimental process is too complicated to fully describe, so we
offer a simplified description.) Aggregate recovery assays monitor the number of
aggregates in a typical cell in time. This is a two-stage experiment where all cells are
driven to have (ideally) at most one aggregate in a single cell. Then the cells are
released, and aggregates will thus amplify within each cell, and cells will continue to
grow and divide as normal. In this assay, cells from the recovering population are
sampled in time, and the number of aggregates counted according to the assay in
the previous paragraph. Both for mathematical simplicity and because this experi-
ment only monitors the number of aggregates and not their size of concentration of
protein in the normal conformation, Banks et al. [61] considered a simplified model
of intracellular dynamics where the number of aggregates in a single cell increased
according to either an exponential or logistic growth equation. They developed a
structured population model that separately tracked the number of aggregates in
cells having undergone 0, 1, 2, etc. cell divisions since the start of the experiment.
Although this model greatly simplified the intracellular aggregate dynamics,
researchers were able to recapitulate know biological relationships between prion
strains.

At present, only two studies have considered both a detailed view of the
intercellular aggregate dynamics and multicellular yeast population [27, 62].
Because these models were analytically intractable, both researchers developed a
multi-scale stochastic simulation framework. Each cell in the population was
modeled as a well-mixed compartment with discrete numbers of proteins in the
normal conformation and in each possible aggregate size. The intracellular aggre-
gate dynamics were forward simulated according to the Gillespie algorithm for
sampling from the chemical master equation. During cell division aggregates were
distributed between cells, and the lineage relationships between all cells were
tracked. Tanaka et al. [62] used this stochastic multi-scale framework as a way to
validate conclusions that drew from a system of ODEs they developed which con-
sidered population averages. Derdowski et al. [27] considered explicit comparisons
with single-cell experiments in yeast. They used their model to conclude that in vivo
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fragmentation occurs in a rate-limiting fashion and that aggregate transmission was
biased such that larger aggregates are retained by mother cells. However, neither
study considered the spatial growth of cells in a colony and, as such, cannot be
adapted to the question of yeast colony sectoring.

2.2.2 Mammalian tissue and organismal-level models

In mammals, mathematical models have been developed to study the spread of
prion (and more generally protein aggregation) in the brain and between organ-
isms. In the study of Alzheimer’s, researchers have leveraged knowledge about the
connectivity between regions of the brain to develop a network diffusion model of
disease progression [63, 64]. Remarkably, they discovered that characteristic
patterns of atrophy in patients can be explained by eigenelements of their network
model. However, as in the models of aggregate counting assays in yeast, they
assumed a highly simplified model of protein dynamics. That is, they did not
consider molecular scale processes of aggregation but only the diffusion of an agent
through the brain and associated atrophy itself with higher concentrations of the
agent. However, because the early phases of mammalian prion and neurodegenera-
tive are poorly characterized in vivo, it is possible that their models are consistent
with late stages of neurodegenerative disease.

Finally, because prion disease spreads between animals in the same population,
epidemic models have been employed to study the population-level dynamics of
these diseases. In particular, researchers have studied the spread of scrapie in flocks
of sheep [65–67] and chronic wasting disease in elk [68, 69]. Although these models
have been informative of the specific mechanisms which prion disease is likely to
spread in these populations (mother to offspring, indirect environmental transmis-
sion), they again consider only the organismal scale and not the molecular mecha-
nisms responsible for within the host aggregation dynamics.

Cell-based models, a type of agent-based simulation framework, offer the ability
to consider complex intracellular dynamics, distinguish between individual cells, and
track the spatial distribution of cells within a colony. In the next section, we discuss
common cell-based model formulations with a focus on the mathematical founda-
tion for these models as well as their contributions to particular biological domains.

3. Cell-based modeling approaches

As described in Sections 1 and 2, prion diseases offer a particularly intriguing
biological phenomenon for mathematical and computational analysis because such
diseases cover many different systems and spatial scales. At the level of a popula-
tion, prion diseases can be studied as a classical epidemic model where infections
are spread among a susceptible population. Alternatively, prion diseases can be
studied on a microscopic scale as a genetic disease whose phenotype is caused by
prion aggregates that cause a gain of function mutation in certain genes. Current
models of protein aggregation in yeast have successfully provided further insight
into important mechanisms driving prion disease dynamics (i.e., conversion and
fragmentation), but there is a need to develop models that consider the underlying
microscopic processes of protein aggregation together with macroscopic properties
of the environment in which they are taking place. This requires modeling frame-
works that consider the impact of processes taking place on many different spatio-
temporal scales. One such class of models that has been developed primarily for
studying biological processes from many different scales is cell-based models.
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In this section we review cell-based modeling approaches and their various
applications. Cell-based models are mathematical models that represent individual
cells as discrete entities and produce simulations to predict large-scale, collective
behavior of a population or group of cells from the behavior and interactions of
individual cells. The inputs to a cell-based model are experimentally observed cell
behaviors including how individual cells respond to both intracellular and extracel-
lular cues. Cell behaviors are encoded in a set of biologically relevant rules for cells
to follow during simulations. The outputs of a cell-based model are measurable
population-level and cell-level characteristics that follow nontrivially from cell–cell
coordination and individual cell response to the changing microenvironment,
including changes caused by the cells themselves.

