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Chapter

Developing Cognitive Advisor
Agents for Operators in
Industry 4.0
Alejandro Chacón, Cecilio Angulo and Pere Ponsa

Abstract

Human cyber-physical systems (CPS) are an important component in the
development of Industry 4.0. The paradigm shift of doing to thinking has allowed
the emergence of cognition as a new perspective for intelligent systems. Currently,
different platforms offer several cognitive solutions. Within this space, user assis-
tance systems become increasingly necessary not as a tool but as a function that
amplifies the capabilities of the operator in the work environment. There exist
different perspectives of cognition. In this study cognition is introduced from the
point of view of joint cognitive systems (JCSs); the synergistic combination of
different technologies such as artificial intelligence (AI), the Internet of Things
(IoT) and multi-agent systems (MAS) allows the operator and the process to
provide the necessary conditions to do their work effectively and efficiently.

Keywords: cognition, multi-agent system, advisor, operator

1. Introduction

The continuous introduction of technology in the industrial environment is a
main generator of changes in architectures, models and work styles in the industry.
Currently, Industry 4.0 signifies a great opportunity for operators to become a part
of the new manufacturing systems [1]. On the one hand, operators generate infor-
mation and data to programme machines and robots and optimise process flows; on
the other hand, they receive useful support for their work as well as effective
cooperation with intelligent systems [2]. This bidirectional dialogue allows new
types of powerful interactions between operators and machines. Hence, a new kind
of workforce should be trained in order to obtain a significant impact on the
development of the industry [3].

The use of artificial intelligence (AI) techniques to enhance the lifelong learning
experience of humans has evolved in literature from the early works on intelligent
tutor systems, where AI is used as a tool to monitor and facilitate the user learning
process, to the creation of human-computer collaborative learning systems (HCCL)
[4], where AI entities become members of a group of mixed human and artificial
learners. Through HCCL systems, humans acquire problem-solving or decision-
making capabilities in a particular domain in simulated or real situations.

In the Industry 4.0 scenario, AI entities can be endowed as cognitive advisor
agents implemented in the form of either voice assistants or embodied agents, in
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order to propose collaborative working behaviours between machines and humans.
The implementation of these systems in manufacturing pushes towards factories
characterised by the symbiosis of human automation [5], where machines
cooperate with humans, both parts having the opportunity to lead the cooperative
task at hands.

The challenge motivating this research is to define a human-centred architecture
to design, implement and evaluate cognitive advisor agents in the framework of a
human cyber-physical production system (H-CPPS) [2, 6] which supports the
operator in Industry 4.0 to accomplish their job into an automation system [7] in a
more efficient and effective form. The proposed overall H-CPPS architecture will be
evaluated through a proof of concept based on a multi-agent system (MAS)
implementing a cognitive robot (embodied agent) to assist the operator (operator
4.0) in a collaborative work with a cobot. A scheme of the operator—cobot—
assistant robot symbiotic system is shown in Figure 1.

This chapter is structured as follows. Firstly, the current Industry 4.0 paradigm
is introduced, and the role of human operator in this domain is shown. Next, the
proposed human cyber-physical production system architecture is introduced.
Moreover, the approach of this architecture to cognitive tasks is presented. The
cognitive advisor vision to be endowed into the previous architecture is finally
introduced. Conclusions and future research lines are closing the chapter.

2. The operator’s workspace in Industry 4.0

The operator 4.0 concept is defined in [2, 8] in a general form as an operator in
an industrial setting assisted by technological tools. Although the increase in the
degree of automation in factories reduces costs and improves productivity, in the
Industry 4.0 vision, differently of computer-integrated manufacturing (CIM),

Figure 1.
Proof of concept. The operator 4.0 is assisted by the embodied agent to collaborate with the cobot in the process.
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human operators are yet key elements in the manufacturing systems. In fact, the
increasing degree of automation ‘per se’ does not necessarily lead to enhanced
operator performance.

