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Abstract

This chapter deals with the topic of bioinformatics, computational, mathematics, 
and statistics tools applied to biology, essential for the analysis and characterization 
of biological molecules, in particular proteins, which play an important role in all 
cellular and evolutionary processes of the organisms. In recent decades, with the 
next generation sequencing technologies and bioinformatics, it has facilitated the 
collection and analysis of a large amount of genomic, transcriptomic, proteomic, 
and metabolomic data from different organisms that have allowed predictions on the 
regulation of expression, transcription, translation, structure, and mechanisms of 
action of proteins as well as homology, mutations, and evolutionary processes that 
generate structural and functional changes over time. Although the information in 
the databases is greater every day, all bioinformatics tools continue to be constantly 
modified to improve performance that leads to more accurate predictions regarding 
protein functionality, which is why bioinformatics research remains a great challenge.

Keywords: computational biology, databases, proteomics, transcriptomics, 
functional genomics, phylogeny

1. Introduction

The study to understand the functioning of the cell, as well as the molecules and 
processes that are carried out within it, originated the use of various disciplines 
and sciences to facilitate the progress in research for its characterization over time. 
In the 1950s, the sequencing of small biological molecules began, and in 1956, the 
sequencing of the first protein was achieved. Thus, Margaret O. Dyhoff determined 
that bovine insulin is a small peptide of 51 amino acids. With these advances and 
the constant production of biological information, there was a need to collect and 
organize all the information generated from these sequencing projects [1]. In 1965, 
the first biological sequence database was created, in which all the DNA and protein 
sequences described up to that time were stored and made available to the scientific 
community. Eight years later, the oldest known database was created, which is still 
in force today, Protein Data Bank (PDB) [2].
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In the 80s, bioinformatics had already gained a new meaning in scientific 
research, so several research groups such as Theoretical Biology and Biophysics 
Group attached to the American Institute The Alamos National Laboratory, together 
with Stanford University, gave rise to the best-known database in the world called 
GenBank. Almost at the same time, in 1981, Temple Smith and Michael Waterman 
extensively reviewed the mathematical algorithms for comparing biological 
sequences. As a result of their analysis, they generated the well-known local align-
ment algorithm that allowed to optimize the comparison of biological sequences, 
being the most important contribution for the direct comparison of sequences and 
cornerstone of the alignment by sequence pair [3].

A few years after the creation of GenBank, its European and Asian versions 
were generated, known as the EMBL database (European Molecular Biology 
Laboratory) and DDBJ (DNA Data Bank of Japan) in 1981 and 1984, respec-
tively. In 1985 the FASTA algorithm (FAST-AII) of sequence comparisons 
was reported, which operated as a search engine for similar sequences within 
the GenBank [4]. During the years from 1987 to 1990, databases for protein 
sequences were propelled which resulted in the creation of Swiss-Prot and 
PIR (Protein Information Resource). In 1990, another of the most important 
milestones in bioinformatics originated the BLAST algorithm (Basic Local 
Alignment Tool) that completely revolutionized the exploration and search of 
biological sequences in databases [5].

The National Center for Biotechnology Information (NCBI) makes the following 
definition:

Bioinformatics is a field of science in which various disciplines such as applied 
mathematics, statistics, artificial intelligence, chemistry, biochemistry, computing 
and information technology converge, whose objective is to facilitate the discovery 
of new biological ideas, as well as create global perspectives from which unifying 
principles in biology can be discerned [6].

It consists of two complementary subfields with each other:

1. The development of computer tools and databases.

2. The application of these in the generation of biological knowledge to better 
understand living systems [7].

According to the National Institute of Health of the United States, bioinformatics 
or also called computational biology, deals with the development and application 
of analytical data and theoretical methods, mathematical modeling and computer 
simulation techniques to study biological, behavioral and social systems [8]. The 
programs use public or private databases (with restricted access or with economic 
value) that have been created with information that is constantly growing and 
managed by institutions from various sectors. The main databases used in computa-
tional biology are described below:

1.1 Biological databases

• Primary databases contain original biological data. They are raw sequence files 
or structural data (for example, GenBankm y Protein Data Bank) [6].

