
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



1

Chapter

Radiation-Generated ROS Induce 
Apoptosis via Mitochondrial
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and Maria Etsuko Miyamoto Oshiro

Abstract

Ionizing radiation (IR) causes an increase in intracellular calcium, alters con-
tractility, and triggers apoptosis via the activation of PKCα and -ε in irradiated 
smooth muscle cells. The present study investigated the role of the mitochondria in 
these processes and characterized the proteins involved in IR-induced apoptosis. 
Intestinal smooth muscle cells were exposed to 10–50 Gy from a γ-source. ROS 
and H2O2 levels were measured with colourimetry and a DCFH-DA probe, and 
protein expression was analyzed by immunoblotting and immunofluorescence. 
The IR-induced generation of ROS was inhibited by glutathione, and apoptosis was 
mediated by the mitochondria via BAX, cytochrome c, and caspase 3. IR increased 
the expression of the cyclins A, B2, and E, and led to unbalanced cellular growth in 
an absorption dose-dependent manner. However, radiation did not induce altera-
tions in the mitochondrial ultrastructure or in KΨmito. In contrast, IR increased the 
nuclear expression of BAG-1, TNFα, PKCα, and -ε and cyclins A and E. In conclu-
sion, IR triggers the activation of antiapoptotic proteins and enhances the risk of a 
second type of cancer in patients undergoing radiotherapy. In addition to increasing 
the radioresistance of cells, antiapoptotic proteins can also stimulate uncontrolled 
cell proliferation that culminates in mutagenesis.
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1. Introduction

The molecular pathways that induce and regulate apoptosis have been exten-
sively studied [1, 2]. Apoptosis is characterized by the condensation of nuclear 
chromatin and blebbing of nuclear and cytoplasmic membranes, a process that 
leads to the formation of membrane-bound apoptotic bodies [3]. The proteolytic 
caspase cascade plays a central role in the apoptotic response, and proteins of the 
BCL-2 family are key checkpoints in the regulation of apoptosis [4, 5]. In healthy 
cells, the BCL-2 family is kept in an inactive form, with a complex distribution in 
the mitochondrial outer membrane (MOM), sarco/endoplasmic reticulum (SER), 
cytosol, and nuclear envelope [6].

The mitochondria also play a key role in Ca2+ homeostasis and oxidative stress 
[7]. Elevated intracellular calcium concentrations ([Ca2+]i) do not seem to inhibit 
mitochondrial motility [8] but can lead to the opening of the mitochondrial 
transition pore (MTP) complex during the process of swelling, which is respon-
sible in turn for the permeability of the MOM to large molecules and the collapse 
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of the mitochondrial transmembrane electric potential (KΨmito) [9]. Several 
studies have used tumor cells to investigate the molecular pathways involved in 
the regulation and triggering of apoptosis by ionizing radiation (IR) [10, 11], but 
IR is more effective in normal than neoplasic tissue; so it is important to minimize 
the exposure in it and to clarify the mechanisms involved in the cellular damage 
[12]. In addition, damage to healthy tissues due to IR used in cancer treatment 
is frequently associated with the appearance of a second cancer occurring in the 
radiated field or in its vicinity [13]. This event could be explained by remodeling 
of the molecular and cellular processes triggering a number of inter- and intracel-
lular signaling cascades that regulate the progression of the cell cycle and cell 
survival [14–16].

The apoptotic pathway activated by IR is different from the extrinsic pathway 
activated by ligands and involves the generation of reactive oxygen species (ROS) 
and H2O2 [10, 17]. According to Orrenius [18], the enhanced ROS production 
regulates cellular metabolism, for the execution of the suicide program, by proteins 
released from the mitochondria. One of the factors involved in ROS-induced cell 
death is tumor necrosis factor alpha (TNFα) [15, 19], and mitochondria appear 
to participate in the production of this mediator. A number of hypotheses have 
been put forward to explain the mechanism by which TNFα cytotoxicity induces 
the intrinsic pathway [11]. Nevertheless, the mechanisms regulated by ROS is not 
totally clear, but our previous results described an increase in [Ca2+]i [20] and the 
activation of protein kinase C (PKCα and -ε) [21]. IR has not been directly dem-
onstrated to affect proteins, including cyclins, cyclin-dependent kinases (CDKs), 
retinoblastoma protein (Rb), and E2F complex proteins [22–24], involved in the 
orchestration of the cell cycle. The goals of this study were to examine the extrinsic 
and intrinsic mechanisms involved in the apoptosis, and to investigate ROS and 
H2O2 generation and the mitochondria role under IR of intestinal smooth muscle 
cells from the guinea pig ileum.

