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Chapter

Bingham Fluid Simulation in
Porous Media with Lattice
Boltzmann Method

José Luis Veldzquez Ortega

Abstract

Generate a lattice Boltzmann model (LBM), which allows to simulate the
behavior of a Bingham fluid through a rectangular channel with the D2Q9 model.
For this purpose, a relaxation parameter is proposed based on the rheological
parameters of the Bingham model. The validation will be carried out with the
solution of the movement equation, and velocity profiles will be obtained for three
different Bingham numbers (Bn). Other simulations will be made in a rectangular
channel in the presence of arbitrarily and randomly generated porous media. The
main objective is to propose a method to predict the behavior of non-Newtonian
fluids (Bingham fluid) through porous media, which have many applications in the
chemical industry avoiding at the same time the expensive experimentation of these
systems, with predicting models.

Keywords: lattice Boltzmann model, non-Newtonian fluids, Bingham fluid,
porous media, velocity profiles

1. Introduction

A continuous medium is characterized by the fact that its atoms or molecules are
so close together, in such way that they could be considered macroscopically as a
homogeneous mass, whose behavior can be foreseen without considering the
movement of each of its elementary particles that compose it. In this sense it is
assumed that there are no gaps or separations between the particles.

The movement of fluids can have a wide variety of behaviors for both simple
and complex flows (biological and food systems). In addition to this, using Reyn-
olds number, we can know if the flow has turbulent or laminar regime.

Mass conservation is the basic principle of fluid movement, which requires that
when the fluid is in motion, it moves so that the mass is preserved. The movement
of fluids is governed in general by the continuity equation.

op -

Pave(pv) =0 1

prana A (O (1)
On the other hand, the Navier-Stokes equation, which in general terms corre-

sponds to the application of Newton’s second law of classical mechanics to fluid

movement, is described as follows:
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for a fluid with velocity v, density p, pressure p, and kinematic shear viscosity p.
The Navier-Stokes equation is a second-order partial differential equation, which
can have an analytical solution only for a small number of cases.

There are basically three types of fluids from the point of view of fluid dynam-
ics, which are called Newtonians, non-Newtonians, and viscoelastic.

1.1 Newtonian fluids

In this type of fluid, the shear stress or shear force per unit area is proportional to

the viscosity gradient:
dvx>
Tyx = B| =— (3)
7 (dy

In Eq. (3), Tyx is the shear stress, (dv,/dy) is the shear rate, and p is the viscosity,
and its graphic representation can be seen in Figure 1.

All gases, liquid water, and liquids of single molecules (ammonia, alcohol, ben-
zene, petroleum, chloroform, butane, etc.) are Newtonian. Many food materials such
as milk, apple juice, orange juice, wine, and beer have a Newtonian behavior [1].

1.2 Non-Newtonian fluids

When the relationship between shear stress and shear rate is not linear, the fluid
is called non-Newtonian. There are many these types of fluids, and their behaviors
are shown in Figure 1.

Herschel-Bulkley —

- Bingham plastic

__ Newtonian fluid

Shear stress

Pseudiplastic fluid

Shear rate

Figure 1.
Types of times-independent flow behavior [2].
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In the case of these fluids, the viscosity is no longer constant; therefore, the
relationship between the shear stress and the shear rate of the fluid is no longer
linear. For this reason, a new term is now introduced and is known as apparent
viscosity or also known as shear rate-dependent viscosity [3].

Some fluids have a yield stress, from which the fluid begins to move. Below this
tension the shear rate would be zero. This relationship is not linear or, if it is, it does
not pass through the origin [4]. Complex mixtures are considered non-Newtonian
fluids: grouts, pastes, gels, polymer solutions, etc. Most non-Newtonian fluids are
mixtures with constituents of very different sizes. For example, toothpaste is com-
posed of solid particles suspended in an aqueous solution of several polymers. Solid
particles are much larger than water molecules, and polymer molecules are much
larger than water molecules.