• Secondary databases contain information processed computationally based 
on primary data. Translated protein sequence databases contain the func-
tional annotation belonging to this category (for example, Swiss-Prot and 
PIR) [6].
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• Specialized databases are those that serve a particular research interest (for 
example, Flybase). The HIV sequence database and Ribosomal Database 
Project are examples of databases that specialize in a particular organism or a 
certain type of data. Many of the problems detected in scientific research lie in 
the need to connect secondary and specialized databases to primary databases. 
It is desirable that entries in a database be cross-referenced or linked to related 
entries in other databases that contain additional information [6].

There are primary databases, which contain direct information on the sequence, 
structure or pattern of DNA or protein expression, and secondary, which contains 
data derived from primary databases, such as mutations, evolutionary relationships, 
grouping by families or by functions, involvement in diseases, etc.

1.2 Databases for protein analysis (amino acid sequence databases)

Swiss-Prot: It contains annotated or commented sequences, that is, each 
sequence has been reviewed, documented and linked to other databases. External 
link: Swiss-Prot in the EBI (http://www.ebi.ac.uk/swissprot/access.html), Swiss-Prot in 
ExPASy (http://us.expasy.org/sprot/) [9].

TrEMBL: Translation of EMBL Nucleotide Sequence Database includes the 
translation of all coding sequences derived from (EMBL-BANK) and which have 
not yet been annotated in Swiss-Prot. External link: TrEMBL (http://www.ebi.ac.uk/
trembl/) [9].

PIR: Protein Information Resource is divided into four sub-bases that have a 
decreasing annotation level. External link: PIR (http://pir.georgetown.edu/) [9].

ENZYME: It links the complete enzyme activity classification to the Swiss-Prot 
sequences. External link: ENZYME (http://us.expasy.org/enzyme/) [9].

PROSITE: It contains information on the secondary structure of proteins, 
families, domains, etc. External link: PROSITE (http://us.expasy.org/prosite/) [9].

INTERPRO: It integrates information from various secondary structure 
databases such as PROSITE, providing links to other databases and more exten-
sive information. External link: INTERPRO (http://www.ebi.ac.uk/interpro/index.
html) [9].

PDB: Protein Data Bank is the 3-D tertiary structure database of proteins that 
have been crystallized. External link: PDB (http://www.rcsb.org/pdb/) [9].

1.3 Data warehouse

A Data Warehouse (DW) is a set of integrated data oriented to a subject, which 
vary over time and are not transitory, which support the decision-making process of 
the administration [10]. From the review of the bioinformatics projects it is found 
that the requirements of this field require the storage of large volumes of data, with 
multiple dimensions, of extended periods of time and with heterogeneous formats 
as well as their sources. For example, Ligand Depot is an integrated data source for 
finding information about small molecules, proteins and nucleic acids. It focuses 
on providing chemical and structural information for small molecules. Accepts 
keyword-based queries, also provides a graphical interface for conducting chemical 
substructure searches, and allows access to a wide variety of web resources [11].

1.4 Data mining in bioinformatics

Data mining is oriented towards the study of techniques to extract valuable 
information from a large amount of biological data. For this, efficient software tools 
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are necessary to recover data, compare biological sequences, discover patterns and 
visualize the discovery of knowledge [8].

Among the most common data mining techniques in bioinformatics can be 
highlighted [8]:

KDD is the complete process of extracting knowledge, not trivial, previously 
unknown and potentially useful from a data set.

KDT is oriented to the extraction of knowledge from data (unstructured in 
natural language) stored in textual databases, is identified with the discovery of 
knowledge in the texts.