1.1 Tissues and cell culture

Fragments of the longitudinal smooth muscle layer of the guinea pig ileum 
(LSMLGPI) were prepared as described previously [20, 21], and the IR exposure 
in tissue fragments and confluent cell cultures from the LSMLGPI were exposed 
to single dose of 10–50 Gy, emitted by a 60Co γ-source [25]. The samples were 
radiated with a total dose of 10–50 Gy, and were then maintained for 3 days in 
Dulbecco’s Modified Eagle Medium (DMEM).

1.2 Colourimetry

The ROS level was measured in the homogenates using the fluorescent method 
described by Yagi [26].

The H2O2-induced lipid peroxidation (LP) was measured through the oxidation 
of Fe2+ in the presence of xylenol orange in a spectrophotometer [27].

1.3 Immunofluorescence analysis

a. The data were acquired and analyzed using a FACS Calibur flow cytometer and 
CellQuest software.

b. The cell death study was measured at 585/542 nm using the log or linear model 
in the FL-2 channel [20, 28].
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c. To test if the generation of ROS contributes to apoptosis, some cultured cells 
were incubated with glutathione (GSH), 10−3 M reduced glutathione, and 
yeast glutathione reductase type II (0.08 units/mg protein) and then fixed and 
stained as described in section b [29].

d. The generation of H2O2 was measured with 2′7′-dichlorofluorescein diacetate 
(DCFH-DA, as described by Hasui [30]) in live cultured cells. The cells were 
suspended in PBS, mixed with 0.3 mM DCFH-DA at 37°C to allow the conver-
sion to DCF, and analyzed at 570/530 nm in the FL-1 channel.

e. To measure the degree of unbalanced growth, cultured cells were detached 
and stained with acridine orange (AO) for the evaluation of the ratio of RNA 
content, according to Traganos [31].

f. The proteins involved in apoptosis were measured by immunofluorescence by 
specific antibodies, anti-: caspase 3, cyclin A, cyclin B2, cyclin E, PKCα, PKCε, 
TNFα, BAX, cytochrome c, BAG-1, BCL-2, and BCL-xL ([20, 32]).

g. The cyclins A, B2, and E, and the DNA content were analyzed by MODFIT 3.0 
software as described by Gong [33].

1.4 Western blot analysis

The experimental procedure was performed as previously described [21] using 
LSMLGPI homogenates. The following antibodies were used, anti-: caspase 3, cyclin 
A and cyclin B2, cyclin E, BCL-xL, BAX, cytochrome c, and BCL-2.

1.5 Confocal microscopy

LSMLGPI cells were seeded onto glass coverslips and exposed to IR. The mito-
chondria were stained with a probe as described by Claro [20] in living cells.

For analysis of the KΨmito, 0.5 μM DiOC6(3) was used in DMEM, in vivo. The 
fluorescence was measured between 546/500 nm. To confirm the mitochondrial 
accumulation of DiOC6(3), the cells were incubated with KΨmito inhibitors [34] for 
different periods of time.

1.6 Electron micrography

The cells were seeded as described by Claro [21], and were then radiated and 
fixed before being analyzed with a transmission electron microscope (1200 EXII, 
JEOL, Tokyo, Japan).

1.7 Fluorescence microscopy

Living cells were incubated with 2 μg/ml bisbenzimides diluted in DMEM and 
were analyzed between 461 and 350 nm, for DNA labeling.