Within this class of models a further distinction is made between lattice-based or
cellular automaton (CA) models in which the particles live on the coordinates of a
lattice and off-lattice methods that use real numbers to describe the coordinates of
each particle. Biologically motivated CA models describe cell-cell and cell-
environment interactions through phenomenological local rules, which allow for effi-
cient simulation of many different biological systems ranging from bacteria, excitable
media, and chemotactic aggregation to chicken embryonic tissues and tumors. (For
reviews see [70–77].) CAmodels are well suited for studying the dynamics of systems
with a large number of cells, i.e., growing monolayers or tumors, because their
computation time is efficient and they allow for systematic sensitivity analysis of
different parameters [70, 73, 75, 76, 78, 79]. In addition, CA models provide an easy
starting point from which to derive continuum equations for cell densities which are
particularly helpful in studying the mechanisms driving pattern formation and the
growth process of multicellular systems with billions of cells [73, 78, 80, 81]. How-
ever, CA models are rule-based, and model parameters do not represent a direct
physical description of biophysical properties of cells [73, 78]. For this reason, we
focus our discussion in this chapter on lattice-free modeling approaches.

In lattice-free modeling approaches, individual cells are represented using either
a single particle or agent or a group of particles or agents that are free to move to
any location in the computational domain [75, 76, 78, 82–86]. In simulations, each
biological cell is modeled as a discrete entity and endowed with well-defined indi-
vidual characteristics such as intracellular reaction kinetics or detailed biophysical
properties. As stated by T. Newman, cell shape and cell response to local mechanical
forces is one of the most challenging biological characteristics to build into a cell
model [78]. For this reason, lattice-free modeling approaches were developed as a
way to explicitly model cell shape as well as investigate how individual cells respond
to local mechanical forces and interactions with neighboring cells.

In lattice-free modeling approaches, interactions between agents are described
using forces or potential functions, and the position of an individual cell is deter-
mined by solving an equation of motion for each agent that belongs to that cell.
Moreover, it is standard to make the following two simplifying approximations for
the equation of motion of each agent: (1) motion may be described by considering
each vertex to be embedded in a viscous medium that applies a drag force on it with
mobility coefficient η, and (2) inertia is vanishing [83, 87–90]. This leads to first-
order dynamics with the evolution of the position xi of agent i to be determined by

η
dxi

dt
¼ Fi (10)

where Fi tð Þ denotes the total force acting on vertex i at time t. The mobility
coefficient η determines the timescale over which mechanical relaxation occurs and
is often referred to as the damping coefficient.
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Lattice-free modeling approaches vary in complexity from those that track the
center of each cell as a single point [91–93] to those that represent individual cells as
collections of membrane and cytoplasm nodes to allow for more biologically rele-
vant, emerging cell shapes [89, 94, 95]. Although a main advantage of CA methods
has been their computational efficiency, as computational power continues to
increase, lattice-free modeling approaches offer equally powerful tools for realisti-
cally modeling biological cell behaviors such as shape change, polarized cell growth,
division, differentiation, and intercellular signaling dynamics in great detail without
adding computational complexity. Lattice-free models have been used to investi-
gate the impact of individual cell behaviors and make predictions about mecha-
nisms controlling many different biological and pathological processes such as
determining shape of a tissue, size of a cell colony, or biological function of an organ
[75, 76, 78, 82, 84, 86, 96, 97]. In this section, we review three main categories of
lattice-free modeling approaches, namely, center-based models, vertex models, and
subcellular element models, as well as provide examples of how lattice-free model-
ing approaches have been used to study various biological problems.

3.1 Center-based models

Center-based modeling (CBM) approaches, or cell center models, track the
center of each cell as a single point and can be classified by two main components, a
definition of cell connectivity (Figure 3) and a definition of how cells interact or a
force law (Figure 4) [76, 78, 83, 91]. There are several commonly used methods for
determining cell connectivity, including the overlapping spheres approach, trian-
gulation, or Voronoi tessellation as described in Figure 3.

