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Chapter

Conjugate Gradient Approach for
Discrete Time Optimal Control
Problems with Model-Reality
Ditfferences

Sie Long Kek, Sy Yi Sim, Wah June Leong and Kok Lay Teo

Abstract

In this chapter, an efficient computation approach is proposed for solving a
general class of discrete-time optimal control problems. In our approach, a simpli-
fied optimal control model, which is adding the adjusted parameters into the model
used, is solved iteratively. In this way, the differences between the real plant and
the model used are calculated, in turn, to update the optimal solution of the model
used. During the computation procedure, the equivalent optimization problem is
formulated, where the conjugate gradient algorithm is applied in solving the opti-
mization problem. On this basis, the optimal solution of the modified model-based
optimal control problem is obtained repeatedly. Once the convergence is achieved,
the iterative solution approximates to the correct optimal solution of the original
optimal control problem, in spite of model-reality differences. For illustration, both
linear and nonlinear examples are demonstrated to show the performance of the
approach proposed. In conclusion, the efficiency of the approach proposed is highly
presented.

Keywords: optimal control, conjugate gradient, adjusted parameters,
iterative solution, model-reality differences

1. Introduction

Optimal control problems are existing in engineering and natural sciences for so
long, and the applications of the optimal control have been well defined in the
literature [1-4]. With the rapid evolution of computer technology, the development
of the optimal control techniques is reached a mature level, from classical control to
modern control, from proportional-integral-derivative (PID) control to feedback
control, and from adaptive control to intelligent control [5-8]. The studies in the
optimal control field are still progressing, and attract the interest of, not only
engineers and applied mathematicians but also biologists and financialists, to
investigate and contribute to the optimal control theory.

In particular, the optimal control algorithm, which integrates system optimiza-
tion and parameter estimation, gives a new insight into the control community. This
algorithm is known as the integrated system optimization and parameter estimation
(ISOPE), and its dynamic version is called the dynamic ISOPE (DISOPE). Both of
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these algorithms were introduced by Robert [9-11], and Robert and Becerra
[12-14], respectively. The basic idea of DISOPE is applying the model-based opti-
mal control, which has different structures and parameters compared to the original
optimal control problem, to obtain the correct optimal solution of the original
optimal control problem, in spite of model-reality differences. Recently, this algo-
rithm has been extended to cover both deterministic and stochastic versions, and

it is known as an integrated optimal control and parameter estimation (IOCPE)
algorithm [15, 16]. On the other hand, the application of the optimization tech-
niques, particularly, using the conjugate gradient method for solving the optimal
control problem [17-19] has also been studied, where the open-loop control strategy
is concerned [3, 8].

In this chapter, the conjugate gradient approach [17, 19] is employed to solve the
linear model-based optimal control problem for obtaining the optimal solution of
the original optimal control problem. In our approach, the simplified model, which
is adding the adjusted parameters, is formulated initially. Then, an expanded opti-
mal control problem, which combines the system dynamic and the cost function
from the original optimal control problem into the simplified model, is introduced.
By defining the Hamiltonian function and the augmented cost function, the
corresponding necessary conditions for optimality are derived. Among these neces-
sary conditions, a set of necessary conditions is for the modified model-based
optimal control problem, a set of necessary conditions defines the parameter esti-
mation problem, and a set of necessary conditions calculates the multipliers [15].

By virtue of the modified model-based optimal control problem, an equivalence
optimization problem is defined, and the related gradient function is determined.
With an initial control sequence, the initial gradient and the initial search direction
are computed. Then, the control sequences are updated through the line search
technique, where the gradient and search direction would satisfy the conjugacy
condition [17, 18]. During the iteration, the state and the costate are updated by the
control sequence obtained from the conjugate gradient approach. When the con-
vergence is achieved within a tolerance given, the iterative solution approximates to
the correct optimal solution of the original optimal control problem, in spite of
model-reality differences. For illustration, examples of linear and nonlinear cases,
which are damped harmonic oscillator [7] and continuous stirred-tank chemical
tank [8], are studied.

The chapter is organized as follows. In Section 2, the problem statement is
described in detail, where the original optimal control problem and the simplified
model are discussed. In Section 3, the methodology used is further explained. The
necessary conditions for optimality are derived, and the use of the conjugate
gradient method is delivered in solving the equivalence optimization problem. In
Section 4, examples of a damped harmonic oscillator and a continuous stirred-tank
chemical reactor are studied. The results show the efficiency of the algorithm
proposed. Finally, concluding remarks are made.