1.8 Statistical analysis

Differences between irradiated and nonradiated groups were identified using 
the analysis of variance (ANOVA) of the unpaired Newman-Keuls tests (GraphPad 
Prism 5 software). Statistical significance was set at P < 0.05.
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2. Results

We tested if LSMLGPI cells die by apoptosis in response to IR and observed that 
the maximum number of apoptotic bodies appeared 72 h following radiation with 
10–50 Gy [21, 28]. The first step was to evaluate the effects of IR on the expression 
of cell-cycle proteins in LSMLGPI cells (Figure 1). In contrast to the cyclins B2 
and E, the expression of cyclin A was unchanged at 24, 48, and 72 h postradiation. 
Subsequently, all proteins were analyzed at 24 h postradiation.

Figure 1. 
Effects of IR on the expression and localisation of cell cycle proteins. Cell cultures from LSMLGPI were fixed 
and labeled with specific primary and secondary antibodies. (A) Representative time-course histograms 
of activation of cyclins by IR. (B) Quantification of cells resuspended in PBS 24 h postradiation; besides, 
representative histograms of the acquisition data of relative cell size and analysis of fluorescence intensity 
distribution are shown. *P < 0.01 compared to control, #P < 0.01 compared to 10 Gy, Newman-Keuls test. Error 
bars indicate SEM. (C) Western blot analysis in whole-cell lysates demonstrating expression of cyclin a, B2 and 
E detected with appropriate antibodies. (D) Images of irradiated cells are representative of three independent 
experiments. Cyclin a and E co-localized with nucleus are light blue. Nuclear staining was done using DAPI 
(blue). Scale bar indicates 20 μm.



5

Radiation-Generated ROS Induce Apoptosis via Mitochondrial
DOI: http://dx.doi.org/10.5772/intechopen.86747

Figure 2. 
Effects of IR the on synthesis of RNA and DNA and on the cyclins in the cell cycle. (A) DNA, RNA and αr 
RNA/ (DNA + RNA) distribution 24 h postradiation; besides, representative histograms are shown. (B) 
Quantification of cell cycle phases by DNA content and analysis of G1, S, and G2 phases of cell cycle at 
different times of postradiation. (C) Scheme illustrating the analysis performed to estimate the cells expressing 
cyclins versus cell-cycle phases in measurements of cellular DNA content (PI) and the intensity of cyclins 
associated Alexa Fluor immunofluorescence analyzed by MODFIT 3.0 software. *P < 0.01 compared to control, 
#and §P < 0.01 compared to 10 and 30 Gy, respectively. Newman-Keuls test. Error bars indicate SEM.
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Figure 3. 
Measurements of IR-generated-ROS and H2O2. (A) TBARS and lipid peroxidation measured in homogenate 
of LSMLGPI via colourimetric assays. (B) Detection of intracellular H2O2 using DCFH-DA probe analyzed at 
flow cytometer, and (C) the representative histograms. *P < 0.01 compared to 0 Gy, #and §P < 0.01 compared to 
10 and 30 Gy respectively. (D) Effect of glutathione on irradiated cells and fixed in 50% ethanol, and loaded 
with PI in the presence (+) or absence (−) of GSH, measured 72 h postradiation using flow cytometry and 
(E) representative histograms. *P < 0.01 indicates statistical difference between GSH-treated and untreated 
cells, #P < 0.01 compared to GSH-untreated control. *, § and ζP < 0.01 indicate statistical difference between 
untreated cells compared to control, 10 and 30 Gy, respectively. Newman-Keuls test. Error bars indicate SEM.
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Figure 2 correlates the changes in cyclin expression and the alteration of the cell 
cycle caused by IR. The αr ratio of RNA to total nucleic acid content decreased in an 
absorption dose-dependent manner, and it visualizes nuclear content. The radi-
ated population of cells did not divide because the G2 phase was arrested despite 
a significant increase in the accumulation of RNA and DNA during the S phase. 
Cyclins were continuously expressed during the cell cycle, however it was observed 
the G2 phase.