In center-based modeling approaches, the cell-cell interaction force is usually
written as a function of the location of each cell centers and almost always acts in
the direction of the vector connecting the two interacting cells [76, 78, 83, 91]. Let ri
be the position of the cell center of cell i, and let Fij denote the force on cell i due to
cell j. If we assume that the force Fij acts in the direction of the vector connecting
the cells, then the force on cell i due to cell j is written as

Fij ¼ Fij
ri � r j

kri � r jk
(11)

Figure 3.
Determining cell connectivity in center-based models. (A) In the overlapping spheres approach, each cell has an
intrinsic radius, Ri, and two cells interact if their corresponding spheres overlap, i.e., if they are within a
specified fixed distance from each other. (B) Triangulation involves computing a triangulation of the simulation
domain using cell centers as nodes. Edges of the resulting mesh determine which cells are connected. (C) The
Voronoi tessellation determines a region for each cell defined as a set of points in the plane that are closer to that
cell center than any other.
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where Fij is the signed magnitude of Fij. The total force on cell i is then

Fi ¼
X

j

Fij (12)

where the sum is over all cells j connected to cell i. As mentioned above, this
force is usually taken to be balanced by a viscous drag as the cells move, so that the
equation of motion for ri, the position of the cell center of cell i, is:

γ
dri
dt

¼ Fi (13)

where γ is the viscosity coefficient which could, for example, represent adhesion
between a cell and the underlying substrate. In simulations there are several choices
for the numerical method used to update the position of each cell center, but the
most simple is forward Euler discretization. Thus, the position of a cell center at
time tþ Δt is given by

ri tþ Δtð Þ ¼ ri tð Þ þ
Δt

γ
Fi: (14)

The cell–cell interaction force, Fij, is usually a function of the overlap, δij,
between two interacting cells which is given by

δij ¼ Ri þ R j �kri � r jk (15)

where Ri and Rj are the radii of cell i and j, respectively, and ri and rj are the
locations of the centers of cell i and cell j, respectively. Different definitions of the
contact area between cells are possible to further extend the model [76, 78, 83, 91].
There exists a wide range of force laws that have been used in the literature, ranging
from simple linear laws to more complex nonlinear models that can incorporate
nonhomogeneous properties such as cell-cell adhesion, cell-substrate adhesion, and

Figure 4.
Center-based model (CBM). The CBM approach updates cell positions based on interactions with connected
cells. We show an interaction between two cells where each cell is considered as a sphere with a given radius
(although other types of connectivity are possible (see Figure 3)). The left hand side shows the position of node ri
at time t with corresponding radius Ri and position of node r j at time t with corresponding radius Rj. The
position of each node is used to calculate the overlap δij between cell i and cell j and the resulting linear force Fij

to be applied to each node. The equation used to update the position of node ri is given as a function of the force
Fij, time step Δt, and damping coefficient γ. The right hand side shows the new positions of node ri and rj at time
tþ Δt after each position has been updated. (See Section 3.1 for more information).
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cell bond breaking [76, 78, 83, 91]. For simplicity, we consider the linear law
given by

Fij ¼ k1δij (16)

where k1 is a stiffness parameter. Since the linear law implies there is a large
attraction between distant cells, it is reasonable to define a cutoff range for
interacting cells such that

Fij ¼
k1δij for δij ≥ δmin

0 for δij, δmin:

�

(17)

Some other choices for force laws include the Johnson-Kendall-Roberts
(JKR) model [83, 91], the Hertz model [98, 99], and harmonic-like interaction
[100–102]. The JKR model describes the interaction between two isotropic
homogeneous spheres that are strongly adhesive, i.e., as soon as the two cells come
into contact range, they immediately form a contact area of finite size by active
deformation of the cell membrane. However, a unique property of the JKR model
is that when two cells are pulled apart, they continue to interact for distances
greater than the standard contact range but less than a specified distance (i.e.,
δmin. δij. δcij). This phenomenon is referred to as hysteresis behavior. Similar to

the JKR model, the Hertz model approximates each cell as a homogeneous sphere,
but in the Hertz model, hysteresis behavior is not included. In the Hertz model,
the potential interaction is represented as the sum of a repulsive and an attractive
force (i.e., Fij ¼ Fa

ijttrþ Fr
ijep). On the other hand, harmonic-like force laws

provide a simple model for the short-range cell-cell interaction due to cell-cell
adhesion and elastic deformation that approximate two adhesively interacting cells
by cuboidal objects with a non-deformable core, linked by linear springs. Each of
these definitions for cell-cell interaction force offers their own set of advantages
and disadvantages.