2. Problem statement

Consider a general class of the discrete-time nonlinear optimal control problem,
given by

N-1
minJo(u) = p(x(N),N) + > "L(x(k),u(k), k)
" =0 (1)

subject to

x(k+1) = f(x(k),u(k),k), x(0)=2x0
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where u(k) eR", k=0,1,---,N — 1, and x(k) e R", k = 0,1, ---,N, are the
control sequences and the state sequences, respectively, while f : R x R” x R —
R" represents the real plant, L : R” x R™ x R — R is the cost under summation,
and ¢ : R x R — R is the terminal cost. Here, ], is the scalar cost function, and x
is the known initial state vector. It is assumed that all functions in (1) are continu-
ously differentiable with respect to their respective arguments.

This problem, which is referred to as Problem (P), is regarded as the real optimal
control problem. Due on the complex and nonlinear structure, solving Problem (P)
actually requires the efficient computation techniques. For this reason, the simpli-
fied model of Problem (P) is identified to be solved such that the true optimal
solution of Problem (P) could be approximated. Hence, this simplified model-based
optimal control problem is defined as follows:

min/; () = 5 ()" SV(N) + (V) + Z ~ (e Qell) + wll)"Ru()) + (k)
subject to

x(k+1) = Ax(k) + Bu(k) + a(k), x(0) = xo
(2)

where y(k),k = 0,1, ---,N, and a(k),k = 0,1, ---,N — 1, are introduced as the
adjusted parameters, whereas A is an 7 x 7 transition matrix, and Bis ann X m
control coefficient matrix. Besides, S(IV) and Q are n X n positive semi-definite
matrices, and R is am X m positive definite matrix. Here, J; is the scalar cost function.

Let this problem is referred to as Problem (M). It can be seen that, because of the
different structures and parameters, only solving Problem (M) would not obtain the
optimal solution of Problem (P) for not taking the adjusted parameters into
account. Notice, adding the adjusted parameters into Problem (M) could let us
calculate the differences between the real plant and the model used. On this basis,
Problem (M) would be solved iteratively to give the correct optimal solution of
Problem (P), in spite of model-reality differences.

3. System optimization with parameter estimation
Now, an expanded optimal control problem, which combines the real plant and

the cost function in Problem (P) into Problem (M) and is referred to as Problem
(E), is introduced by

minaa) = SV TSN)(N) + 7 () + Y 2 (<067 Qetl) + ulbRutl)) + 1)
k=0
+3nlu(k) —v(k)? +§mux<k> ~5(0)|
subject to
x(k+1) = Ax(k) + Bu(k) + a(k), x(0) = x
Ze(N)TS(N)=(N) + 7(N) = p(a(N),N)
(=)™ Qalh) + 0RO (k) + (k) = Lis (k) v(k), )
As(k) + Bo(k) +alk) = f(a(k), o(k), k)
o) = u(k)
(k) = x(k)

(3)
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where v(k) e R", k =0,1,---,N — 1, and z(k) eR", k = 0,1, ---,N, are intro-
duced to separate the sequences of control and state in the optimization problem
from the respective signals in the parameter estimation problem, and || - || denotes
the usual Euclidean norm. The terms 171[[u(k) — v(k)||” and 1r,|x (k) — z(k)|* with
71,72 € R are introduced to improve the convexity and to facilitate the convergence
of the resulting iterative algorithm. Here, we clarify that the algorithm is designed
such that the constraints v(k) = u(k) and z(k) = x(k) are satisfied upon termination
of the iterations, assuming that convergence is achieved. Moreover, the state con-
straint z(k) and the control constraint v(k) are used for the computation of the
parameter estimation and matching scheme, while the corresponding state con-
straint x (k) and control constraint # (k) are reserved for optimizing the model-based
optimal control problem. Therefore, system optimization and parameter estimation
are declared and mutually integrated.