Figure 3 indicates that IR caused dose-dependent increases in the generation 
of thiobarbituric acid reactive substances (TBARS) and H2O2 with maximal ROS 
generation and a decrease in ROS levels. IR effects were suppressed by GSH, with a 
reduction in the number of cells in the M2 region. GSH reduced cell death indepen-
dent on the dose of radiation, resulting in levels similar to those in control cells.

Apoptosis was assessed 24 h later by the binding of antibodies specific for BAX, 
cytochrome c, and caspase 3 (Figure 4). IR also increased the expression levels of 
BCL-xL and BCL-2, suggesting that these oncoproteins attempted to promote cell 
proliferation.

Figure 5 shows the stained apoptotic bodies and the localization of Bax, caspase 3,  
cytochrome c, Bcl-2, and BCL-xL.

Figure 6 proves that mitochondria presented no evidence of damage other 
than the appearance of several lysosomes. To prove that the mitochondria 
were healthy, various agents known to reduce the KΨmito were incubated with 
DiOC6(3), in living cells.

Figure 4. 
Effects of IR on (A) pro- and (C) antiapoptotic proteins of LSMLGPI cells measured in the flow cytometer 
24 h postradiation. Cells were fixed, permeabilised and incubated with specific primary and secondary 
antibodies and resuspended in PBS. *P < 0.001 compared to control, #and §P < 0.01 compared to 10 and 30 Gy, 
respectively, Newman-Keuls test. Error bars indicate SEM. (B) and (D) western blot analyses demonstrating 
BAX, cytochrome c, caspase 3, BCL-xL, and BCL-2 expression, respectively.
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Figure 5. 
Effects of IR on apoptotic proteins localisation 24 h postradiation. (A) Cell death by apoptosis is shown 
by apoptotic bodies formation in irradiated living cells labeled with 2 μg/ml Hoechst 33342 resuspended 
in cultured medium DMEM maintained at 37°C. Control cells exhibit low blue fluorescence, while 
irradiated cells exhibit high blue fluorescence and some apoptotic bodies (arrows). Images of irradiated 
cells present (B) proapoptotic and (C) antiapoptotic proteins with mitochondria stained with Mitotracker 
(red), and cells incubated with specific primary and secondary antibodies. Nuclear staining was done 
using DAPI (blue). Proteins co-localized with mitochondria are yellow. Arrows indicate apoptotic bodies. 
Images are representative of three independent experiments observed in confocal microscope. Scale bar 
indicates 20 μm.
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The increased levels and activation/translocation of PKCα and -ε to the nucleus 
induced IR. Similarly, a large part of the TNFα was internalized and BAG-1 immu-
nofluorescence appears next to the nucleus (Figure 7).

3. Discussion

IR generates ROS and H2O2 and promotes changes related to the expression 
and localization of cyclins, and in the cellular cycle phase distributions in a dose-
dependent manner in LSMLGPI. Cyclins were continuously expressed during the 
cell cycle after treatment with IR; however, an arrest of the G2 phase and enhanced 
DNA replication at the initiation of the S phase occurred. The G2 phase is known 

Figure 6. 
Effect of IR on mitochondria in LSMLGPI cells cultures 72 h postradiation. (A) Electron microscopic analysis 
showing the mitochondria (Mito) with normal morphology scattered in the cytosol of control and lysosomes 
(Lyso); scale bar indicates 0.5 μm. (B) Confocal microscopy images in living cells loaded with DiOC6(3) and 
kept at 37°C. Cells were photographed before administration of ionophores, and after exposure to 4.5 nM 
valinomycin, 1 μM gramicidin, 1 mM DNP, 10 mM sodium azide, and 6.5 μM oligomycin; scale bar indicates 
50 Zm. The figures are representative of three independent experiments.
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Figure 7. 
Effects of IR on the expression and localisation of TNFα and BAG1, PKCα, and -ε, of LSMLGPI cell 
cultures 24 h postradiation. Cells were fixed and incubated with specific primary and secondary antibodies. 
(A) Quantification using flow cytometry in cells resuspended in PBS.*P < 0.01 compared to control, #and 
§P < 0.01 compared to 10 and 30 Gy, respectively, Newman-Keuls test. Error bars indicate SEM. Figures are 
representative of three independent experiments and present enhanced green fluorescence of (B) PKCα, PKCε, 
TNFα, and (C) BAG-1 co-localized with mitochondria that are yellow and with nucleus that are light blue 
(arrow shows apoptotic bodies). Nuclear staining was done using DAPI (blue). Scale bar indicates 20 μm.