1.5 Applications of bioinformatics

The areas in which bioinformatics is currently developed are many and varied, 
ranging from simple tasks such as direct acquisition of data from DNA or protein 
sequencing assays (when techniques such as mass spectrophotometry are used), 
until the development of software for the storage and analysis of the data, which 
implies in many cases, the generation of algorithms that require both mathematical 
and biological knowledge. Within the areas in which bioinformatics takes place 
are genomics, proteomics, pharmacogenetics and phylogeny. The plant genome 
databases and gene expression analysis of this profile have played an important role 
in the development of new crop varieties that have higher productivity and more 
disease resistance [7].

Specifically, bioinformatics encompasses the development of databases or 
knowledge to store and retrieve biological data, algorithms to analyze and deter-
mine their relationships with biological data, and the statistical tools to identify and 
interpret data sets. The following describes in detail what refers to metabolomics, 
transcriptomics, proteomics, comparative genomics, functional genomics, phylog-
eny and protein modeling.

2. Metabolomic data analysis

The metabolomics was originally proposed as a tool of functional genomics, but 
its use has been extended much more, as it has had great advances like other omics 
sciences, such as transcriptomics and proteomics; because the metabolomic work 
is determined by physical-chemical characteristics of organic molecules unlike the 
genes, mRNA and proteins that come from a specific sequence, so the success of the 
characterization of these biopolymers is thanks to bioinformatics technology and 
tools that help sequence characterization [12]. Its objective is to detect, quantify 
and interpret the overall analysis of all metabolites; these studies are used in various 
areas and, like proteomics, one of its main contributions is biomarkers, helping to 
identify metabolites that are correlated with diseases and environmental exposures 
[13]. Metabolites are chemical entities that do not come from a transfer of informa-
tion within the cell, coupled with this, they are also characterized by being diverse 
as they are substrates and metabolism products that drive essential cellular func-
tions, such as energy production and storage, signal transduction and cell apopto-
sis; in this great diversity of chemical structures we find endogenous and exogenous 
metabolites, the former are produced naturally by an organism and the latter come 
from interaction with the outside. The great diversity of molecules reflects in a wide 
range of polarities, molecular weights, functional groups, stability and chemical 
reactivity, etc. [12, 13].

Among the first reports of metabolite detection are those where mass spectrom-
etry (MS) was used to separate a wide range of metabolites present in urine and 
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tissue extracts [14]. In addition, multicomponent analyzes were described to obtain 
the metabolic profile for three types of urinary constituents: steroids, acids, drugs 
and drug metabolism [15]. On the other hand, there are reports where physical, 
chemical or psychological changes can cause biological responses such as oxidative 
stress and inflammation; among the biomarkers that are the result of a chemical 
reaction are lipoperoxides or oxidized proteins that are the result of the reaction of 
molecules with reactive oxygen species (ROS) and those that represent the biologi-
cal response to stress, such as the transcription factor NRF2 or inflammation and 
inflammatory cytokines [16]. Among the best known and clinically used examples 
we find glucose as a marker of diabetes [17] and phenylalanine as a marker of 
congenital metabolic disorder [18].

Because metabolites play important roles in the biological pathways; its differen-
tial flow or regulation can reveal new knowledge about diseases and environmental 
influences, so one of the most important objectives of the metabolic analysis has 
been to assign the identity of the metabolite within a metabolic pathway [19, 20]; 
generating a large amount of data; requiring for its processing an arduous math-
ematical, statistical and bioinformatic work [12, 21, 22], this last area is crucial for 
the development of metabolomics as it helps in the handling of data and informa-
tion, analytical data processing, metabolomic standards, ontology, statistical 
analysis, mining and data integration, and mathematical modeling of metabolomic 
networks with antecedents of biological systems [12], it is also necessary to decide 
which metabolites are biologically more significant. This can be achieved by helping 
the identification process, reducing the redundancy of characteristics, presenting 
better candidates for the MS, accelerating or automating the workflow, recovering 
data through characteristics through meta-analysis or multigroup analysis, or using 
stable isotopes and mapping of pathways. For all the above, in recent years, the 
technologies for analyzing metabolites have undergone improvements, establishing 
more efficient protocols for experimental design, as well as better sample extrac-
tion techniques and data acquisition that have been worthwhile in providing sets of 
complex and solid data [20].