3.1 Necessary conditions for optimality
Define the Hamiltonian function for Problem (E), given by:

2 (k) (k) + (k) "Ru(k)) + (k) + 371 (k) (k)

+ %Vz!lx(k) —z(k)||* + p(k +1)" (Ax(k) + Bu(k) + a(k)) — (k) u(k)

— plk) x(k)

Hy(k) =

(4)

where A(k) e R", k =0,1,---,N —1,p(k)eR", k=0,1,--,N, and
p(k)eR",k=0,1,-,N, are modifiers. Using this Hamiltonian function in (4),
write the cost function in (3) to be the augmented cost function, that is,

Jo(u) = S2(N)S(N)x(N) + 7(N) +p(0)"(0) — p(N)"x(N)
e )( (=N >,N>—§z<N>Ts<N>z<N>—y<N>)+rT<x<N>—z<N>>

N—

& Halk) — p(8T(R) + 206)Tol0) + ) 2(8)

=0

6(( ) = 5 (=06)7Q6) 4006 Ro®) ~ 706))
) (f v(k) k) — Az(k) - Bo(k) — a(k))

©)

where p(k), é(k), A(k), p(k), u(k) and I are the appropriate multipliers to be
determined later.

Applying the calculus of variation [7, 9, 11, 13, 15] to the augmented cost
function in (5), the following necessary conditions for optimality are obtained:

(a) Stationary condition:
Ru(k) + B p(k + 1) — A(k) + ri(u(k) —v(k)) =0 (6)
(b) Co-state equation:

p(k) = Qx(k) + A'p(k + 1) — plk) +ra(x (k) — z(k)) 7)
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(c) State equation:

x(k +1) = Ax(k) + Bu(k) + a(k) (8)
(d) Boundary conditions:
p(N) =S(N)x(N) +T and x(0) = x¢ 9)

(e) Adjusted parameter equations:

#(&(N), N) = 22(N)TS(N)<(N) +r(N) (10)
L(a(k), (k). k) =5 (=(k)"Qa(k) + (k) Ro(k)) + 1K) (11)
f(z(k), v(k), k) = Az(k) + Bo(k) + a(k) (12)

(f) Modifier equations:

I = Voo — S(N)z(N) (13)
T

) = (V=) = (2= B) per) a9
T

) =~ (Vo - Gell) — (=4 ) ple+1) (15)

with £(k) = 1and u(k) =p(k + 1).
(g) Separable variables:
v(k) = u(k),z(k) = x(k),p(k) = p(k). (16)

Notice that for the optimality necessary conditions obtained above, they are
divided into three sets of necessary conditions. The first set of necessary conditions
in (6)—(9) is the necessary conditions for the system optimization problem. The
second set of necessary conditions in (10)—(12) defines the parameter estimation
problem. The third set of necessary conditions in (13)-(15) provides the computa-
tion of multipliers. In fact, the necessary conditions, which are defined in (6)-(9),
are the optimality for the modified model-based optimal control problem, and
the adjusted parameters, which are calculated from the necessary conditions in
(10)-(12), measure the differences between the real plant and the model used.

3.2 Modified model-based optimal control problem

As a consequence, the modified model-based optimal control problem, which is
referred to as Problem (MM), is defined by

minJs () = S*(N)'S(N)x(N) +TTx(N) +7(N) + Z% <x(k)TQx(k) + u(k)TRu(k)>
k=0

Frll) + 3ralla(l) = o) + 3 rallc(l) — (k)| — 2(k) (k) — k) (k)

subject to
x(k+1) = Ax(k) + Bu(k) + a(k), x(0) =xo
(17)
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with the specified a(k), y(k), A(k), p(k), I, v(k) and z(k), where the boundary
conditions are given by x¢ and p(IN) with the specified multiplier I.

It is obvious that Problem (MM), which is derived from Problem (E), is a
modification of optimal control problem and is also known as a modified linear
quadratic regular problem. Importantly, the set of the necessary conditions in
(6)-(9) for Problem (E) is the necessary conditions that are satisfied by Problem
(MM). In addition, due to the quadratic criterion feature of the objective function,
the conjugate gradient method [17, 18], which is one of the numerical optimization
techniques, could be applied to solve Problem (MM).

3.3 Conjugate gradient algorithm

For simplicity [19], establish Problem (MM) as a nonlinear optimization prob-
lem with the initial control given by u(®) = u(k)° as follows:

Hbie?h(u) subject tou = u(k) e " fork =0,1,---,N —1 (18)

Let this problem as Problem (Q). Moreover, the Hamiltonian function defined in

(4) is taken into consideration as an equivalent objective function. Hence, this
Hamiltonian function allows the evaluation of the gradient function, which is the

stationary condition in (6), and by using the iterative solution #!") = u(k)’ to satisfy
the state Eq. (8), which is solved forward in time, and the co-state Eq. (7), which is
solved backward in time.