to be the most radiosensitive phase of the cell cycle, followed by the G1 phase [35]; 
thus, cells in the G2 phase did not continue to synthesize RNA or DNA. IR induced 
an excess of DNA in relation to RNA content. These results demonstrate that IR 
interferes in the cell-cycle distribution, but it does not cause cyclins degradation.

Cell death was effectively triggered by the activation and translocation of BAX 
to the mitochondria, resulting in cytochrome c release into the cytosol in an absorp-
tion dose-dependent manner. Ultrastructural changes and DNA fragmentation 
characteristics of apoptosis were also identified in vitro [21] and it was confirmed 
by Hoechst which stained the apoptotic bodies in living cells.

The BAX fluorescence intensity was increased next to the perinuclear region, 
with some co-localization with the MOM (yellow). Caspase 3 was overexpressed 
in the nucleus and co-localized with the mitochondria (yellow), and possible 
retention in the intermembrane space. We also observed caspase 3 localization 
in the nucleolus which is an atypical form. As cytochrome c mediates the activa-
tion of caspases via BAX disruption, we hypothesized that it might also induce 
the activation of antiapoptotic proteins. According to Edlich [36], activation of 
BCL-xL and BCL-2 increased the cellular resistance to death and could also cause 
the retrotranslocation of BAX to the cytosol, confirming our results. Our results 
demonstrated that there is more than one type of cellular response to IR, namely 
death or survival. The mitochondrial ultrastructure and function appeared normal 
in IR-induced apoptosis.

We have shown that IR causes apoptosis which is preceded by the activation of 
PKCα and -ε and suggests a role for the PKC-mediated pathway [21] and caspase 
12 translocation to the cytosol [20]. We and other authors have shown that single 
absorption doses induce early reactions in normal smooth muscle cells, including 
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protein breakage and the degradation of membrane phospholipids. However, ROS 
and H2O2 also cause DNA fragmentation and prevent the repair mechanisms elicited 
by sublethal damage [20, 21, 37]. ROS and H2O2 have been implicated in several 
mechanisms of cellular injury, including peroxidation of membrane phospholipids, 
which increases membrane permeability and leads to apoptosis ([38], pp. 196–208). 
In the present study, however, we observed that up to 50 Gy of IR led to cell death 
by apoptosis, despite the preservation of the plasma membrane. It is possible that 
H2O2, rather than ROS, can cross cell membranes rapidly and cause LP in small, 
discrete sites on smooth muscle membranes ([38], pp. 79–80). In contrast, ROS 
can mediate necrosis in neurons by the MTP pathway [18]. H2O2 is a weak oxidiz-
ing agent but can form hydroxyl radicals. These findings suggest that IR-generated 
ROS or H2O2 favors the internalization of TNFα. Several mechanisms may have 
protected the cells against injury in the presence of GSH, including the prevention 
of protein oxidation, the accumulation of H2O2 through its transformation in water 
([38], pp. 10–21), the provision of a substrate for glutathione peroxidase, and the 
scavenging of hydroxyl radicals. Nevertheless, the most remarkable effect of GSH 
appears to be protection against alterations in the cell cycle ([38], pp. 247–251).

In fact, here, we show that high concentrations of ROS or H2O2 generated by 
IR were followed by the release of cytochrome c from the mitochondria into the 
cytosol. Several models of cytochrome c release have been proposed [2, 5], such as 
release through the MTP mega channel [39].

