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Chapter

Bayesian Analysis for Random
Effects Models
Junshan Shen and Catherine C. Liu

Abstract

Random effects models have been widely used to analyze correlated data sets,
and Bayesian techniques have emerged as a powerful tool to fit the models. How-
ever, there has been scarce literature that systematically reviews and summarizes
the recent advances of Bayesian analyses of random effects models. This chapter
reviews the use of the Dirichlet process mixture (DPM) prior to approximate the
distribution of random errors within the general semiparametric random effects
models with parametric random effects for longitudinal data setting and failure
time setting separately. In a survival setting with clusters, we propose a new class of
nonparametric random effects models which is motivated from the accelerated
failure models. We employ a beta process prior to tact clustering and estimation
simultaneously. We analyze a new data set integrated from Alzheimer’s disease
(AD) study to illustrate the presented model and methods.

Keywords: beta process, Dirichlet process mixture, clustered data, longitudinal
data, random effects, survival outcome, nonparametric transformation model

1. Introduction

Random effects models have been widely used as a powerful tool for analyzing
correlated data [1, 2]. The model features a finite number of random terms acting as
latent variables to model unobserved factors; see [3] for a comprehensive review.
Some authors have further proposed semiparametric mixed effect models by
allowing for infinite dimensional random effects [4, 5]. Most of the aforementioned
works draw inferences using frequentist approaches, while Bayesian approaches
have been largely ignored because of the lack of computational feasibility and
expediency. With the advent of the “supercomputer” era, Bayesian analyses have
recently sparked much interest in the setting of random effects models for clustered
data or longitudinal settings. However, there is scarce literature that has systemat-
ically reviewed the Bayesian works in the area.

By extending the traditional random effects models, recent research focus has
shifted to study heterogeneous random effects or nonparametric distributions of
random effects, which arise because of skewness of data, missing covariates, or
unmeasurable subject-specific covariates [6]. The extended random effects models,
termed semiparametric random effects models, improve statistical performance
with added interpretability. Bayesian techniques, which provide a convenient
means to model non-Gaussian distributions, have recently been proposed for
semiparametric random effects model in a variety of settings ([7, 8], among others).
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The discreteness of the Dirichlet process makes it impossible as a prior for estimat-
ing a density. However, as a remedy by convolving with a kernel, Dirichlet process
mixture plays an important role [9].

For censored outcome data, transformation models, which transform the time-
to-event responses using a monotone function and link them to the covariates of
interest, have surged as a strong competitor of the Cox model [10]. Moreover, the
transformation model framework is fairly general. The Cox model and the propor-
tional odd model [11] can be viewed as nonparametric transformation linear models
with some specific error terms; see [12–14]. For correlated data, the transformation
model naturally extends the semiparametric random effects model by directly
incorporating random effects to the transformation functions, treating them as
realizations of an underlying random function. Bayesian analyses have found much
use in this new area. For example, the beta process has been found to be a reason-
able candidate for the prior of the monotone transformation function [15–17].

This chapter focuses on the Bayesian analysis of the transformed linear model
with censored data and in a clustered setting. In many biomedical studies, the
observations are naturally clustered. For example, patients in observational studies
can be grouped in analysis according to a variety of factors, such as age, race,
gender, and hospital, in order to reduce the confounding effects. Following Mallick
and Walker [18], we explore using a mixture of beta distributions and the beta
process as the candidates for the prior distribution of the random transformation
function [17, 19, 20].

The rest of this chapter is structured as follows. Section 2 reviews the use of the
Bayesian approach to infer parametric random effects models. In the setting of
survival analysis, Section 3 proposes a beta process prior to fit random effects model
with nonparametric transformation functions, and Section 4 applies the method to
study the progression of Alzheimer’s disease (AD). Section 5 concludes the chapter
with future research directions.

2. Dirichlet process mixture prior

In parametric random effects models, we considered the situation that the dis-
tribution form of the random error term is unknown. Dirichlet process mixture
(DPM) is used as the prior for the baseline distribution in that error terms used to
be continuous random variables in most situations.