Define the gradient functiong: R” — R"” as

g(ui) = V.3 (u’) (19)

which is represented by the stationary condition in (6). For arbitrary initial

control (%) € R™, the initial gradient and the initial search direction are calculated
from

o0 = g<u<0)> (20)
d? = ¢l (21)

The following line search equation is applied to update the control sequence:
u D = 4@ g . gD (22)

where a; € R is the step size, and its value can be determined from

a; = arg min/; (u(i) +a -d(i)>. (23)

a>0

After that, the gradient and the search direction are updated by

g(i+1) _ g(u(m)) (24)

40D — _g(i+1) 4 b; d? (25)

with
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g(i+1)T ‘g(i+1)

bi = g0 . gl

(26)

fori=0,1,2, ... represents the iteration numbers.
From the discussion above, we present the result as a proposition given as follows:

Proposition 1. Consider Problem (Q). The control sequence uD, which is defined in (22)
and is represented by

u = [@(0)", (@), -, (N ~ 1))"],

is generated through a set of the search direction vector d ) whose components are

linearly independent. Also, the direction d® is conjugacy.
The conjugate gradient algorithm is summarized below:
Conjugate gradient algorithm

Data: Choose the arbitrary initial control #(®) and the tolerance e.

Step 0: Compute the initial gradient g(o) from (20) and the initial search direc-
tion d® from (21), respectively. Seti = 0.

Step 1: Solve the state Eq. (8) forward in time from k£ = 0 to k = N with the
initial condition (9) to obtain x(k)i,k =0,1,--,N.

Step 2: Solve the costate Eq. (7) backward in time from k = N to k£ = 0 with the
boundary condition (9), where p(k)" is the solution obtained.

Step 3: Calculate the value of the cost functional /5 () from (17).

Step 4: Solve (23) to obtain the step size 4;.

Step 5: Calculate the control ) from (22).

Step 6: Evaluate the gradient g and the search direction dY, respectively,
from (24) and (25) with computing b; from (26). If the gradient g+ = ¢ within
a given tolerance, stop, else seti =7 + 1, go to Step 1.

Remark 1:

i+1)

a. Step 0 is the preliminary step for setting the initial search direction based on
the gradient direction in using the conjugate gradient algorithm.

b. Steps 1, 2, and 3 are performed to solve the system optimization by using the
corresponding control sequence u?.

c. Steps 4, 5, and 6 are the computation steps in implementing the conjugate
direction.

3.4 Iterative calculation procedure

Accordingly, Problem (Q) is solved by using the conjugate gradient algorithm.
Indeed, the solution procedure for system optimization with parameter estimation
could be described by joining the conjugate gradient algorithm with the parameters
estimated. A summary of the calculation procedure including the principle of
model-reality differences is listed as follows:

Iterative algorithm based on model-reality differences

Data: A, B, Q, R, S(N), N, xq, 71, 72, ky, ks, ky, f, L. Note that A and B could
be determined based on the linearization of f at x( or from the linear terms of f.

Step 0: Compute a nominal solution. Assume that a(k) =0, k= 0,1,---,N — 1,

and r; =, = 0. Solve Problem (M) defined by (2) to obtain u(k)o,
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k=0,1,-,N —1, and x(k)°, p(k)°, k = 0,1, ---,N. Then, with a(k) = 0,k =
0,1,--,N — 1, and using 1, ; from the data. Seti = 0, v(k)o = u(k)o, z(k)o =
x(k) and p(k)” = p(k)".

Step 1: Compute the parameters y(k)’, k = 0,1, ---,N, and a(k)’, k =
0,1,--,N —1, from (10)—(12). This is called the parameter estimation step.

Step 2: Compute the modifiers r, ﬂ(k)i and ﬁ(k)i, k=0,1,---,N — 1, from (13)-
(15). Notice that this step requires taking the derivatives of f and L with respect to
v(k)" and z(k)'.

Step 3: With y(k)’, a(k)’, T, A(k)’, B(k)", v(k)', and z(k)', solve Problem (Q)
using the conjugate gradient algorithm. This is called the system optimization step.

Step 4: Test the convergence and update the optimal solution of Problem (P). In
order to provide a mechanism for regulating convergence, a simple relaxation
method is employed:

(k) = v(k) +k, <u(k)’ - v(k)’) (27)
2(k)™ = 2(k) + ks (x(k)i - z(k)i) (28)
Pk = pk) +ky (p()' — 5 (k) (29)

where k,, k;, k, € (0, 1] are scalar gains. va(,’e)i+1 = v(k)i, k=0,1,---,N —1,
and z(k)’ur1 = z(k)i, k = 0,1, -+, N, within a given tolerance, stop; else seti =i + 1,
and repeat the procedure starting from Step 1.