The mechanisms involving BAX, which is inserted into the MOM, may include 
the formation of channels, by oligomerization, and the preservation of mitochon-
drial membrane integrity [40]. Although we cannot discount the possible involve-
ment of heterodimers among activated BCL-2, BCL-xL and BAG-1 proteins, there is 
no clear evidence that any of these have pore-forming activity [41].

The mitochondrial membranes were maintained intact in radiated cells, with 
similar fluorescence as the control cells, in which the electronegativity of the probe 
allowed its retention in the mitochondrial interior [34], KΨmito was maintained.

Our data indicate an intrinsic mechanism of IR-induced apoptosis. Moreover, 
this mechanism may be different in different types of mitochondria [15, 37].

Another potential repair mechanism is the decrease in the cellular ROS or H2O2 
levels induced by BCL-2 [42]. This mechanism may also be activated by increased 
levels of antiapoptotic proteins BCL-xL and BAG-1. However, it has been suggested 
that BCL-2 survival factors are characteristic of cancer cell metabolism [43].

In addition to this survival pathways, that prevented cell death, we observed that 
BCL-2, BCL-xL, and BAG-1 were activated by direct IR and/or indirect via ROS or 
H2O2 action [44, 45]. Besides, the mitochondrial pattern can vary on different cells 
and it causes apoptosis that could be independent on the mitochondrial pathway 
[15, 37]. The radioresistance of mitochondria may be due to the action of natural 
antioxidants ([37, 38], pp. 97–98) and/or other compounds [46].

Increases in [Ca2+]i can potentiate the effects of ROS by enhancing LP [8, 14, 47]. 
ROS and increased [Ca2+]i have been shown to induce opening of the MTP, which 
triggers the mitochondrial of cell death [47]. It is noteworthy that mitochondria 
are located close to the SER, which sequestrates part of the Ca2+ released by these 
organelles, and this may affect the release of apoptotic and antiapoptotic factors 
from the SER [48–52]. The mitochondrial morphology may be altered by Ca2+ 
overload, with an increase in the MOM permeability culminating in the release of 
proapoptotic factors [8, 11]. However, our data demonstrated that the mitochondrial 
motility was maintained even in elevated [Ca2+]i after IR [20]. Increases of [Ca2+]i 
can also inhibit DNA and protein synthesis as well as nuclear transport, resulting in 
an accumulation of cells in the quiescent state (G0) [23]. In addition, [Ca2+]i up to 
500 nM has been implicated in the regulation of the mammalian cell cycle during the 
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early G1 phase and in the transition from the G1 to S phase [53]. Ca2+/calmodulin 
may also modulate the activity of cyclin-dependent kinases (CDK) and/or cyclin E 
[54]. In previous studies [20], we observed an increase in basal [Ca2+]i cells was 
observed and it was suggested that IR causes modifications in the plasma membrane 
and/or in the sarco/endoplasmic reticulum, but the capacitative Ca2+ entry into 
radiated cells was reduced [55].

The cyclins A and E are constitutively nuclear proteins when involved in 
mitosis [14, 16]; nevertheless, in radiated cells, they leaked from the nucleus to the 
cytosol. The cyclin B2 complex appears to be localized predominantly in the SER 
[14, 16, 22, 23]. At the start of mitosis, cyclin B2 is rapidly transported into the 
nucleus [14]. An important fact to consider is that IR induced unbalanced growth 
[31]. Similar mechanism to Polavarapu [56] could be explained is the penetration 
of TNFα in the intestinal smooth muscle. According to our results, TNFα may 
penetrate the intracellular compartment through damage caused by lipid peroxida-
tion in small, discrete sites of plasma membrane, since there is an ability of TNFα 
to form pores in biomembranes, or through the conventional receptor/lysosome 
route [46]. Also, activated TNFα can contribute to the apoptosis, as caused by 
ROS or H2O2. The increased TNFα expression in the cytosol could be explained by 
the presence of lysosomes in radiated cells, and we can infer that the TNFα was 
not subject to lysosomal autodigestion, since the mitochondrial membranes were 
preserved. TNFα can induce cell survival by the polymerization and depolymeriza-
tion of actin filaments, which prevent the nuclear translocation of proapoptotic 
molecules and subsequently inhibit caspase 3 [57]. The activation involving ROS 
or H2O2 has been associated with the triggering of cell death modulated by TNFα 
[10, 15], through the activation of BAX or the protease cascade [58]. TNFα can also 
be involved in cell survival similar to IR models with higher doses [41]. In addition, 
we can infer that caspase 3 may enter into the MOM through membrane openings 
caused by activated BAX or TNFα [39, 59].