Much of the research that is carried out in the field of non-Newtonian fluids has
been focused in the measure of its shear stress-shear strain curves and to look for
mathematical descriptions of these curves. The study of the behavior of the flow of
materials is called rheology (a term that originates from Greek words that give the
meaning of “the study of flow”); thus, diagrams such as the one shown in Figure 1
are often called rheograms.

In the case of Bingham fluids, sometimes called Bingham plastics, they resist a
small shear force indefinitely, but they flow easily under large shear stresses. In
other words, at low stresses the plastic viscosity of Bingham is infinite, and at
greater stresses the viscosity decreases with the increase in the velocity gradient.
Examples are bread dough, toothpaste, apple sauce, some paints, plastics, mayon-
naise, ketchup, aleas, and some grouts [5, 6].

2. Bingham model

Eugene C. Bingham described the paintings with this model in 1919, published in
his book Fluidity and Plasticity in 1922. The model was analyzed by Oldroyd (1947),
Reiner (1958), and Prager (1961).

The main feature of the Bingham model is the yield stress, necessary for the fluid
to deform or flow. Above this minimum yield stress, the fluid begins to move. If this
yield stress is not exceeded, the fluid behaves like a rigid or quasi-rigid body, with
zero shear rate.

The relationship between the shear stress and the velocity gradient is linear, but
it does not go through the origin for a Bingham plastic (Figure 1); its mathematical
model is given by

¥

d
Vx .
Tyx = To + Mp —dy if "L‘YX‘ > 1o (4)
dvy :
d_y = 0, if }TYX‘ <To
. To
m(y) = pg + 5 for Ty > 1o (5)

7= 0; for Ty <7

where 7 is the yield stress, pj is the plastic viscosity of Bingham, and p(7) is the
apparent viscosity, which decreases with the increase in the magnitude of the shear rate y.
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Other examples of Bingham-type fluids in foods are tomato sauce, whipped
cream, whipped egg white, margarine, and mustard-type condiments [7, 8].

2.1 Analytical solution of the equation of motion in the case of a Bingham-type

fluid

In this section, we will obtain a mathematical expression that shows how to
quantify the velocity profile for a non-Newtonian fluid for the Bingham model.

In the case of a Poiseuille flow, the flow of a Bingham-type fluid in the x-
direction is considered, between two plates separated by a distance 2H, taking into
account the steady-state conditions, constant cross section, absence of gravitational
effects and isothermal flow, and being incompressible, such as the one shown in
Figure 2.

From the equation of motion, we can obtain the stress profile, as well as the
velocity profile:

aH — — = —
pEVnLV-Vv]:V-T—VPang (6)

The pressure gradient effect is considered as a favorable driving force for fluid
movement. Usually, the pressure decreases at a constant rate from the initial end to
the end in the x direction.

AP (PL—Py) AP
VP =L 020
Az L L )

The component of the flow density tensor of the amount of movement of Eq. (6)

is Tyy; therefore, considering the above conditions, we have the following equation
to solve:
dryx AP
= | — (8)
dy L
Velocity Shear stress
distribution distribution

Flow v

) \

Plug
flow
Y=Y, region

Yy
Oy N S SE— o
X j
Centre

line ¥

Figure 2.
Flow of a Bingham fluid between two plates one half view [2].
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Making a separation of variables, in addition to performing the corresponding
integrals in Eq. (8), we obtain

Tyx = (%)Y +C1 9)

The integration constant is zero, when 1y = 0 at y = 0, i.e., at the center of the
plates, the shear stress is minimal. Therefore, the shear stress profile is

Equating Eq. (10) with the Bingham model, we obtain

Bingham model
e N
dvy AP
uB(dy) + To= (T)Y (11)

Making a second separation of variables, in addition to performing the
corresponding integrals, we have

2
Vg = (g) iy__r_0y+C2 (12)

In Figure 2, it is shown that velocity is zero on the plates; i.e., vy = 0 at y = £H.
Using this condition, the value of c; is obtained. Substituting in Eq. (12) we obtain

e D Dl ]

To know the velocity profile in the region of the plug flow, the condition for the
yield stress is proposed according to Eq. (10), when y = yo:

AP
Y=VYo  To= (T) Yo (14)