The database management system for metabolomics requires the collection 
of raw and processed metadata, some important aspects for comparing data and 
obtaining results in different laboratories and reproducing experimental condi-
tions are: The nature and treatment of samples prior to study. Among the bases and 
tools for the analysis and visualization of available data are: Kyoto Encyclopedia of 
Genes and Genomes (KEGG; http://www.genome.ad.jp/kegg/) [23] and Metabolic 
Pathways From all Domains of Life (MetaCyc; http://metacyc.org/) [24].

3. Transcriptome data analysis

The genes response to intracellular or extracellular stimuli includes a hierarchy 
of signals that allows genes encoded in the DNA to be expressed or repressed by 
the transcription process. The total set of transcripts (RNA molecules) produced 
by a cell under a given condition and time, is defined as a transcriptome [25]. Unlike 
the genome, the transcriptome is highly dynamic and actively changes as a con-
sequence of factors that influence the stage of development of organisms, as well 
as the surrounding environmental conditions. In this sense, transcriptomics is an 
essential tool to interpret the functional elements of the genome, having as object 
of study, all species of transcripts, messenger RNA, non-coding RNA and small 
RNAs [26]. Its main purpose being to determine transcriptional structure of genes, 
that is, where a gene begins and ends (start sites 5′ and 3′ end), posttranscriptional 
modifications, splicing patterns and differential expression analysis [27].  
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The RNA molecules synthesized by a cell have a specific function in a given cellular 
process, the transcripts include: (a) messenger RNA (mRNA) that is the intermedi-
ary between the gene information and the proteome. In this way, the amount of 
mRNA molecules makes it possible to elucidate expression patterns and in turn 
correlate the abundance of mRNA molecules with changes in protein abundance 
[28]; (b) non-coding RNA (cRNA) that is responsible for the regulation of gene 
expression [29]. Determining where, how and when a transcript is generated is 
essential to know the biological activity of a gene [28]. Analyzing the transcripts 
that coexist at any given time gives us global information on the cellular state under 
a certain condition, which has allowed us to establish patterns of gene regulation 
coordinated with the consequent identification of promoter elements common to 
several genes [30].

3.1 RNA study technologies and tools in bioinformatic analysis

The RNA study approach has changed from the sequencing of the first deter-
mined RNA molecule, to the sequencing of the transcriptome using new generation 
technologies [25]. Northern blot is a technique based on hybridization and radioac-
tive labeling, cDNA microarrays (complementary DNA obtained from mRNA) and 
cDNA-AFLP tools widely used in studies of expression levels and serial analysis 
of gene expression (SAGE), at the time they provided relevant information, being 
Microarrays widely used today [31–35]. However, these techniques require prior 
knowledge of the genome, have low coverage and are based on hybridization, in this 
sense the abundance of transcripts is inferred by the intensity of hybridization and 
the results obtained are noisy, which directly interferes with the reproducibility of 
the results, besides being insufficient techniques to detect new transcripts [25].

The growing importance of DNA sequencing in model organisms, as well as 
in the quest to understand the dogma of biology, the NGS technologies (Next 
Generation Sequencing) arise, which have high yields in the treatment of the sam-
ple, are reproducible and highly reliable, as well as accessible and economical, to the 
point of being more profitable than sequencing by SANGER. These next-generation 
technologies are based on sequencing by synthesis (SBS) known as pyrosequencing, 
the transcriptomic variant of pyrosequencing technology is known as short-reading 
massive parallel sequencing (RNA-seq). The availability of this technology has 
revolutionized the approach of transcriptome study, having commercially available 
Roche/454; Applied Biosystems SOLID; HeliScope e Illumina [36].