2.1 Linear mixed effects model

With a longitudinal data set Y i, xi, zif g, we posit a mixed effects model with an
AR(1) serial correlation structure:

yi ¼ xiβþ zibi þwi, i ¼ 1, … ,m;

wi ¼ wi1, … ,winið ÞT;wij ¼ ρwi, j�1 þ ϵij, j ¼ 2, … , ni,
(1)

where yi ¼ yi1, … , yini

� �T
with yij being the jth response of the ith subject for

i ¼ 1, … ,m, β is a p� 1 vector of fixed effect parameters, bi a q� 1 Gaussian
random vector representing the subject-specific random effects, xi and zi are ni � p

and ni � q design matrices linking β and bi to yi, respectively, wi ¼ wi1, … ,winið ÞT

is an ni � 1 vector of model errors, ρ is the autoregressive coefficient, and ϵij 0 s are i.i.

d. noises. When ϵij

� �

is non-normal, we assume a mixture model:
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fG ϵjσ2
� �

¼

ð

φ ϵju, σ2
� �

dG uð Þ, (2)

where φ �ju, σ2ð Þ is the probability density function for a normal random variable
with mean u and variance σ2 and G is an unspecified probability distribution of u
satisfying

Ð

udG uð Þ ¼ 0, which ensures that ϵ comes from a mean-zero mixture
distribution.

Replacing the Dirichlet process by an equivalent Pólya urn representation, [8]
employed an empirical likelihood approach with the moment constraints and
developed a posterior adjusted Gibbs sampler for more precise estimation. The
algorithm is computationally feasible.

2.2 Accelerated failure time model

We shift gears to study survival outcomes with a cluster structure. Denote the
data set by Tij,Xij

� �

, i ¼ 1,⋯,K, j ¼ 1,⋯, ni, where Tij is the failure time of the jth
subject in the ith cluster and Xij is a vector of associated covariates. To accommo-
date such data, we utilize a general accelerated failure time model:

logTij ¼ XT
ijβþ εij, i ¼ 1,⋯,K and j ¼ 1,⋯, ni, (3)

where β is a vector of p-dim regression coefficients of interest and εij are inde-
pendent random errors following the distribution with density f i. [7] posed an
exponential tilt on the distributions of error terms to incorporate the cluster het-
erogeneity. That is,

f i tð Þ

f 1 tð Þ
¼ exp θ0i þ θTi q tð Þ

� �

, i ¼ 2,⋯,K, (4)

where q tð Þ is a q-dimensional prespecified functions containing potential

covariate information and θi is the corresponding parameter vector with θ0i ¼

log
Ð

exp θTi q tð Þ
� �

f 1 tð Þdt
� ��1
h i

: Thus, θi represents the parametric random effects in

the model. Li et al. [7] place the DPM prior on the baseline density f 1 to develop a
set of procedures which improves estimation efficiency through information
pooling.

3. Beta process prior

We now present a nonparametric random effects model for the clustered sur-
vival data with nonparametric monotone link functions. We employ a beta process
as the prior for the baseline function.

Let Tij denote the failure time of the jth subject in the ith cluster, Xij be the
covariate vector for the subject, and Cij be the potential censoring time to the jth
subject in the ith cluster. Assume that Cij is independent of the failure time Tij. Let

Zij ¼ min Tij,Cij

� �

and let δij ¼ I Tij <Cij

� �

be the censoring indicator. Then the

observed data can be described as

Zij, δij,Xij

� �

, i ¼ 1,⋯, n; j ¼ 1,⋯, ni: (5)
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Within each cluster, Tij is linked to Xij via the following transformation model:

lnHi Tij

� �

¼ XT
ijβþ lnεij, i ¼ 1, 2⋯, n, (6)

where εij are i.i.d. variables with a known density function f ε �ð Þ and Hi tð Þ are
unknown cluster-specific monotone functions, which are i.i.d. realizations of a
random function and can be viewed as a nonparametric version of random effects
for independent clusters. In a parametric setting, if we set Hi tð Þ ¼ texp �bið Þ with bi
being a cluster-specific random effect, Eq. (6) reduces to a classical random effects
model, which has been discussed in Section 2.2. The challenge, however, lies in how
to draw inferences in such a nonparametric setting.