Substituting Eq. (14) into Eq. (13), the velocity in the plug flow region is

obtained:
AP\ H? Vo2
Vo= (T) o (1-%) (15)

Commonly, velocity profiles are usually represented with on the Bingham num-
ber, which is defined as

_"C()H

Bn=—— (16)
HB V

In Eq. (16), v is a characteristic velocity. Dividing Eq. (13) by this velocity,

s (D] @
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Figure 3.
Velocity profile for a Bingham fluid; Bn = 0.1, 0.2, 0.3, and 0.4 [4].
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Figure 4.
Shear stress vs. normalized shear rate with analytical solution.

is obtained. Eq. (17) represents the velocity profile for the Poiseuille flow
between two parallel plates, in the case of a Bingham-type fluid, and its graphic
representation is that shown in Figure 3, for values of Bn = 0.1, 0.2, 0.3, and 0.4,
with dimensionless values [4].

The graph of the shear stress vs. normalized shear rate (rheogram) is shown in
Figure 4.

3. Lattice Boltzmann Bhatnagar-Gross-Krook (BGK)

The Lattice Boltzmann Method (LBM) generally consists of a discrete lattice;
each site (node) is represented by the distribution function, which is defined by the
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Figure 5.
Allowed divections for particle movement. (a) Model D2Q9, (b) model D2Q15.

velocity of a particle and limited to a discrete group of allowed velocities. During
each time step, the movement or jump of particle to nearby lattice sites, along its
direction of movement, a collision with another particle can occur when they reach
the same site. The result of the collisions is determined by means of the solution of
the kinetic equation of Boltzmann for the new function of distribution of the
particle to that site, and in this way the function of distribution of the particle is
updated [9, 10].

There are different lattice models, which are given by DmQn; m indicates the
dimension and n the permitted velocity, thus, the D2Q9 model (two-dimensional
with nine speed directions), of which four sites correspond to nearby neighbors
(right, left, up, and down), four other points of the lattice vectors along the
diagonal faces of the following sites, along these diagonals. In this way the particles
can travel in eight directions for each lattice site. The circle in the center of the
square represents the vector, which has a value of zero and represents particles that
have no movement, that is, particles at rest. Then, there are a total of nine real
numbers that describe the distribution function of the particle for a lattice site (see
Figure 5).

The process of the propagation and collision of particles generally occurs in two
stages: the first is to denote the advance of the particles to the next lattice site along
the directions of movement; this is for each time step At. The second stage is to
simulate the collisions of the particles, which causes them to propagate in different
directions at each lattice site [11, 12]. These stages can be described through the
discretized Boltzmann equation on a lattice.

f, <§ +ELt+ 1) _f (?t) ) (18)

To simplify Eq. (18), the BGK approximation is usually used; this approximation
replaces the term Q:

(19)

This operator models the effect of the collision as a relaxation of the distribution
function towards the Maxwell equilibrium distribution. The parameter t (relaxation
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time) has dimensions of time and controls the frequency with which the distribu-
tion function relaxes to reach equilibrium, that is, this time determines the rate at
which the fluctuations in the system lead to this state of equilibrium [13].

B et1) —6(5e) = [6(x) -£9(%0)] Qo

T

The macroscopic variables (mass (p) and velocity <H>) can be calculated

directly from the values of the distribution function as

n (21)

In the case of a Newtonian fluid, the ratio of kinematic viscosity and relaxation
time is given by [13] v = 1/3 (t-1/2).

4. Simulation of Bingham fluids with the lattice Boltzmann method

For the simulations of the Bingham fluid with the Lattice Boltzmann Method, a
modification was made to the LBGK approach presented by Wang and Ho [14] and
Tang et al. [15], for a D2Q9 model, which consists in proposing the relaxation
parameter T based on the apparent viscosity:

* = g +7001)] + 2 (22)

In Eq. (22), pg, To, and y are the Bingham viscosity, yield stress, and shear rate,
respectively. Parameter T was used in the Lattice Boltzmann equation (Eq. (20)).
The simulations were carried out on a 64 x 64 lattice, using “bounce back” condi-
tions on the solid walls to ensure that the velocities are zero and periodic boundary
conditions at the fluid inlet and outlet, so that the nodes located in the border will
have their neighboring nodes on the opposite border. The steady state was reached
at 360,000 time steps.