The continuous innovations in the technological areas of cyber-physical systems
(CPS), the Internet of Things (IoT), the Internet of Services (IoS), robotics, big
data, cloud and cognitive computing and augmented reality (AR) result in a signif-
icant change in production systems [9, 10]. Empowered with these new skills,
cyber-physical systems can take part, for instance, in tasks of planning and disposi-
tion, eventually to manage them. Machines take care of the adequate supply of
material, change the production method to the optimal one for the real product or
devise a new plan themselves [11]. This technological evolution generates, among
others, the following impacts on the operator:

• The qualification of manual tasks decreases.

• The operator can access all the necessary information in real-time to take
decisions.

• Intelligent assistance systems allow decisions to be taken more quickly and in a
short space of time.

• Co-working in the workspace between machines and people requires less effort
and attention.

• Human implementation and monitoring are more relevant than ever.

The emerging technologies in Industry 4.0 [12] as well as current development
of AI technologies are allowing that cyber-physical systems oriented to human-
machine interaction be moving from only a physical interaction vision paradigm to
also a cognitive one (see Table 1). The operator should be able to take the control
and supervise the automated production system. However, the increasing informa-
tion and communication power of these systems leads to a complexity that is not
understandable by the current standard user interfaces employed in the industry.
Consequently, the operator would need support to keep the system under stable
requirements. Moreover, the operator could get the system work plan (factory, not
shift supervisor), and therefore the operator would need additional information
during field operation, which requires access to location-independent information
as well as a situation-oriented and task-oriented information offer [13].

As a result of this paradigm shift, new forms of interaction appear in the field of
human-machine interface (HMI), in the form of intelligent user interfaces, such as
operator support systems (OSS), assistance systems, decision support systems and
intelligent personal assistants (IPAs) [7]. In the context of smart, people-centred
service systems, cognitive systems can potentially progress from tools to assistants
to collaborators to coaches and be perceived differently depending on the role they
play in a service system.

Physical Cognitive

Routine Traditional automation Automated learning techniques

Nonroutine Collaborative robots Intelligent assistants (IA)

Table 1.
Vision of physical and cognitive automation.
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Assistance systems support the operator as follows [14]:

• From a human-centred design approach, it expressly considers the
identification of user context, the specification of user requirements, the
creation of design solutions, and the evaluation of design solutions. Moreover,
it provides an appropriate amount of information in a clear way.

• As a decision-maker in production control, with information acquisition, data
aggregation/analysis of information and operation choice.

However, it should be clarified that the final decision always remains in the
human operator side, thus maintaining the principle of human centrality.

Regarding the tasks and the role of the operator, an increase in the proportion of
complex cognitive tasks is expected, hence increasing the needs for coordination or
organisation of production resources, as well as the control and monitoring of
complex production systems.

The literature shows that a significant change in this relationship from purely
physical to cognitive refers to the human-machine interface, which encompasses
the interaction between operators and a set of new forms of collaborative work. The
interaction between humans and CPS is produced by either direct manipulation or
with the help of a mediating user interface. Such a close interaction between
humans and CPS also raises socio-technological issues regarding autonomy and
decision-making power. Cybernetics provides an answer on how a system that
controls another system can compensate for more errors in the control process by
having more operational variety. As the most flexible entity in the cyber-physical
structure, the human will assume the role of a higher-level control instance [10].
Through technological support, it is guaranteed that operators can develop their full
potential and adopt the role of strategic decision-makers and flexible problem
solvers, thus managing the increasing technical complexity.

3. Human cyber-physical production systems

Cyber-physical systems are one of the fundamental pillars of Industry 4.0
[10, 15, 16]. According to the National Institute of Standards and Technology
(NIST), cyber-physical systems are intelligent systems, including interactive net-
works, designed of physical and computational components. These systems inte-
grate computing, communication, detection and performance with physical
systems to fulfil time-sensitive functions with varying degrees of interaction with
the environment, including human interaction (see Figure 2). These systems are
conceived as components in the production system able of executing physical pro-
cesses in cooperation with other entities. Systems can adapt independently to
changing circumstances, by learning from the additional information coming from
the sensors [6].