3.2 Application of center-based models in biology

Center-based models have been used to analyze multicellular processes in
tumors [91, 99, 100], intestinal crypts and epithelial tissues [85, 103], cell migration
in extracellular matrix [85, 100], and tissue regeneration, growth, and organization
[91, 99, 100, 103, 104]. In addition, several center-based models have been devel-
oped for studying macroscopic properties of yeast colonies [92, 93, 105]. (See
Section 4 for more details.) Although the mechanical information that can be
extracted from these models is rather approximate, various biophysical aspects in
these problems have explained important mechanisms for proper cell organization
and speed of growth in tissues [78, 97, 106].

3.3 Vertex models

Two-dimensional vertex models are a well-known class of lattice-free, cell-based
models that provide a more detailed description of cell shape [84, 87, 107, 108]. In
vertex models, each cell membrane is represented as a polygon composed of verti-
ces and edges that are shared between adjacent cells (Figure 5A). A set of rules or
an equation of motion defines how each vertex moves, and collective movement of
vertices leads to changes in cell shape over time (Figure 5A). Most often, the
equation of motion is a force or potential function based on the current
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configuration of vertices, i.e., location and connection between pairs of vertices, as
well as other geometrical features such as area or perimeter of cells [84, 87,
107, 108]. Many vertex models also incorporate rules to govern changes in connec-
tions between vertices to allow for rearrangements in cell neighbor relationships
[107]. The precise equations of motion used differ between models and may be
adapted to suit each particular biological problem. Below we review some of the
common forms of the equation of motion and typical rules for rearrangements of
vertex connectivity.

In most cases, the equation of motion for vertices is deterministic since a rea-
sonable assumption for tightly packed cell aggregates is that stochastic motion of
cells is mitigated by strong interactions between cells [84, 87, 107, 108]. One
difference among vertex models in the literature lies in the definition of the force.
The choice of form for the function Fi reflects which forces are thought to dominate
cell mechanics for the system being studied. Some commonly modeled forces
include tension or elastic forces, due to the combined action of a cell’s actomyosin
cortex [107] and adherens junctions [107], or pressure, due to hydrostatic pressure
[87]. Note that the forces acting on each vertex may either be given explicitly, or
else an energy function may be specified, whose gradient is assumed to exert a force
on each vertex.

For a concrete example, we will consider an equation of motion built from an
energy function given by Farhadifar et al. which has recently seen extensive use in
modeling wing disk epithelia [87]. This energy function encodes constraints associ-
ated with the limited ability of cells to undergo elastic deformations, volume
changes, and other movements due to adhesion to other cells. The energy function
is defined by

Figure 5.
Vertex model. Vertex models depict each cell membrane as a polygon of vertices and edges that are shared
between adjacent cells. At each time step, an equation of motion determines how each vertex moves, and
collective movement of vertices over time results in changes in cell shape. (A) Example forces acting on vertex i
due to interactions with shared vertices in cell α according to Eq. (18). (B–D) Cells in the model form and break
bonds due to neighbor rearrangements. Here we describe three basic cell neighbor rearrangements accounted for
by most vertex models [87, 107]. (B) T1 transitions occur when two vertices sharing a short edge (defined by a
minimum distance much smaller than the average length of an edge) merge into a single vertex which is then
reassigned to two new vertices, thus changing the local network topology. (C) T2 transitions occur when a given
cell shrinks to an approximately zero area and is removed to represent apoptosis. (D) T3 transitions occur when
the intersection of a vertex with an edge is avoided by replacing the approaching vertex with two new vertices.
For more detail see Section 3.3.
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E ¼
X

N

α¼1

Kα

2
Aα � A 0ð Þ

α

� �2
þ
Γα

2
P2
α

� �

þ
X

i, j

Λijlij (18)

where the area elastic modulus Kα, bond tension parameter Λij, perimeter coef-

ficient Γα, and preferred cell area A 0ð Þ
α are all model parameters whose values must

be chosen in a biologically relevant manner.
In vertex models that use this energy function, the choice of preferred cell area

A 0ð Þ
α depends on how cell growth is incorporated into the model. For a given energy

function U, the force on each vertex is determined by the negative derivative of the
energy with respect to the coordinates of that vertex Fi ¼�∇iU, where ∇i denotes
the gradient operator evaluated at xi. Computing the gradient of Eq. (18) and
exploiting the fact that the movement of vertex i affects only the energy of the cells
associated with it, the force Fi may be written explicitly as

Fi ¼
X

α∈ Si

�Kα Aα � A 0ð Þ
α

� �

∇iAα þ ΓαPα∇iPα

� �

�
X

j

Λij∇iłij (19)

where now the first sum runs over cells associated with vertex i and the second
sum runs over vertices sharing an edge with it.