IR induces the formation of apoptotic bodies which will remain in the medium of 
cultured cells or they will be phagocytosed and digested by adjacent cells in the tissue 
[60]. Although DNA lesions induced by IR are lethal if not properly repaired, it is 
clear that membrane events may also contribute to radiation-induced apoptosis [61].

Our experiments demonstrated that radiation induced atypical activation of 
PKCα and -ε, and there is evidence that this may be related to a conservative regula-
tion of cell cycle events, which act as a molecular link connecting signal transduc-
tion pathways and constituents of the cell-cycle machinery [62]. PKC participate 
in the control of G1 and G2/M, and PKCα and -ε may be regulators of the G1 phase 
and cause a delay in the G1/S transition, thereby halting DNA synthesis and con-
tributing to cellular differentiation or death. In addition, we suggest that PKCα and 
-ε trigger cyclin activation and translocation to the nucleus, which occur through 
the C-terminal region [63]. The mechanism involved in the nuclear localization of 
PKCα and -ε after IR could be similar to that of PKCγ [63] but still remains to be 
determined. In contrast, the activation of PKCα and -ε may also have been induced 
by TNFα, with apoptosis triggered via activation of the TNF-receptor, in addition to 
elevated calcium, ROS and H2O2 levels [10, 15, 54]. PKCα and -ε may interact with 
the cyclins A, B2, and E in the mechanism of cellular survival, similar as the CDKs 
and PKC which have domains that may activate serine/threonine protein kinases 
[64, 65], in an atypical fashion. The involvement of PKCα and -ε activation in 
apoptosis has already been suggested [21].

We can speculate that cyclin E modulates PKCα and -ε when involved in the 
apoptosis. This possible involvement of PKCε would constitute a new finding, as 
currently it has only been associated with oncogenesis [66, 67]. Similar to TNFα, 
PKCε also contains an actin binding site, and its direct interaction with actin is 
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essential for the invasion and metastasis of tumors grown in vitro or in vivo in the 
regulatory domain [66–68].

An important outcome of the complex network of events triggered by IR is the 
activation of antiapoptotic proteins in patients with cancer, and radiation therapy 
may lead to an increased risk of a second cancer [13]. In addition to their maleficent 
role in increasing radioresistance in normal cells, antiapoptotic proteins can stimu-
late uncontrolled cellular proliferation that culminates in carcinogenesis and muta-
genesis [43]. Takayama et al. [69] identified BAG-1 and BCL-2 heterodimers that 
suppress apoptosis. Furthermore, BAG-1 overexpression is an important prognostic 
indicator of malignant tumors and may help to identify the metastatic potential of 
tumoral cells in vivo [70]. BCL-2 can alter the distribution of intracellular BAG-1, 
thereby changing the cancer risk [70]. Therefore, the overexpression of BCL-2, 
BCL-xL, and BAG-1 in normal cells may be a predictive indicator of carcinogenesis 
[69, 70]. In addition, PKCε is an important signaling molecule that influences the 
levels/activation of antiapoptotic proteins of the BCL-2 family and may regulate 
mitochondrial integrity, which is associated with cancer [71, 72]. However, the 
mechanism by which proteins of the BCL-2 family regulate cell death remains con-
troversial. Our data suggest that not only apoptosis but also cellular repair mecha-
nisms are activated in smooth muscle cells subjected to a low absorption dose.

Additionally, the expression level and localization of these proteins may be an 
important survival indicator in irradiated normal cells and may inform the progno-
sis of cancer patients undergoing radiotherapy.
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