The validation of the proposal in the LBM was performed by comparing the
results of the analytical solutions for a Poiseuille flow between two separate plates a
distance 2H, shown in Figure 2 using Eq. (17). The used conditions were pressure
force = 2.66E-2, yield stress = 2.00E-5, and Bingham viscosity of 0.4 for a Bin = 0.1;
pressure force = 5.83E-3, yield stress = 1.10E-5, and Bingham viscosity of 0.08 for a
Bin = 0.2; pressure force = 5.19E-3, yield stress = 1.40E-5, and Bingham viscosity of
0.07 for a Bin = 0.3; and pressure force = 1.88E-3, yield stress = 6.50E-6, and
Bingham viscosity of 0.025 for a Bin = 0.4.

Simulations were performed in porous media, applying the LBM in the case of
deterministic porous medium and random porous media. A modification of a “Box-
Muller method,” which is a random number generator, was inserted in random
porous media, and blocks were inserted arbitrarily in the lattice for deterministic
porous media [16, 17].

An alternative way or method is proposed for obtaining local permeabilities for
deterministic and random porous media. This one consists in a modification of
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Darcy’s law; for this the permeability is calculated based on the apparent viscosity
according to the following equation:

K — (uB +7) v/ (@) (23)

In Eq. (23), K is the permeability, v is the velocity, and dP/dx is a pressure force.

The discrete macroscopic pressure P is given by the state equation that relates
the discrete density to the pressure P = c2p, where c; is the speed of sound and p is
the density that is calculated through Eq. (21).

The relationship is valid for incompressible fluid simulations and is only allowed
to fluctuate locally around a fixed value [18]. Hidemitsu Hayashi proposed two
LBMs for the flow generated by the pressure gradient (FGPG) and the flow driven
by an external force (FDEF), which are consistent with each other [19].

The criterion used by Wang and Ho [14] was taken, for which yielding occurs
when the magnitude of the extra shear stress tensor exceeded the yield stress, 7o,
i.e., be yielded when |tyx|)7, and unyielded if |tyx| < 7o.

Figure 6 shows the validation of the velocity profiles with the analytical solution
and the simulations with LBM. The error between both solutions was less than 2.0%.

For the development of the work, three porous media with a deterministic
structure and nine random were proposed; in each of them all the simulations were
performed for three Bingham numbers (0.2, 0.3, and 0.4).

In Figures 7-15, the speed patterns for all simulations are shown; for this the
values of the yield stress, the pressure forces, and the viscosities were varied.
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Figure 6.

Comparison of velocity profiles with different Bingham numbers for the analytical solutions and the proposed
LBM. Normaliged velocity profiles for (a) Bin = 0.1, (b) Bin = 0.2, (c) Bin = 0.3, (d) Bin = 0.4.
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Figure 7.
Bingham = 0.2, yield stress = 1.1E-5, pressure force = 5.83E-3, and viscosity = 0.08. Porosity 81.68%,

deterministic porous medium: (a) vectorizged flow, (b) velocity patterns. Porosity 81.62%, random porous
medium: (c) vectorized flow, (d) velocity patterns.

Figure 8.
Bingham = 0.2, yield stress = 1.1E-5, pressuve force = 5.83E-3, and viscosity = 0.08. Porosity 73.75%,

deterministic porous medium: (a) vectorized flow, (b) velocity patterns. Porosity 73.68%, random porous
medium: (c) vectorized flow, (d) velocity patterns.
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Figure 9.
Bingham = 0.2, yield stress = 1.1E-5, pressuve force = 5.83E-3, and viscosity = 0.08. Porosity 65.82%,

deterministic porous medium: (a) vectorized flow, (b) velocity patterns. Porosity 65.75%, random porous
medium: (c) vectorized flow, (d) velocity patterns.