Many of the earliest vertex models simulated cross-sections of epithelial tissues
and so did not account for cell neighbor rearrangements [87]. However, later
models were formulated to simulate top-down dynamics of epithelial cells in a plane
which required modeling cell neighbor rearrangements [107]. Namely, to accu-
rately describe planar epithelial cell dynamics, cells in the model must be allowed to
form and break bonds by changing connectivity among vertices as described in
Figure 5.

3.4 Application of vertex models in biology

Vertex models were initially developed to study the packing of bubbles in foams
[109]. Similar to foams, cells in epithelial tissues are tightly packed and mechani-
cally coupled to their neighbors by adhesion molecules along their common inter-
faces [84, 87, 107, 108]. In addition, cells exert forces onto each other and their
environment. Since vertex models are well suited for modeling tightly packed cell
ensembles with negligible intercellular space, the vertex modeling framework was
later adapted to study two-dimensional packing and rearrangement of apical cell
surfaces in planar epithelia [84, 87, 107, 108]. In these studies, epithelial cells are
described by a planar two-dimensional network of vertices that defines the apical
cell surfaces as polygons with straight interfaces between neighboring cells. The
underlying assumption of two-dimensional apical vertex models is that the main
forces acting to deform the cells are generated along the apical cell surfaces or can
be effectively absorbed in the apical representation. The work of Odell et al. [110]
first demonstrated the use of vertex models to study how spatial patterning in either
active forces or passive mechanical properties may lead to tissue deformation.
Subsequent studies by several groups have examined a variety of alternative pat-
terns of force and material properties that can give rise to similar tissue deforma-
tions [84, 87, 88, 107, 108, 111].

An important behavior of biological cells that does not affect the dynamics of
foams but plays a large role in the structure of biological tissues is the ability of cells
to grow, divide, and die. Model components representing cell division and death
require the modification of tissue connectivity which can add significant
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computational complexity, but these cell behaviors are essential mechanisms of
many of the biological process being studied. Thus, one biological question that has
been addressed using vertex models extended to include cell death and division is
the control of packing geometries in an epithelial sheet [84, 87, 88, 107, 108, 111]. A
highly cited example is the work of Farhadifar et al. [87] who performed a system-
atic analysis of the equilibrium cell packing geometries and their dependence on cell
mechanical and proliferative parameters using the Drosophila wing disk as a model
system. By comparing simulations with experimental results, the authors arrived at
a set of parameter values for which their model accounts for vertex movements
based on biologically relevant cell area variations, cell rearrangements due to laser
ablation, and epithelial packing geometries seen in vivo. This work demonstrates
how vertex models may be parametrized and tested using experimental data.

In many biological systems, patterns of mechanical stress and resulting macro-
scopic tissue shape changes may happen concurrently and can feed-back into each
other. Vertex models can be easily modified to incorporate both mechanical and
chemical feedbacks. For example, Odell et al. [110] included a simplified feedback
in their earliest model by assuming that contraction of individual cells was activated
by high levels of stretching due to tissue deformation. Although vertex models have
been successful in testing many of the mechanisms that govern the macroscopic
behavior of tightly packed epithelial tissues, this class of model generally ignores
contributions from important components such as cell-matrix interactions [112],
actomyosin contractility and other biophysical properties of the cell membrane
[113], and active remodeling of cytoskeletal components. Thus, there have been
several notable extensions of the vertex model to address these important factors
[110, 114, 115]. Although vertex models provide a promising modeling framework
for further investigation of different biological systems, in the next section, we
review a different modeling framework that was developed to take into account
more detailed representations of cell deformation and provide an extension to the
types and complexity of mechanical stress patterning and feedback considered.

3.5 Subcellular element model

The subcellular element (SCE) model provides a framework for simulating
lattice-free multicellular structures in which the shape of each cell dynamically
emerges from interactions with the local environment due to model assumptions
about the underlying mechanical properties of the system [82, 86, 89, 90]. In the
model, each cell is composed of a large, and possibly varying, number of small
nodes called subcellular elements (Figure 6). Each subcellular element of a cell is
modeled as a single point at its center of mass, which changes position over time
subject to three processes: (i) weak random fluctuations, (ii) elastic interaction with
elements of the same cell, and (iii) elastic interaction with elements of other cells.

In the SCE modeling approach, the membrane and cytoplasm of each cell can be
represented together as one set of homogeneous elements/nodes or separately using
two different sets of elements/nodes (Figure 6). Collective interactions between
pairs of nodes from the same cell represent bulk cytoplasmic contents, and collec-
tive interactions between pairs of adjacent nodes from neighboring cells represent
volume exclusion of cells as well as adhesive properties. In models that consider the
membrane and cytoplasm separately, collective interactions between pairs of cyto-
plasm nodes and membrane nodes represent the cytoplasmic pressure of the cell
applied to the cell membrane. Biomechanical and adhesive properties of cells are
modeled through viscoelastic interactions between elements represented by phe-
nomenological potential functions such as linear springs or Morse potential func-
tions, which are used to simulate close-range repulsion (modeling volume exclusion
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of neighboring segments of cytoskeleton) and medium-range attraction between
elements of the same or different cells (modeling the adhesive forces between
segments of cytoskeleton) [116].