To proceed, let the coefficient vector β be a p-dim unknown vector of interest.
We further assumeHi

0s are differentiable with derivative hi tð Þ ¼ H0
i tð Þ, and then the

likelihood based on the observed data is

L β,H1,⋯,Hnjdatað Þ ¼
Y

n

i¼1

Y

ni

j¼1

p Tij,Xij, δijjHi, β
� �

, (7)

where

p t, x, δjH, βð Þ ¼ f ε H tð Þe�xTβ
� �

h tð Þe�xTβ
� �δ

Sε H tð Þe�xTβ
� �1�δ

:

Here Sε is the survival function of varepsilon defined by Sε sð Þ ¼ P ε≥ sð Þ.
We develop a Bayesian inference procedure based on model (6). We assume

that the regression coefficient β follows a normal prior:

β � Np 0, σ2βIp
� �

, (8)

where Ip is the p� p dimensional identity matrix. Since Hi is assumed differen-
tiable, we model it with a kernel convolution:

Hi ¼

ð

Φσ � � sð ÞdBi sð Þ,

where B is an increasing function and Φσ is the zero-mean normal distribution
with variance σ2. Hence, the derivative of Hi is

hi ¼

ð

ϕσ � � sð ÞdBi sð Þ

with ϕσ tð Þ ¼ 1
σ
ϕ t

σ

� �

: This actually mimics the idea of DPM to smooth beta process

by convolution.
We are in a position to select an appropriate stochastic process used as the prior

of Bi. Beta process, as studied by [16, 17], is an ideal candidate for the prior of a
monotone function. Specifically, beta process BP γ,B0ð Þ with concentration param-
eter γ and a base measure B0 is an increasing Lévy process with independent
increments of the form

dB tð Þ � Beta γdB0 tð Þ, γ 1� dB0 tð Þð Þð Þ:
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Teh et al. [20] showed that a sample from BP γ,B0ð Þ could be represented as

Bi yð Þ ¼
X

∞

l¼1

pilI θil ≤ yð Þ, (9)

where pil ¼
Ql

j¼1νil and θil, νilð Þ follows

θil � B0 θð Þ, νil � Beta γ, 1ð Þ l ¼ 1, 2,⋯:

In practice, we need to approximate samples of BP γ,B0ð Þ with a finite dimen-
sional form. Since beta process BP γB0ð Þ can be represented by a stick-breaking
process defined in Eq. (9), a natural approximation is obtained by retaining its first
L components. That is,

B ∗
i ¼

X

L

l¼1

pilδθil ,

with pil ¼
Ql

j¼1νil, l ¼ 1,⋯,L. Denote ξi ¼ νi1,⋯, νiL, θi1,⋯, θiLð ÞT and define

H ∗
σ z, ξið Þ ¼

X

L

l¼1

pilΦσ z� θilð Þ, h ∗
σ z, ξið Þ ¼

X

L

l¼1

pilϕσ z� θilð Þ:

The approximated posterior based on the truncated DP is

π βð Þ
Y

n

i¼1

πξ ξið Þ
Y

ni

j¼1

f Zij,Xij, δijjβ, ξiÞ
� �

,

"

(10)

where

f z, x, δjβ, ξð Þ ¼ pε H ∗
σ z, ξð Þexp �xTβ

� �� �

h ∗
σ z, ξð Þexp �xTβ

� �� �δ

� Pε H ∗
σ z, ξð Þexp �xTβ

� �� �� �1�δ
:

The samples for β and ξ1, … , ξnð Þ based on the posterior can be obtained with
Markov chain Monte Carlo (MCMC) [21]. In our simulation, we use the R-package
MCMC (https://cran.r-project.org/web/packages/mcmc/index.html) to draw sam-
ples for ξ1, … , ξn and β and use the Metropolis algorithm with a normal working
distribution.

4. An application to Alzheimer’s disease neuroimaging initiative

Alzheimer’s Disease Neuroimaging Initiative (ADNI) is a multisite cooperative
study for the purpose of improving the prevention and treatment of Alzheimer’s
disease. The subjects in the study fall into three groups, cognitively normal (CN)
individuals, mild cognitive impairment (MCI) patients, and early AD patients.
ADNI provides a rich array of patients’ information, including functional magnetic
resonance imaging (fMRI), positron emission tomography (PET), longitudinal
functional cognitive tests scores, blood samples, genetics data, and censored failure
time outcomes. Details of the study can be found at http://adni.loni.usc.edu.
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We focus on the MCI group. MCI is recognized as a transitional stage between
normal cognition and Alzheimer’s disease. The failure time is defined to be the time
that a MCI patient is diagnosed with AD, which will be censored if a MCI patient
remains at the MCI stage at the end of the follow-up time. Wide heterogeneities are
exhibited among the failure times, which may be due to demographics and a variety
of functional clinical biomarkers, such as the brain areas of the hippocampus,
ventricles, and entorhinal cortex. The goal of the analysis is to study the impact of
risk factors on progression to AD.

