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Chapter

Object Recognition Using
Convolutional Neural Networks
Richardson Santiago Teles de Menezes,

Rafael Marrocos Magalhaes and Helton Maia

Abstract

This chapter intends to present the main techniques for detecting objects within
images. In recent years there have been remarkable advances in areas such as
machine learning and pattern recognition, both using convolutional neural net-
works (CNNs). It is mainly due to the increased parallel processing power provided
by graphics processing units (GPUs). In this chapter, the reader will understand the
details of the state-of-the-art algorithms for object detection in images, namely,
faster region convolutional neural network (Faster RCNN), you only look once
(YOLO), and single shot multibox detector (SSD). We will present the advantages
and disadvantages of each technique from a series of comparative tests. For this, we
will use metrics such as accuracy, training difficulty, and characteristics to imple-
ment the algorithms. In this chapter, we intend to contribute to a better under-
standing of the state of the art in machine learning and convolutional networks for
solving problems involving computational vision and object detection.

Keywords: machine learning, convolutional neural network, object detection

1. Introduction

There are fascinating problems with computer vision, such as image classifica-
tion and object detection, both of which are part of an area called object recognition.
For these types of issues, there has been a robust scientific development in the last
years, mainly due to the advances of convolutional neural networks, deep learning
techniques, and the increase of the parallelism processing power offered by the
graphics processing units (GPUs). The image classification problem is the task of
assigning to an input image one label from a fixed set of categories. This classifica-
tion problem is central within computer vision because, despite its simplicity, there
are a wide variety of practical applications and has multiple uses, such as labeling
skin cancer images [1], use of high-resolution images to detect natural disasters
such as floods, volcanoes, and severe droughts, noting the impacts and damage
caused [2–4].

The performance of image classification algorithms crucially relies on the
features used to feed them [5]. It means that the progress of image classification
techniques using machine learning relied heavily on the engineering of selecting the
essential features of the images that make up the database. Thus, obtaining these
resources has become a daunting task, resulting in increased complexity and
computational cost. Commonly, two independent steps are required for image
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classification, feature extraction, and learning algorithm choice, and this has been
widely developed and enhanced using support vector machines (SVMs).

The SVM algorithm, when considered as part of the supervised learning
approach, is often used for tasks as classification, regression, and outlier detection
[6]. The most attractive feature of this algorithm is that its learning mechanism for
multiple objects is simpler to be analyzed mathematically than traditional neural
network architecture, thus allowing to complex alterations with known effects on
the core features of the algorithm [7]. In essence, an SVM maps the training data
to higher-dimensional feature space and constructs a separation hyperplane with
maximum margin, producing a nonlinear separation boundary in the input
space [8].

Today, the most robust object classification and detection algorithms use deep
learning architectures, with many specialized layers for automating the filtering and
feature extraction process. Machine learning algorithms such as linear regression,
support vector machines, and decision trees all have its peculiarities in the learning
process, but fundamentally they all apply similar steps: make a prediction, receive a
correction, and adjust the prediction mechanism based on the correction, at a high
level, making it quite similar to how a human learns. Deep learning has appeared
bringing a new approach to the problem, which attempted to overcome previous
drawbacks by learning abstraction in data following a stratified description para-
digm based on a nonlinear transformation [9]. A key advantage of deep learning is
its ability to perform semi-supervised or unsupervised feature extraction over mas-
sive datasets.

The ability to learn the feature extraction step present in deep learning-based
algorithms comes from the extensive use of convolutional neural networks
(ConvNet or CNN). In this context, convolution is a specialized type of linear
operation and can be seen as the simple application of a filter to a determined input
[10]. Repeated application of the same filter to an input results in a map of activa-
tions called a feature map, indicating the locations and strength of a detected
feature in the input by tweaking the parameters of the convolution. The network
can adjust itself to reduce the error and therefore learn the best parameters to
extract relevant information on the database.

Many deep neural network (DNN)-based object detectors have been proposed
in the last few years [11, 12]. This research investigates the performance of state-
of-the-art DNN models of SSD and Faster RCNN applied to a classical detection
problem where the algorithms were trained to identify several animals in images;
furthermore to exemplify the application in scientific research, the YOLO network
was trained to solve the mice tracking problem. The flowing sections describe the
DNN models mentioned earlier in more details [13–15].

2. Object detection techniques

2.1 Single shot multibox detector

The single shot multibox detector [13] is one of the best detectors in terms of
speed and accuracy comprising two main steps, feature map extraction and
convolutional filter applications, to detect objects.