The potential functions described above are used in model equations to calculate
the displacement of each element/node at each time step based on their interactions
with neighboring elements/nodes resulting in the deformation of cells within the
tissue (Figure 6). As mentioned previously, nodes are assumed to be in an
overdamped regime so that inertia forces acting on the nodes are neglected
[83, 87–90]. This leads to the following two equations of motion describing the
movement of element/node αi in cell i:

Fαi ¼�
X

αi 6¼βi

∇Eintra �
X

i 6¼ j

X

αi

∇Einter

0

@

1

A (20)

where η is the damping coefficient, xi is the position of node i, N is the total
number of nodes, and ∇E is the potential function used to describe the interaction
of node i with node j. This equation is discretized in time using the forward Euler
method, and the position of node xi is incremented at discrete times as follows:

xαi tþ Δtð Þ ¼ xαi tð Þ � Fαi

Δt

η
(21)

where Δt is the time step size.

Figure 6.
Subcellular element model (SCE). The SCE model uses sets of elements/nodes to represent individual cells. At
each time step, an equation of motion is used to update the location of each node based on resulting forces from
interactions between nodes due to cell growth, deformation, etc. (A) Illustration of a SCE model where
membrane and cytoplasm of individual cells are represented by one set of homogeneous elements/nodes.
Elements/nodes of the same cell are held together via intracellular interactions (solid lines) modeled using short-
range potential functions (∇Eintra). Elements/nodes of two neighboring cells interact via intercellular
interactions (dashed line) modeled using potential functions that weakly bind adjacent elements/nodes
(∇Einter). The force applied to node αi is calculated based on interactions with all other nodes βi ∈ celli and
adjacent nodes α j in neighboring cell, cellj. (B) SCE model where the membrane (filled nodes) and cytoplasm
(clear nodes) of one cell are represented separately using two different sets of elements/nodes. The force applied
to cytoplasm node αi is calculated based on intracellular interactions which include interactions with all other
cytoplasm nodes in the same cell (EII) and interactions with all other membrane nodes of the same cells (EMI)
via short-range potential functions. The force applied to membrane node βi is calculated based on both
intracellular interactions and intercellular interactions. Intracellular interactions for membrane node β j

include interactions with all cytoplasm nodes of the same cell (EMI) and interactions with adjacent membrane
nodes of the same cell (EMMS), and intercellular interactions for membrane node β j include interactions with

adjacent membrane nodes from neighboring cells. For more details about these interactions, refer to Section 3.5.
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One of the important features of the SCE modeling approach is the ability to
change parameters of the potential functions that are used to describe interactions
between elements to calibrate model representations of biomechanical properties of
a particular type of a cell directly using experimental data. More specifically, the
SCE model can be used to perform in silico bulk rheology experiments on a single
cell in order to scale the parameters such that the passive biomechanical properties
of each cell are independent of the number of elements used to represent each cell
[117]. As a result, SCE simulation output captures the underlying biomechanical
properties of the real biological system being studied and remains relevant regard-
less of the choice of the number of elements used in the model.

As indicated in Fletcher et al. [84], computational experiments follow a creep-
stress protocol in which a constant extensile force is applied to the end of an SCE
cell whose opposite end is fixed. Before the extensile force is released, the strain is
measured as the extension of the cell in the direction of the force relative to its
initial linear size. In silico estimates of the viscoelastic properties of cells modeled
using the SCE approach have been shown in many biological applications to agree
with in vitro rheology measurements [117, 118]. This indicates that the simple
phenomenological dynamics of the SCE modeling approach are enough to capture
low to intermediate responses of cytoskeletal networks over short timescales (�10s)
[118]. Over longer timescales (�100 s), cells respond actively to external stresses by
undergoing cytoskeletal remodeling, and this phenomenon can be incorporated into
the SCE modeling approach by inserting and removing subcellular elements of a cell
in regions under high or low stress [86].

The generalized Morse potential functions implemented in SCE modeling
approach are commonly used in physics and chemistry to model intermolecular
interactions [119] and in biology to represent volume exclusion of neighboring
regions of the cytoskeleton [94, 95, 120–125]. While it is difficult to associate
specific potential functions directly with specific cytoskeletal components of cells,
computational studies of bulk properties at the tissue level have suggested that the
precise functional form of the potential used in modeling has a small impact on
overall system dynamics [97, 117].