Using the same data as analyzed by [14], we demonstrate our methodology by
modeling the failure time (the observed time of AD diagnosis from MCI stage in
year) of 281 MCI patients on gender (0 = female, 1 = male), years of education, the
number of apolipoprotein E alleles (0, 1, or 2), and the baseline hippocampal volume.

As age is a strong confounder but the functional form of its impact has not
reached consensus, we elect to model its impact nonparametrically. Specifically, we
use age to form two strata (below and above the median age) and use model (6) to
estimate the stratum-specific transformation functions and the effects of other
covariates. For comparisons, we also fit model (6) with age as a continuous variable
and with a common transformation function. That is, we do not assume the data are
clustered. For both models, the regression errors ε’s are assumed to follow an
exponential distribution with mean 10. In our calculation, we approximate the BPs
by a finite truncation with L ¼ 20. We assume the precision parameter α ¼ 1 and
scale parameter σ2 � 1=σ2.

Figure 1 illustrates the estimated transformation function H of the failure time
without clustering. The posterior means (PM) and standard errors (SE) of the
regression coefficients in the model are reported in Table 1. We run the MCMC for

Figure 1.
Smoothed transformation function without clustering.
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20,000 iterations with the first 4000 draws discarded as burn-in samples and use
Geweke’s statistic to ensure the convergence of the chains.

Figure 2 illustrates the estimated transformation functions with age-stratified
data, and Table 2 summarizes the posterior means and standard errors of the other
regression coefficients.

The left curve is relatively flat, while the right curve has a sharper slope. This is
consistent with the recognition that AD is an aging disease: elder people above a
certain age threshold tend to progress faster from MCI to AD.

Both Tables 1 and 2 show that none of the biomarkers are significant, whereas
they are statistically significant in the analysis of [14]. One possible conjecture is
that our nonparametric transformation functions may have well captured the
effects of unobserved confounders, which may leave little to be explained by the
observed covariates. More thorough investigation is warranted.

RID AGE PTGENDER PTEDUCAT APOE4 Hipp.

PM �0.9635 0.0069 �0.1453 �0.0231 �0.1817 0.2710

SE 1.3288 0.0841 1.2331 0.1835 0.8616 0.5333

Table 1.
Posterior estimates of regression coefficients with standard errors.

Figure 2.
Smoothed transformation functions with two age-strata: The left curve is the smoothed transformation function
for group aged below the average age; the right curve is the smoothed transformation function for the group aged
over the average age.

RID PTGENDER PTEDUCAT APOE4 Hipp.

PM �0.6399 �0.0706 �0.0072 �0.1349 0.1919

SE 0.9273 0.8491 0.1267 0.6098 0.3716

Table 2.
Posterior estimators of regression coefficients with standard errors.
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5. Future directions

Following [12], we can extend the transformation model (6) by allowing the
error function f ε to be unspecified. In this case, we need to specify the regression
coefficient β to obey some constraints such as β1 ¼ 1 or ∥β∥ ¼ 1 for identifiability.
We will propose to model the error function using a Dirichlet processes mixture
model:

f ε tð Þ ¼

ð

φ tjμ, σ2
� �

dG μ, σ2
� �

, G � DP α,G0 ¼ N μjμ0, σ
2
0

� �

� IG α1, α2ð Þ
� �

,

where φ tjμ, σ2ð Þ is a normal kernel with mean μ and variance σ2 and G are

samples from a Dirichlet process DP α1,G0 ¼ N μjμ0, σ
2
0

� �

� IG a, bð Þ
� �

, where α1 is
the mass parameter and IG �ja, bð Þ is the inverse gamma distribution with shape
parameter a and scale parameter b.

In a slightly different context, we may also consider clustering observations by
developing a new nested beta-Dirichlet process prior with companion MCMC algo-
rithms. As there are limited works on functional random effects models that
accommodate clustering structures observed, for example, from neural studies, we
may propose a nested Dirichlet process [19] as the prior of Dirichlet process to
cluster cumulative distribution functions successfully. We envision that such a
nested Bayesian procedure will provide substantial computational expedience for
practitioners and can certainly be applied to studies that cover beyond the neuro-
degenerative and aging diseases.
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