Remark 2:

a. In Step 0, the nominal solution could be obtained by using the standard
procedure of the linear quadratic regulator approach, where the feedback
gain and the Riccati equation are calculated offline.

b. In Step 3, applying the conjugate gradient algorithm to obtain the new control
sequence will give a good effect if the conjugacy of the search direction is
satisfied.

c. In Step 4, the simple relaxation method in (27)-(29) is used, so that the
matching scheme for the parameters and the optimal solution can be

established.

4. Ilustrative examples

In this section, two examples are studied. The first example is for optimizing and
controlling a damped harmonic oscillator [7], and the second example is related to
optimal control of a continuous stirred-tank chemical reactor [8]. The mathematical
models of these examples are discussed, and their optimal solution is obtained by
using the algorithm discussed in Section 3. Here, the algorithm is implemented in
the Octave 5.1.0 environment.

4.1 Example 1: a damped harmonic oscillator

Consider a damped harmonic oscillator [7] given by
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. (0 1 0
X = (_wz _26w)x+ (1>u (30)

with the natural frequency @ = 0.8, the damping ratio 6 = 0.1, and the initial state

xo = (10 1O)T. Define the state x = (x; xz)T, where x; is the displacement and x; is
the velocity. For the purpose of controlling this oscillator, the following objective
function

9.4
10) =3 [ (@) + o)) + (o)) G1)

2 0.0

is minimized. This problem is a continuous-time linear optimal control problem,
and the equivalence discrete time optimal control problem, which is regarded as
Problem (P), is given by:

10 1
miny () = ZiAt<x1(k)2 4 xo(k) o+ u(k)2>
k=0
subject to (32)

1.00 094 0.00
x(k+1)= x(k) + u(k)
—0.60 0.85 0.94
with the initial state xo = (10 10)”. and the sampling time At = 0.94 s is taken
for the discretization transform.

Consider the model-based optimal control problem, which is regarded as Prob-
lem (M), given by:

min/ (u) = i (1 (xl(k)z + x2(k)* + u(k)2> + g/(k)) At

k=0 2
subject to (33)

kl—loklkk
x<+—>—-(0 1>x<>+»(0)u<>+a<>

with the initial state xo = (10 10)", and the adjusted parameters y(k),
k=0,1,-,N, and a(k), k = 0,1, -, N — 1, are supplied to the model used.

By using the algorithm proposed, the simulation result is shown in Table 1.
Notice that the minimum cost for Problem (M) is 546.05 units without adding the
adjusted parameters. Once the adjusted parameters are taken into consideration, the
iterative solution approximates to the true optimal solution of the original optimal
control problem, in spite of model-reality differences. It is highlighted that there is a
99% of the cost reduction to obtain the final cost of 128.50 units.

Figures 1 and 2 show the trajectories of control and state, respectively. With this
control effort, the state reaches at the steady state after 4 units of time, which
presents the oscillator stopped from moving. Figure 3 shows the changes of the

Number of iteration Initial cost Final cost Elapsed time (s)
20 17053.11 128.50 1.38021
Table 1.

Simulation result, Example 1.
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final control

Figure 1.
Final control u(k), Example 1.

final state
o

time, k

x, (k) X, (k)y——

Figure 2.
Final state x(k), Example 1.

600000

400000

200000

final co-state

-200000 s L L s
0 2 4 6 8 10

time, k
)2 (k) P (k)_

Figure 3.
Final costate p(k), Example 1.

costate at the first 2 units of time. The optimal solution obtained is verified by
satisfying the stationary condition as shown in Figure 4. Figures 5 and 6 show the
adjusted parameters after the convergence is achieved, where the model-reality
differences are measured during the iterative procedure.
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100000 T
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time, k
Figure 4.
Stationary H,(k), Example 1.
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Figure 5.
Adjusted parameter a(k), Example 1.
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Figure 6.
Adjusted parameter y(k), Example 1.
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Therefore, this damped harmonic oscillator is controlled, and the cost function is
minimized as desired.