3.6 Application of SCE models in biology

The subcellular element (SCE) modeling approach has been successful in
modeling mechanical properties of individual cells as well as their components and
determining individual cell impact on the emerging properties of growing
multicellular tissue as well as describing cellular interactions with mediums such as
the extracellular matrix and fluids [76, 84, 86, 89, 90, 95, 96, 111, 117, 120, 122, 124–
127]. The general modeling framework was initially developed by Newman et al.
[89] for simulating the detailed dynamics of cell shapes as an emergent response to
mechanical stimuli. Recent applications of the SCE modeling approach show that it
is flexible enough to model additional diverse biological processes such as intracel-
lular signaling [122], cell differentiation [94], and motion of cells in fluid [124].

To date, the SCE has not been widely used to study biological processes outside
the area of epithelial morphogenesis. Christley et al. [122] developed a model of
epidermal growth on a basal membrane that incorporates cell growth through the
addition on new elements and division by redistributing a cell’s group of elements
between two new daughter cells. This mode was a novel implementation because it
was coupled to a subcellular gene network representing intercellular Notch signal-
ing. The SCE modeling framework has also been coupled to a fluid flow model to
simulate the attachment of platelets to blood vessel walls [124]. Using the SCE
framework for modeling individual platelets in simulations provides a detailed
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mechanical model of individual platelet behavior that allowed the authors to exam-
ine the relationship between platelet stiffness and movement in the fluid. This
facilitated the generation of new hypothesis about mechanisms platelets use to
adhere to injured sites on the blood vessel walls. In the context of developmental
biology, the primary application of the SCE to date has been a computational study
of primitive streak formation by Sandersius et al. [86]. In addition, the SCE model
has been applied to model development in both animal [95] and plant [94] systems.

4. Conclusion

In this chapter, we described the medical and scientific importance of studying
misfolded protein diseases as well as provided a broad description of several classes
of mathematical models that can be used to further investigate the underlying
mechanisms governing protein aggregation and propagation in a multicellular sys-
tem. In Section 2, we gave an overview of different modeling frameworks that have
been developed and validated for studying protein aggregation in both yeast and
mammalian systems. In Section 3, we described in detail various cell-based model-
ing frameworks that have been successfully used to gain insight about the impact of
individual cell behaviors on macroscale properties of tumors, developmental tis-
sues, and yeast colonies. However, our main goal in this chapter was to familiarize
the reader with each class of model in order to facilitate further discussion about
how these two types of models could be combined to develop a more complete
representation of prion disease dynamics within an actively growing and dividing
yeast colony.

While current models of protein aggregation in yeast have successfully provided
further insight into important mechanisms driving prion disease dynamics (i.e.,
conversion and fragmentation), they have been unable to recreate a number of
important physiological characteristics including variable phenotype induction
rates that result in sectored phenotypes among a single yeast colony (see Section 1
for details). One reason for this may be that a large number of models representing
intracellular dynamics of protein misfolding diseases were developed for studying
protein aggregation dynamics in isolation and these models disregard the contribu-
tion of individual cell behaviors within the growing yeast colony as a possible
mechanism governing prion disease dynamics. A major open question in prion
biology is to understand how prion aggregates spread between cells within a whole
colony or tissue. Experimental observations such as sectoring provide compelling
data that transmission mechanisms other than what is addressed by current
aggregation-only-models must play a role in the presence and persistence of prion
disease phenotypes in yeast colonies, i.e., processes such as conversion, fragmenta-
tion, nucleation, and even enzyme-mediated fragmentation alone cannot entirely
explain the spread of prion disease throughout a yeast colony. Thus, in order to test
hypotheses about the impact of individual cell behaviors on the spread of misfolded
proteins, it is necessary to develop a novel modeling framework.

Developing a modeling framework for investigating prion disease dynamics
within an entire yeast colony is challenging because it requires capturing the phys-
ical processes on an individual cell level that determine colony growth (i.e., budding
and variable cell cycle length) as well as capturing the interplay of individual cell
processes with protein aggregation dynamics (i.e., asymmetric protein distribution
at the time of division, persistence of diseased phenotype/aggregate that was given
to daughter while it grows to begin a new cell cycle, lineage-dependent protein
propagation). Several models have already been developed to investigate physical
mechanisms controlling patterns of yeast colony growth such as cell division
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polarity, mother-daughter size asymmetry, and cell-cell adhesion via budding
of the new daughter cell [92, 93, 105]. Jönsson and Levchenko developed an off-
lattice, center-based model in which cells are modeled as elastic spheres of variable
size [92]. Their work showed that cell growth inhibition by neighboring cells and
polar division growth patterns were the most significant factors driving appreciable
differences in the shape and size of yeast colony development. In addition, Wang
et al. built an off-lattice, center-based model that incorporates key biological pro-
cesses in yeast cell colonies including budding, mating, mating type switch, changes
in cell cycle length and cell size due to aging, and cell death [93]. The main results of
their work include proposed mechanisms for how budding patterns in yeast cells
affect colony growth. Both of these studies serve as excellent starting points for
developing a modeling framework that includes the physical processes and individ-
ual cell behaviors of yeast cells that govern colony growth.