Usually, each component of the CPS takes the necessary control decisions
related to the physical aspects of the underlying production system and
communicates control decisions, system states and behaviour patterns. Currently,
the possibility to combine existing technologies such as multi-agent systems,
service-oriented architectures (SOA), the Internet of things, cloud
communication, augmented reality, big data or machine-to-machine
communication (M2M) [9] has empowered the features and functions of these
systems so that levels of cognition in the cooperation, beyond physical interaction,
can be also considered.
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In the approach with humans in the interaction, new models of CPS have
emerged which focused on improving the capabilities of operators, such as cyber-
physical human system (CPHS) [17] and human cyber-physical production system
[2]. CPHS is defined as “a class of sociotechnical systems critical for security in
which the interactions between the physical system and the cybernetic elements
that control its operation are influenced by human agents.” Our research, however,
focuses on H-CPPS, defined as “a work system that improves the capabilities of
operators thanks to a dynamic interaction between humans and machines in the
cyber and physical worlds through intelligent human-machine interfaces.” The
objectives for H-CPPS are achieved through the interactions between the physical
system (or process) to be controlled, cybernetic elements (i.e. communication links
and software modules) and human agents that monitor and influence the function-
ing of the cyber-physical elements.

In both definitions we can highlight the role of the operator within the control
loop. In human-oriented architectures, there is the ability to feedback the informa-
tion (see Figure 3) at each level, because inherent intelligence of human operators
can be used naturally for self-adaptation, corrective and preventive actions. For the
H-CPPS approach, its levels’ configuration acts as a supervisory control to ensure
that decisions made at the cognitive level are implemented and that corrective or
adaptive actions are carried out by the human worker [18].

H-CPPS are very dynamic and complex systems being subject to a certain degree
of unpredictable behaviour of both the environment and the user. These conditions
generate several challenges related to the administration of H-CPPS that require
run-time capabilities allowing the system to detect, monitor, understand, plan and
act on those not predicted changes while minimising (and potentially eliminating)
system downtime. In order to develop our cognitive advisor agent for operators, we
start by defining three dimensions of H-CPPS: cybernetic, physical and human. Each

Figure 2.
CPS conceptual model [17].
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dimension is connected to the other ones through intelligent interactions (see
Figure 4).

The physical dimension includes all the resources connected to the production
system through sensors and actuators. The cybernetic dimension describes all com-
puting, network and cloud infrastructures that communicate data, processes and
software resources. Finally, the human dimension describes human elements, as
well as their situations based on their objectives and context. The human dimension
is especially relevant for this research, focused in aligning the objectives of H-CPPS
with the achievement of the personal goals of the users.

3.1 Agent-based approach to H-CPPS

The applications of artificial intelligence techniques related to humans in the
work environment are guided by four possible paths in human cyber-physical
systems (see Table 2). As the ‘human in the loop’ is considered in H-CPPS, intelli-
gent assistance systems are the approach to be developed in our research.

Nowadays, different architecture patterns and implementation technologies
have been developed and applied to process and exchange information allowing H-
CPPS components to make their decisions. They range from service-oriented archi-
tectures that exploit technologies such as web services to agent-based architectures
that exploit solutions compatible with Foundation for Intelligent Physical Agents
(FIPA) [19]. However, they also come with their own set of challenges.

Figure 3.
CPS vs. H-CPPS model.

Figure 4.
Three dimensions of H-CPPS.
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Multi-agent systems [20] are an example of architecture applicable to the
implementation of H-CPPS. More specifically, industrial agents [21, 22] address
industry requirements in productive systems. MAS expose system characteristics
such as autonomy, cooperation, intelligence, reactivity and proactivity, which
allows intelligence to be distributed among a network of control nodes and, conse-
quently, adapts effectively to distributed control systems, that is, by implementing
H-CPPS solutions [21]. While the use of MAS for control process can be considered
as a mature architecture pattern, its application in the industry is still limited [23].

In order to define our agent-based approach to H-CPPS systems, two types of
interactions should be identified (see Figure 4):

• Interaction between agents (only considering the cyber dimension)

• Interaction between agents (cyber dimension) and hardware automation
control devices (physical dimension)

For the first type of interaction, FIPA has established guidelines to regulate the
development of agent-based systems. It is a collection of standards that are grouped
into different categories, that is, applications, summary architecture, agent com-
munication, agent management and message transport agent. For the second type
of interaction, related to the interconnection of the agent and the physical automa-
tion control device [24], standardised practices are not yet defined, allowing to
simplify and make transparent the process of integration of physical and cybernetic
counterparts.