4.2 Example 2: a continuous stirred-tank chemical reactor

Consider a continuous stirred-tank chemical reactor, which consists of two state
equations [8]. The flow of a coolant through a coil inserted in the reactor is to
control the first order, irreversible exothermic reaction taking place in the reactor.
Assume that x4(t) is the deviation from the steady-state temperature, x,(t) is the
deviation from the steady-state concentration, and u(t) is the normalized control
variable that represents the effect of coolant flow on the chemical reaction. The
corresponding state equations are given by

#1(t) = —2(x1(£) + 0.25) + (x2(t) + 0.5)exp (9%1?2) ~ (xat) + 0.25)u(t)
(34)
%a(t) = 0.5 — x5(t) — (x2(¢) + 0.5)exp (J%) (35)

with the initial state xo = (0.05 0.00)". The cost function to be minimized is
given by

0.8
10) = | (610 + () + 0:00(0)?) . (36)

0.0

Here, the desired objective is to maintain the temperature and the concentration
close to their respective steady-state values without expending large amounts of the
control effort.

This problem is a continuous time nonlinear optimal control problem. For doing
the discretization transform, the sampling time At = 0.0057 s is used to formulate
the equivalence discrete-time optimal control problem, which is referred to as
Problem (P), given by:

804
min/(u) = > 5 <2x1(k)2 + 2 (k)% + O.2u(k)2> At
k=0
subject to
x1(k 4+ 1) = x1(k) — 2(x1(k) + 0.25)At + (x2(k) + 0.5)Atexp (9%) (37)
—(x1(k) + 0.25)u(k)At)

xy(k +1) = x2(k) + (0.5 — x2(k)) At — (x2(k) 4 0.5)Atexp (%)

with the initial state xo = (0.05 0.00)".
By applying the algorithm proposed to obtain the optimal solution for Problem
(P), the following model, which is referred to as Problem (M), is introduced,

80

: 1 2 2 2
min/ () = ;2 (le(k) + 2x5(k)? + 0.2u(k) )At
subject to (38)
1.048 0.010 —0.002
x(k+1)= x(k u(k) + a(k)
—0.062 0.984 0.000

12
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with the initial state xo = (0.05 0.00)", and the adjusted parameters y(k), k =
0,1,---,N, and a(k), k = 0,1, ---,N — 1, are added into the model.

Table 2 shows the simulation result obtained by using the algorithm proposed. It
is mentioned that the minimum cost for the linear model-based optimal control
problem is 5.9589 units. At the beginning of the iteration calculation procedure, the
initial cost is 0.147463 unit, and a 90% of cost reduction is addressed to give the
final cost of 0.014167 unit.

The trajectories of the final control and the final state are, respectively, shown in
Figures 7 and 8. It is noted that the state reaches to the steady state after 40 units of
time by associating the control effort taken. This situation indicates that the tem-
perature and the concentration are maintained at their steady state. Thus, the
desired objective is confirmed. Figure 9 shows the costate behavior, which is

Number of iteration Initial cost Final cost Elapsed time (s)
9 0.147463 0.014167 4.60934
Table 2.

Simulation result, Example 2.

final control
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Figure 7.
Final control u(k), Example 2.
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Figure 8.
Final state x(k), Example 2.
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Final costate p(k), Example 2.
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Stationary H,(k), Example 2.
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Adjusted parameter a(k), Example 2.
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Figure 12.
Adjusted pavameter y(k), Example 2.

reduced gradually to zero at the terminal time, and Figure 10 shows the stationary
condition, which examines the existing of the optimal solution. The adjusted
parameters, which are shown in Figures 11 and 12, respectively, measure the
differences between the model used and the real plant.

Hence, the correct optimal solution of Problem (P) is approximated successfully
by solving the model in Problem (M), and the efficiency of the algorithm proposed
is demonstrated.

5. Concluding remarks

The approach, which integrates system optimization and parameter estimation,
was discussed in this chapter. The use of the conjugate gradient method in solving
the model-based optimal control problem has been examined, and the applicability
of the conjugate gradient approach in associating the principle of model-reality
differences was identified. Definitely, many computational approaches could be
used to solve the model-based optimal control; however, the algorithm proposed in
this chapter gives a tractable solution procedure for handling the optimal control
problems with different structures and parameters, especially for obtaining the
optimal solution for the nonlinear optimal control problem. In conclusion, the
efficiency of the algorithm is highly recommended. In future research, it is strongly
suggested to investigate the application of optimization techniques in stochastic
optimization and control.
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