One way forward would be to extend current cell-based models for yeast colony
growth by combining them with a detailed model of protein aggregation dynamics
as well as implementing specific model components that capture the interplay of
individual cell behaviors with protein aggregation dynamics. Specifically, the new
modeling framework would need to include asymmetric protein distribution at the
time of division and varied cell cycle lengths to represent how growth of a new
daughter cell impacts persistence of aggregates that were inherited at time of divi-
sion and track protein concentration through different cell lineages to investigate
the impact of lineage on colony phenotypes in yeast. In the model, prion dynamics
would need to be simulated within each individual cell using models of intracellular
dynamics described in Section 2. In addition, using a center-based model would
allow for the spatial arrangement of cells to account for the effect of biophysical
properties such as increased adhesion between a mother and daughter cell during
budding.

Preliminary simulations (Figure 7) show that individual cell behaviors indeed
impact yeast colony structure as well as protein aggregation dynamics in a growing
yeast colony. For our preliminary framework, we extended current cell-based
models for yeast colony growth by combining them with a simplified model of
protein aggregation dynamics as well as implementing asymmetric protein distri-
bution at the time of division and strong adhesion between mother and daughter
cells during budding. These are two cell behaviors we hypothesize to play an
important role in protein aggregation dynamics in yeast colonies. Our simulations
begin with a single founding cell that divides to give birth to the first daughter. All
cells continue to grow and divide throughout the simulation and stop once the
colony reaches about 1500 cells total. Successive daughter cells of the founder cell
are enumerated in the order of their division. For example, the first daughter is the
cell born after the first division of the founder cell, the second daughter is the cell
born after the second division of the founder cell, and so on.

Figure 7A shows sub-colony structure for each of nine daughters cells born from
the original founder cell of the colony represented in black. The first daughter sub-
colony (grayish black) occupies a larger area than any of the other sub-colonies. In
addition, the average location of each successive generation is located closer to the
boundary (Figure 7B). Protein aggregation dynamics were modeled using a logistic
growth function with a strong Allee effect. Figure 7C shows the number of aggre-
gates per cell in a simulation that resulted in a sectored colony. The interplay
between protein aggregation within each cell and individual cell behaviors results in
complete loss of aggregates in an early daughter cell, and subsequently, the sub-
colony generated by that daughter remains free of aggregates throughout the simu-
lation. These results suggest that the unified model may have the potential to
predict mechanisms underlying experimentally observed phenomena such as
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sectored prion phenotypes in yeast colonies in addition to serving as a tool for
future hypothesis generation and testing.

Although our preliminary studies appear promising, there is still a large gap to
fill in terms of developing models that consider underlying microscopic processes of
protein aggregation together with macroscopic properties of the environment in
which they are taking place. Indeed, as mentioned in Section 2 there have been
recent efforts to model the impact of tissue structures on the spread of protein
misfolding diseases in mammalian systems [63, 64]. However, most of the large-
scale models for protein aggregation lack details of components at the microscopic
scale that would allow for the study of the interplay of different temporal and
spatial scales. We hope that future modeling studies will begin to incorporate both
scales in order to test hypotheses about mechanisms that can explain unresolved
experimental data and yield new strategies for treating protein misfolding diseases.

Figure 7.
Impact of individual cell behaviors on yeast colony structure and protein aggregation. In our preliminary
simulations, we extended current cell-based modeling approaches for yeast colony growth by combining them
with a simplified model of protein aggregation dynamics along with asymmetric protein distribution at cell
division and strong adhesion between mother and daughter cells during budding. Simulations begin with a
single founder cell and stop after 15 hours when the colony contains about 1500 cells total. (A) Example of sub-
colony structure for each of nine daughter cells born from the original founder (black cell). Each sub-colony is
depicted with a different color indicated below. (B) We show in white the fifth-generation sub-colony
corresponding to the fifth daughter of the founder cell and all of its offspring. (C) Example of the interplay
between protein aggregation dynamics and individual cell behaviors in a simulation leading to a sectored colony.
Protein aggregation dynamics for individual cells were modeled using a logistic growth function with a strong
Allee effect which results in stable extinction of protein aggregates in the sub-colony of an early daughter cell.
The number of aggregates per cell is represented by different colors given in the key below.
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