Figure 10.
Bingham = 0.3, yield stress = 1.4E-5, pressuve force = 5.19E-3, and viscosity = 0.07. Porosity 81.68%,

deterministic porous medium: (a) vectorized flow, (b) velocity patterns. Povosity 81.62%, random porous
medium: (c) vectorized flow, (d) velocity patterns.
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(©) (d)

Figure 11.
Bingham = 0.3, yield stress = 1.4E-5, pressure force = 5.19E-3, and viscosity = 0.07. Porosity 73.75%,

deterministic porous medium: (a) vectorized flow, (b) velocity patterns. Porosity 73.68%, random porous
medium: (c) vectorized flow, (d) velocity patterns.

Figure 12.
Bingham = 0.3, yield stress = 1.4E-5, pressure force = 5.19E-3, and viscosity = 0.07. Porosity 65.82%,
deterministic porous medium: (a) vectorized flow, (b) velocity patterns. Povosity 65.75%, random porous

medium: (c) vectorized flow, (d) velocity patterns.
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Figure 13.
Bingham = 0.4, yield stress = 6.5E-6, pressure force = 1.88E-3, and viscosity = 0.025. Porosity 81.68%,
deterministic porous medium: (a) vectorized flow, (b) velocity patterns. Porosity 81.62%, random porous

medium: (c) vectorized flow, (d) velocity patterns.

Figure 14.
Bingham = 0.4, yield stress = 6.5E-6, pressure force = 1.88E-3, and viscosity = 0.025. Porosity 73.75%,

deterministic porous medium: (a) vectorized flow, (b) velocity patterns. Porosity 73.68%, random porous
medium: (c) vectorized flow, (d) velocity patterns.

13
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30 40

(d)

Figure 15.

Bingham = 0.4, yield stress = 6.5E-6, pressure force = 1.88E-3, and viscosity = 0.025. Porosity 65.82%,
deterministic porous medium: (a) vectorized flow, (b) velocity patterns. Povosity 65.75%, random porous
medium: (c) vectorized flow, (d) velocity patterns.

In Figures 7-15 the decrease in porosity corresponds to a decrease in velocity. It
can be noted that for a Bingham number of 0.2 (Figures 7-9), higher velocities are
shown in deterministic porous media than random media. But in the latter, there
are more places to pass the fluid. These behaviors are presented in the simulations
for the three Bingham numbers used (0.2, 0.2, and 0.3). Comparing the Bingham
number of 0.2 with that of 0.4, a decrease in the velocity in the deterministic porous
media is observed as well as the random ones according to the conditions handled;
this is due to the decrease of the initial effort, the pressure force, and the viscosity.

Local permeabilities were simulated based on apparent viscosities for all deter-
ministic and random porous media. In Figures 16-19, only some of the results of
local permeabilities for deterministic porous media 81.68 and 65.82% with Bingham
numbers of 0.2 and 0.4, respectively, are shown. Likewise, only the result of the
simulations for two random porous media 81.62 and 65.75% for Bingham numbers
of 0.2 and 0.4, respectively, are shown.

Figures 16-19 show the zones in blue of the local permeabilities. It is remarkable
that the blue areas predominate in random porous media. By comparing the Bing-
ham number of 0.2 for the two deterministic and random porous media according
to Figures 16 and 17 with that of 0.4 of Figures 18 and 19, an increase in perme-
abilities can be seen.

Finally, pressures for all porous media were simulated. Figures 20-25 show
some of the results obtained in the case of deterministic porous media with poros-
ities of 81.68, 73.75, and 65.82% for Bingham numbers 0.2, 0.3, and 0.4, respec-
tively. Similarly, the results are presented for random porous media with porosities
of 81.62, 73.68, and 65.75% for Bingham numbers 0.2, 0.3, and 0.4, respectively.

14
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Figure 16.
Local permeabilities for deterministic porous media with povosity of 81.68%, Bingham = 0.2, yield stress =
1.1E-5, pressuve force = 5.83E-3 and viscosity = 0.08. (a—c) The rough numerical date of permeability,

(d) pattern porous media.
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Figure 17.

Local permeabilities for random porous media with porosity of 81.62%, Bingham = 0.2, yield stress = 1.1E-5,
pressuve force = 5.83E-3 and viscosity = 0.08; (a—c) The rough numerical date of permeability, (d) pattern
porous media.
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Figure 18.