Finally, it should be noticed that agents, as an enabling technology to manage
smart approaches, endow inherent characteristics (including autonomy, negotia-
tion, mobility) which could be more beneficial when combined with distributed
intelligence approaches and lead to better services and applications at the edge [16].

3.2 Human roles in H-CPPS

For the moment, the cyber and the physical dimension have been considered in
our agent-based approach. However, while in a human-centred architecture, the
roles of humans in cyber-physical human systems (H-CPPS) must be also defined.

In the models of human-automation interaction, attention is paid to whether
human assumes control of the system [25]. In H-CPPS systems, however, human
intervention is focused in more aspects: the dialogue with other agents, decision-
making and information supply. In this sense, one research line is about the defini-
tion of a human model as a part of the full H-CPPS model. However, human models
defined as a transfer function leads to a poor approach. Some researchers expand

Human in the loop No human in the loop

Hardwired
specific
systems

Assisted intelligence: AI system that assist
human in making decisions or taking
actions, hardwired systems that do not learn
from their interactions

Automation: Automation of manual and
cognitive tasks that are either routine or
nonroutine. This does not involve new
ways of doing things—automates existing
task

Adaptative
systems

Assisted intelligence: AI systems that augment
human decision-making and continuously
learn from their interactions with humans
and the environment

Autonomous intelligence: AI systems that
can adapt to different situations and can
act autonomously without assistance

Table 2.
Path AI in human cyber-physical systems.
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this approach by developing analytic human models that reflect cognitive abilities in
the interaction with cyber-physical systems [17]. On the other hand, a H-CPPS
requires flexibility. An adaptive H-CPPS responds to unexpected or novel situations
(replanning, setting new goals, learn from experience), and the definition of the
role of human (passive or active performer) is required [17]. Human roles examples
in H-CPPS are, for instance:

• Supervisor (human on the loop): Approve CPS decisions; reallocate tasks
between human and CPS.

• Controller (human in the loop, operator 4.0): Interact with sensors and
actuators; use of augmented reality technology; collaborative task with a cobot.

Merging human roles with CPS roles in order to define the functional architec-
ture of a H-CPPS leads our research to the definition of a joint cognitive system (JCS),
its basic aim being to achieve a high level of successful performance managing the
human cognitive load in the process.

4. Joint cognitive system

The current development of technology allows us to reach the level of cognition
in H-CPPS (see Figure 3) [18]. However, the understanding of cognition generates
debates because it can be approached from several domains, mainly from psychol-
ogy through mental models, and from cognitive systems engineering (CSE) to
applications in practice.

A joint cognitive system acknowledges that cognition emerges as goal-oriented
interactions of people and artefacts in order to produce work in a specific context
and at the level of the work being conducted. It does not produce models of
cognition but models of coagency that corresponds to the required variety of
performance and thereby emphasises the functional aspects [26].

In this situation, complexity emerges because neither goals nor resources nor
constraints remain constant, creating dynamic couplings between artefacts, opera-
tors and organisations. The CSE approach focuses on analysing how people
manage complexity, understanding how artefacts are used and understanding how
people and artefacts work together to create and organise joint cognitive systems
which constitutes a basic unit of analysis in CSE. Human and machine need to be
considered together, rather than separate entities linked by human-machine
interactions [27].

In the domain of CSE, focus is on the mission that the joint cognitive system
shall perform, avoiding vagaries into its human resemblances. It performs cognitive
work via cognitive functions such as communicating, deciding, planning, and
problem-solving (Figure 5). These sorts of cognitive functions are supported by
cognitive processes such as perceiving, analysing, exchanging information and
manipulating.

The importance of cognition, regardless of how it is defined, as a necessary part
of the work has grown after the industrial revolution:

• Cognition is distributed rather than isolated in the human operator’s mind.

• Operator does not passively accept technological artefacts or the original
conditions of their work.
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• Technological development is rampant; this entails the development of work
with inevitably greater operational complexity.

• Technology is often used in ways that are not well adapted to the needs of the
operator.

There is no turning back, the evolution of information technology, digital trans-
formation and the Fourth Industrial Revolution requires that processes be more
cognitive, automatic and efficient.