The SSD architecture builds on the VGG-16 network [16], and this choice was
made based on the strong performance in high-quality image classification tasks
and the popularity of the network in problems where transfer learning is involved.
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Instead of the original VGG fully connected layers, a set of auxiliary convolutional
layers change the model, thus enabling to extract features at multiple scales and
progressively decrease the size of the input to each subsequent layer.

The bounding box generation considers the application of matching pre-
computed, fixed-size bounding boxes called priors with the original distribution of
ground truth boxes. These priors are selected to keep the intersection over union
(IoU) ratio equal to or greater than 0:5.

The overall loss function defined in Eq. (1) is a linear combination of the
confidence loss, which measures how confident the network is of the computed
bounding box using categorical cross-entropy and location loss, which measures
how far away the networks predicted bounding boxes are from the ground truth
ones using L2 norm.

L x, c, l, gð Þ ¼ 1

N
Lconf x, cð Þ þ αLloc x, l, gð Þ
� �

(1)

where N is the number of matched default boxes and Lconf and Lloc are the

confidence and location loss, respectively, as defined in [13]. Figure 1 depicts how
to apply the convolutional kernels to an input image in the SSD architecture.

2.2 You only look once

You only look once [14] is a state-of-the-art object detection algorithm which
targets real-time applications, and unlike some of the competitors, it is not a tradi-
tional classifier purposed as an object detector.

YOLO works by dividing the input image into a grid of S� S cells, where each of
these cells is responsible for five bounding boxes predictions that describe the
rectangle around the object. It also outputs a confidence score, which is a measure
of the certainty that an object was enclosed. Therefore the score does not have any
relation with the kind of object present in the box, only with the box’s shape.

For each predicted bounding box, a class it’s also predicted working just like a
regular classifier giving resulting in a probability distribution over all the possible
classes. The confidence score for the bounding box and the class prediction com-
bines into one final score that specifies the probability for each box includes a
specific type of object. Given these design choices, most of the boxes will have low
confidence scores, so only the boxes whose final score is beyond a threshold are kept.

Eq. (2) states the loss function minimized by the training step in the YOLO
algorithm.

Figure 1.
The SSD network has several feature layers to the end of the base network, which predicts the offsets to default
boxes of different scales, aspect ratios, and their associated confidences. Figure based on [13].
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where 1
obj
i indicates if an object appears in cell i and 1

obj
ij denotes the jth bounding

box predictor in cell i responsible for that prediction; x, y, w, h, and C denote the
coordinates that represent the center of the box relative to the bounds of the grid
cell. The width and height predictions are relative to the whole image. Finally, C
denotes the confidence prediction, that is, the IoU between the predicted box and
any ground truth box.

Figure 2 describes how the YOLO network process as image. Initially, the input
gets passed through a CNN producing the bounding boxes with its perspectives
confidences scores and generating the class probability map. Finally, the results of
the previous steps are combined to form the final predictions.

2.3 Faster region convolutional neural network

The faster region convolutional neural network [15] is another state-of-the-art
CNN-based deep learning object detection approach. In this architecture, the net-
work takes the provided input image into a convolutional network which provides a
convolutional feature map. Instead of using the selective search algorithm to iden-
tify the region proposals made in previous iterations [18, 19], a separate network is
used to learn and predict these regions. The predicted region proposals are then
reshaped using a region of interest (ROI) pooling layer, which is then used to

Figure 2.
YOLO model detection as a regression problem [17]. Thus the input image is divided into a S� S grid and for
each grid cell, B bounding boxes, confidence for those boxes, and C class probabilities are predicted. These
encoded predictions are as an S� S� B ∗ 5þ Cð Þ tensor. Figure based on [17].
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classify the image within the proposed region and predict the offset values for the
bounding boxes.

The strategy behind the region proposal network (RPN) training is to use a
binary label for each anchor, so the number one will represent the presence of an
object and number zero the absence; with this strategy any IoU over 0:7 determines
the object’s presence and below 0:3 indicates the object’s absence.

Thus a multitask loss function shown in Eq. (3) is minimized during the training
phase.

L pi
	 


, tif g
� �

¼ 1

Ncls

X

i

Lcls pi, p
∗

i

� �

þ λ
1

Nreg

X

i

p ∗

i Lreg ti, t
∗

i

� �

(3)

where i is the index of the anchor in the batch, pi is the predicted probability of
being an object, p ∗

i is the ground truth probability of the anchor, ti is the predicted
bounding box coordinate, t ∗i is the ground truth bounding box coordinate, and Lcls

and Lreg are the classification and regression loss, respectively.
Figure 3 depicts the unified network for object detection implemented in the

Faster RCNN architecture. Using the recently popular terminology of neural net-
works with “attention” mechanisms [20], the region proposal network module tells
the Fast RCNN module where to look [15].