Local permeabilities for deterministic porous media with porosity of 65.82%, Bingham = 0.4, yield

stress = 6.5E-6, pressure force = 1.88-3 and viscosity = 0.025; (a—c) the rough numerical date of permeability,
(d) pattern porous media.
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Figure 19.
Local permeabilities for random porous media with porosity of 65.75%, Bingham = 0.4, yield stress = 6.5E-6,

pressuve force = 1.88-3 and viscosity = 0.025; (a—c) The rough numerical date of permeability, (d) pattern
porous media.

Figures 20-25, you can see in all cases the difference in pressures, higher
pressure in the red colors, and less pressure in the green colors, in addition to
observing the pressures in the different zones.
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Figure 20.

Pressures for deterministic porous medium with porosity of 81.68%, Bingham = 0.2, yield stvess = 1.1E-5, pressure
force = 5.83E-3 and Viscosity = 0.08. (a) Pressure distribution, (b) the rough numerical date of pressure.
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Figure 21.

Pressures for random porous medium with porosity of 81.62%, Bingham = 0.2, yield stress = 1.1E-5, pressure
force = 5.83E-3 and Viscosity = 0.08. (a) Pressure distribution, (b) the rough numerical date of pressure.

anseald

Figure 22.

Pressures for deterministic porous medium with povosity of 73.75%, Bingham = 0.3, yield stress = 1.4E-5,

pressuve force = 5.19E-3 and Viscosity = 0.07. (a) Pressure distribution, (b) the rough numerical date of
pressure.
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Figure 23.
Pressures for random porous medium with porosity of 73.68%, Bingham = 0.3, yield stress = 1.4E-5, pressure
force = 5.19E-3 and Viscosity = 0.07. (a) Pressure distribution, (b) the rough numerical date of pressure.
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Figure 24.

Pressures for deterministic porous medium with porosity of 65.82%, Bingham = 0.4, yield stress = 6.5E-6,
pressuve force = 1.88E-3 and Viscosity = 0.025. (a) Pressuve distribution, (b) the rough numerical date of
pressure.

AUNBHAS

Figure 25.
Pressures for random porous medium with porosity of 65.75%, Bingham = 0.4, yield stress = 6.5E-6, pressure
force = 1.88E-3 and Viscosity = 0.025. (a) Pressure distribution, (b) the rough numerical date of pressure.
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5. Conclusions

In the present work, the Lattice Boltzmann Method was applied to a problem of
the flow of a non-Newtonian Bingham-type fluid between two plates, in the case of
a Poiseuille flow.

This method is an alternative to the conventional ones used in computational
fluid mechanics, its programming is not complicated, and today it is applied to
many engineering problems.

Validations were carried out with the analytical solution of the velocity profiles
for the case of a Poiseuille flow and the simulations with Lattice Boltzmann, for the
case of Bingham-type fluids, for values of the Bingham number (Bin) of 0.1, 0.2,
0.3, and 0.4. The results of all the simulations were quite acceptable, since the
percentage of error between both results did not exceed 2.0%.

The LBM proves to be kind for simulations with small lattices, such as the one
used in the present work 64 x 64. All simulations were performed in a laminar
regime.

Three deterministic porous media with porosities of 81.68, 75.75, and 65.82% and
nine randomized ones with porosities of 81.62, 73.68, and 65.75% were proposed for
three Bingham numbers (0.2, 0.3, and 0.4), to perform all simulations. In them the
pressure forces, yield stress, and viscosities were varied.

Profiles of velocities, permeabilities, and local pressures were obtained, in all
cases the results and behaviors were acceptable for all porous media, and the three
Bingham numbers, although only some of the results obtained, were presented at
work.

The LBM with the necessary restrictions allows to perfectly simulate the behav-
ior of fluids, as is the case of the Bingham type; the importance of this is the
application of multiple industrial processes, in the displacement of fluids reducing
costs and time.

Finally, it would be convenient to perform simulations with turbulent flows to
verify the goodness of the method with this type of fluid, in which its description is
more complex.
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