4.1 The cognitive design problem: the FRAM tool

As the automation of complex processes becomes more achievable, the need for
engineering procedures that help decide what and how to automate becomes more
important to the safety, flexibility and performance of automation use. The imple-
mentation must satisfy general criteria such as minimising workload, maximising
awareness of what is going on and reducing the number of errors. The basic problem
therefore is to reduce the cognitive demands of the tasks being performed by the
operators involved in the system while maintaining fully their ability to function
within their given roles [28].

JCSs are characterised by three principles [27]: (a) goal orientation, (b) control
to minimise entropy (i.e. disorder in the system) and (c) coagency at the service of
objectives.

In order to understand the sociotechnical system, the functional resonance anal-
ysis method (FRAM) [29] can be used, which allows to have a model generated by
the application itself. The FRAM can be described as a method that is used to
produce a model, instead of a method that is derived from a model. It proposes that
everyday events and activities can be described in terms of functions involved
without predefined specific relations, levels or structures. Instead, the FRAM
assumes that the behaviour of functions, hence the outcomes of an activity or

Figure 5.
Cognitive work functions and cognitive processes.
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process, can be understood in terms of four basic principles described in the follow-
ing statements. Moreover, the not predefined functions are described using six
aspects.

The principles of FRAM are:

1.The equivalence of successes and failures: acceptable outcomes as well as
unacceptable outcomes are due to the ability of organisations, groups and
individuals successfully to adjust to expected and unexpected situations.

2.Approximate adjustments: things predominantly go well, but also they
occasionally go wrong.

3.Emergent outcomes: the variability of two or more functions can be combined
in unexpected ways that can lead to results that are unpredictable and
disproportionate in magnitude, both negative and positive.

4.Functional resonance: the variability of one function may in this way come to
affect the variability of other functions in analogy with the phenomenon of
resonance.

In FRAM a function represents acts or activities—simple or composite—needed
to produce a certain result. Examples of simple human functions are to triage a
patient or to fill a glass with water. The organisational function of the emergency
room in a hospital, for example, is to treat incoming patients, while the function of a
restaurant is to serve food. Finally, composite functions include, for instance, a
flight management system.

In the description of functions, an important distinction can be made between
tasks and activities, corresponding to the distinction between work-as-imagined
(WAI) and work-as-done (WAD). A task describes work as designed or as imag-
ined by managers. An activity describes work as it is actually performed or done.
FRAM primarily focuses on activities as they are done or WAD but can of course
also be used to model WAI.

To basically illustrate the use of FRAM, a pick and place system with a robot is
shown in Figure 6. The system is based on filling boxes with cylinders. The cylinder
supplier is in position Warehouse and the destination box in position Box. The
FRAM model should describe functions and their potential couplings for a typical

Figure 6.
Example of a H-CPPS.
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situation but not for a specific one. Hence, it is not possible to certainly determine
whether a function always will be performed before or after another function. It can
only be determined when the model is instantiated. At the start, functions are
identified in a first-independent version about execution (see Figure 7).

The development of the model can continue in several ways—none of them
being preferable over the others. One way is to look at the other functions in the
same way and try to define as many of their aspects as seems reasonable and
possible. Another way is try to define aspects that are incompletely described in the
current version of the model. The basis of the FRAM is the description of the
functions that make up an activity or a process. The functions of different tasks
have been assigned depending on who does it, (human, cobot, process) in the H-
CPPS (see Figure 8). The relationships are not specified nor described directly, and
the FRAM Model Visualiser (FMV) in fact does not allow lines or connectors to be
drawn between functions. The relationships are instead specified indirectly via the
descriptions of the aspects of functions. The common technical term for such
relations is couplings.

Couplings described in a FRAM model through dependencies are called potential
couplings. This is because a FRAM model describes the potential or possible rela-
tionships or dependencies between functions without referring to any particular
situation. In an instantiating of a FRAM model, only a subset of the potential
couplings can be realised; these represent the actual couplings or dependencies that
have occurred or are expected to occur in a particular situation or a particular
scenario [29].

Figure 7.
The FRAM model for a pick and place function ver1.0.