3. Datasets

A sample of the PASCAL VOC [21] dataset is used to exemplify the use of SSD
and RCNN object detection algorithms. A sample of 6 classes of the 20 available
were selected. Table 1 describes the sample size selected for each class.

The images presented in the dataset were randomly divided as follows: 1911 for
training corresponding to 50%, 1126 for validation corresponding to 25% and test
also corresponding to 25%.

To further illustrate the applications of such algorithms in scientific research, the
dataset used for the YOLO network presented in [22] was also analyzed. As
described in [22], the dataset is composed of images from three researches that
involve behavioral experiments with mice:

Figure 3.
Faster RCNN acts as a single, unified network for object detection [15]. The region proposal network module
serves as the “attention” of this unified network. Figure based on [15].
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• Ethological evaluation [23]: This research presents new metrics for chronic
stress models of social defeat in mice.

• Automated home-cage [24]: This study introduces a trainable computer
vision system that allows the automated analysis of complex mouse behaviors;
they are eat, drink, groom, hang, micromovement, rear, rest, and walk.

• Caltech Resident-Intruder Mouse dataset (CRIM13) [25]: It has videos
recorded with superior and synchronized lateral visualization of pairs of mice
involved in social behavior in 13 different actions.

Table 2 describes the sample size selected from each of the datasets used in this
paper. For the ethological evaluation [23], 3707 frames were used, captured in a top
view of the arena of social interaction experiments among mice. For the automated
home-cage [24], a sample of 3073 frames was selected from a side view of behav-
ioral experiments. For the CRIM13 [25], a sample of 6842 frames was selected, 3492
from a side view and 3350 from a top view.

The same dataset division used in [22] was also reproduced resulting in 6811
images for training, 3405 for validation, and 3406 for the test.

4. Material and methods for object detection

In this work, the previously described SDD and Faster RCNN networks are
compared in the task of localization and tracking of six species of animals in
diversified environments. Having accurate, detailed, and up-to-date information
about the location and behavior of animals in the wild would improve our ability to
study and conserve ecosystems [26]. Additionally, results from the YOLO network,
reproduced from [22], to detect and track mice in videos are recorded during

Class Number of images

Bird 811

Cat 1128

Dog 1341

Horse 526

Sheep 357

Total 4163

Table 1.
SSD and RCNN network dataset description.

Dataset Number of images Resolution

Ethological evaluation [23] 3707 640� 480

Automated home-cage [24] 3073 320� 240

CRIM13 [25] 6842 656� 490

Total 13, 622

Table 2.
Description of the dataset for use with the YOLO network as earlier used in [22].
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behavioral neuroscience experiments. The task of mice detection consists of
determining the location in the image where the animals are present, for each
frame acquired.

The computational development here presented was performed on a computer
with CPU AMD Athlon II X2 B22 at 2:8GHz, 8GB of RAM, NVIDIA GeForce GTX
1070 8GB GPU, Ubuntu 18:04 LTS as OS, CUDA 9, and CuDNN 7. Our approach
used the convolutional networks described in Section 2.

5. Results and conclusion

The results obtained for the SSD and Faster RCNN networks in the experiments
were based on the analysis of 4163 images, organized according to the dataset
described in Section 3.

Figure 4(a) depicts the increasing development of the mean average precision
values in the epochs of training. Both architectures reached high mean average
precision (mAP) while successfully minimizing the values of their respective loss
functions. The Faster RCNN network presented higher and better stability in pre-
cision, which can be seen by the smoothness in its curve. Figure 4(b) is a box plot
of the time spent by each network on the classification of a single image, whereas
the SSD came ahead with 17 � 2 ms as the mean and standard deviation values, and
the Faster RCNN translated its higher computational complexity in the execution
time with 30� 2ms as the mean and standard deviation values, respectively.

Table 3 presents more results related to object detection performance. First, it
shows the mean average precision, which is the mean value of the average pre-
cisions for each class, where average precision is the average value of 11 points on
the precision-recall curve for each possible threshold, that is, all the probability of
detection for the same class (Precision-Recall evaluation according to the terms
described in the PASCAL VOC [21]).

Figure 5 shows some selected examples of object detection results on the dataset
used. Each output box is associated with a category label and a softmax score in
0, 1½ �. A score threshold of 0:5 is used to display these images.