Figure 8.
The FRAM model for a pick and place function/assignation functions.
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Hence, basically we can highlight the following useful features for our study:

• Purpose: A FRAM analysis aims to identify how the system works (or should
work) for everything to succeed (i.e. everyday performance) and to
understand how the variability of functions alone or in combination may affect
overall performance.

• Model: A FRAM model describes a system’s functions and the potential
couplings among them. The model does not describe or depict an actual
sequence of events, such as an accident or a future scenario.

• Instantiation: A concrete scenario is the result of an instantiation of the model.
The instantiation is a ‘map’ about functions coupling or how they may become
coupled, under given—favourable or unfavourable—conditions.

The use of FRAM as a tool for the analysis of cognitive tasks would allow us to
understand about JCS works, identify its critical points and the propagation of the
relationships between functions and understand the distributed cognition and
coagency between the human and the machine.

5. Cognitive advisor agents

Cognitive systems are capable of humanlike actions such as perception, learning,
planning, reasoning, self- and context-awareness, interaction and performing
actions in unstructured environments. The functionality of the cognitive system
includes enabling perception and awareness, understanding and interpreting situa-
tions, reasoning, decision-making and autonomous acting.

Due to their cognitive capabilities, humans are superior to fully automated mass
production systems in adapting to flexible, customised manufacturing processes.
Yet, the increasing specialisation is creating more and more complex production
processes that require elaborate assistance in task execution. Furthermore,
machines are much better at performing repetitive, heavy-load tasks with high
precision and reliability.

The cognitive system provides the best possible assistance with the least neces-
sary disruption. In this context, a cognitive system enables the realisation of an
adaptive, sensitive assistance system that provides guidance only if needed and
based on operator skill (e.g. a 1-day 1 trainee versus a worker who has been with the
company for 30 years), cognitive load and perception capability—in other words, it
provides the best possible assistance with the least necessary disruption. The adap-
tivity of the feedback design enables the education of novices in on-the-job training
scenarios, integrating novices directly into the production process during their 1-
month training period without the need for specialists [30].

At present, H-CPPS can be endowed with powerful intelligence by leveraging
next-generation AI, which allows three main technological features: the first, most
critical, characteristic is that the cyber systems have the ability to solve uncertain
and complex problems; furthermore, problem-solving methods shift from the tra-
ditional model of emphasising causality to an innovative model of emphasising
correlation and further towards an advanced model of deeply integrating correla-
tion with causality. This shift will lead to fundamental improvements in the model-
ling and optimization of manufacturing systems.

The second most important feature is that cyber systems have capabilities such
as learning, cognitive skills and the generation and better use of knowledge; this will
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lead to revolutionary changes in the efficiency of the generation, use, importation
and accumulation of knowledge and to the significant promotion of the marginal
productivity of knowledge as a central productive element.

The third feature is the formation of augmented human-machine hybrid intelli-
gence, which provides full scope and synergistically integrates the advantages of
human intelligence and artificial intelligence. This will result in the innovation
potential of humans being completely released, and the innovation capabilities of
the manufacturing industry greatly increase. With these technological advances and
the advances in the Internet of Things and cloud computing, cognitive solutions are
available that will allow the operator to develop their work in an efficient, effective
and, above all, empowered position. Figure 9 introduces an architecture with cog-
nition for the Industry 4.0. Two characteristics are important to highlight, the first
the Internet of Things and its solutions in the cloud which allow to reach levels of
cognition for all operator functions and the second the cognitive capacity of H-
CPPS systems.

6. Conclusions

The development of emerging technologies around Industry 4.0 is changing the
paradigm of the intelligent industry to the cognitive industry, where it seeks to
harness the cognitive capabilities of the systems to meet the new demands of the
industry. Challenges presented by technological development that focused on
industry require the integration of different areas of science, engineering and tech-
nology. Today, synergy combinations are required to support the development of
intelligent and cognitive solutions. Understanding of sociotechnical systems from
the perspective of joint cognitive systems shows in the first place the current ability
to provide the operator with functions and tools that allow him to amplify his
abilities, in particular the cognitive ones for which it can be seen that there are
different cognitive tools, thanks to which cognitive solutions are capable of being
applied.

Figure 9.
H-CPPS for Industry 4.0.
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