Figure 4.
(a) Comparison of the mAP models during the training phase. (b) Time spent to execute each architecture on a
single image.

Network Framework Mean average precision (%)

Fast RCNN GluonCV [27] 96:07

SSD GluonCV [27] 84:35

Table 3.
Mean average precision results after 100 epochs of training.
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Our approach, as in [22], also used two versions of the YOLO network to detect
mice within three different experimental setups. The results obtained were based on
the analysis of 13,622 images, organized according to the dataset described in
Section 3.

The first version of YOLO being trained was the YOLO Full network which uses
the Darknet-53 [14] convolutional architecture that comprises 53 convolutional
layers. Such a model was trained as described in [17], starting from an ImageNet
[28] pre-trained model. Each model requires 235 MB of storage size. We used a

batch of eight images, a momentum of 0:9, and weight decay of 5� 10�4. The
model took 140 hours to be trained.

A smaller and faster YOLO alternative was also trained and named as
YOLO Tiny. To speed up the process, this “tiny” version comprises only a portion
of the Darknet-53 [14] resources: 23 convolutional layers. Each model requires
only 34 MB of storage size. The network training follows as described in [17], fine-
tuning an ImageNet [28] pre-trained model. We used a batch of 64 images, a

momentum of 0:9, and weight decay of 5� 10�4. The model took 18 hours to be
trained.

Figure 6 shows the comparison of the two YOLO models used, YOLO Full and
Tiny. Figure 6(a) shows high accuracy of the Full architecture with small oscilla-
tions of the accuracy curve during the training. In Figure 6(b), the high accuracy is
maintained from the earliest times and remains practically unchanged up to the
limit number of epochs. Both architectures reached high mean average precision
values while successfully minimizing the values of their loss function. The Tiny
version of the YOLO network presented better stability in precision, which can be
seen by the smoothness in its curve. The results show that the mean average
precision reached by this re-implementation was 90.79 and 90.75% for the Full and
Tiny versions of YOLO, respectively. The use of the Tiny version is a good alterna-
tive for experimental designs that require real-time response.

Figure 6(c) is a bar graph showing the mean time spent on the classification of a
single image in both architectures. The smaller size of the Tiny version gets a direct
translation in execution time, having 0:08� 0:06s as the mean and standard devi-
ation values, whereas the Full version has 0:36� 0:16s as the mean and standard
deviation values, respectively.

Figure 5.
Output examples of the networks. (a)–(d) refer to SSD and (e)–(i) to Faster RCNN.
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Given the aforementioned small difference between the two versions of the
YOLO object detector, the possibility of designing real-time systems for experi-
ments involving animal tracking is closer to reality with the Tiny architecture.
Derived from the smaller demand for computing power, systems where actions are
taken while the experiment takes place can be designed without the need for human
intervention.

Figure 7 shows some examples, resulting from mice tracking performed on the
three different datasets used. Thus, it is possible to verify the operation of mouse
tracking in different scenarios. In (a)–(c), the black mouse appears over a white
background, the video is recorded from a top view camera in a typical configuration
in behavioral experiments. For Figures (d)–(f), the camera was positioned on the
side of the experimental box; the algorithm performed the tracking correctly for
different positions of the animal. Finally, in Figures (g)–(i), the images were
recorded by a top-view camera, and it is possible to verify a large amount of
information besides the tracked object. However, the algorithm worked very well,
even for two animals in the same arena.

This chapter presented an overview of the machine learning techniques using
convolutional neural networks for image object detection. The main algorithms for
solving this type of problem were presented: Faster RCNN, YOLO, and SSD. To
exemplify the functioning of the algorithms, datasets recognized by the scientific
literature and in the field of computer vision were selected, tests were performed,
and the results were presented, showing the advantages and differences of each of
the techniques. This content is expected to serve as a reference for researchers and
those interested in this broadly developing area of knowledge.

Figure 6.
(a) and (b) YOLO architecture evolution in mean average precision and minimization of the loss function
during the training phase. (c) GPU time required to obtain the classification of an image in each of the
networks.
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At the moment, we are experiencing the era of machine learning applications,
and much should be developed in the coming years from the use and improvement
of these techniques. Further improvements in the development of even more
specific hardware and fundamental changes in related mathematical theory are
expected shortly, making artificial intelligence increasingly present and important
to the contemporary world.
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Figure 7.
Output examples of the YOLO network. (a)–(c) refer to ethological evaluation [23], (d)–(f) refer to
automated home-cage [24], and (g)–(i) refer to CRIM13 [25].
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