From the first RNA studies based on sequencing by SANGER to NGS tech-
nologies, bioinformatics has been a key tool in the analysis process. Initially the 
differential expression based on the analysis by Microarrays presented its own com-
putational challenges [36], currently while the reads are shorter than those created 
by sequencing by SANGER, NGS has a higher performance and generates data set of 
up to 50 gigabases per run [37], this requires algorithms capable of processing this 
amount of data in the shortest time possible and with a high degree of reliability.

The study of the transcriptome by RNAseq involves different stages ranging 
from RNA extraction, library construction, sequencing and data analysis. In this 
last step four main stages are distinguished (a) Quality analysis of the reads, this 
allows to determine possible problems in the reads. FastQC is a next-generation data 
quality control tool, which reports graphs and tables providing quality informa-
tion based on the reads (per base sequence quality); check the quality of subsets of 
reads (per sequence quality scores); it also shows the proportion of each nucleotide 
base of the DNA in each base of the reads (per base sequence content); presents the 
average GC content in the reads and compares that content with the normal distri-
bution (per sequence GC content); shows the proportion of N, that is, unknown 
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nucleotide observed in each reading position (per base N content); shows the size 
distribution of reads (sequence length distribution); detects adapters in the reads 
(adapter content); detects possible sequencing problems introduced in the reads 
after the adapter (k-mer content) https://rtsf.natsci.msu.edu/genomics/tech-notes/
fastqc-tutorial-and-faq/ [38]. Is advisable that the length of the reads to be analyzed 
is the same, also if there is a poor quality in the reads, the procedure to follow is 
to cut those bases where there is poor quality. Tools such as Fastx-toolkit (https://
bio.tools/fastx-toolkit) [39], Trimmomatic [40], PRINSEq [41], Flexbar [42] and 
others can be used to cut or filter reads, ensuring reliable data for alignment. (b) 
Mapping and identification of transcripts: at this stage the location of the reads with 
respect to a reference genome is known or a Novo assembly is made. There are three 
study strategies: (1) the reads are aligned with allocator with gaps to a reference 
genome (example TopHat, STAR) which allows the identification of new transcripts 
[43, 44]; (2) If the discovery of new transcripts is not sought, the reads can be 
aligned to the reference genome using an aligner without gaps for example RSEM 
[45]; (3) When the genome is not available, the reads are mounted on transcripts 
what is known as Novo assembly (example TRINITY) [46]. In the transcription 
level analyzes, the isoforms that a gene presents are considered separately. On the 
contrary, in the level analyzes of gene, the isoforms that it presents form a unit [47]. 
(c) Quantification of reads: Sample reads are quantified in relation to the transcripts 
that appear in the reference genome or by Novo assembly. The tools used in quan-
tification can be based on alignment or without alignment. Alignment-based tools 
map all reads of a sample, to a genome or to transcriptome. Subsequently, quantify 
the reads that are assigned to a transcript, in the case of TopHat and RSEM [43, 45]. 
Tools that skip sequence alignment like HTSEq and featureCounts [48, 49], use the 
k-mer count, that is, they count all the k-mer in a sequencing library without align-
ing them to any reference, in this way the k-mer are counted and the unique k-mer 
are selected to quantify the expression and finally, these unique k-mer are assigned 
to the transcriptome to identify the transcription. (d) Differential Expression 
Analysis: At this stage, it is analyzed if the expression of a gene is different between 
different conditions. To determine if in a specific gene there are significant differ-
ences in the number of mapped reads corresponding to that gene, there are a large 
number of tools that are based on the comparison of the reading count for each 
transcript/gene under different biological conditions, by statistical analysis, which 
implies normalization methods since transcripts are synthesized at different levels 
(genes or transcripts with low or high level of expression), probabilistic models, 
modeling of reading counts at given distribution etc. In the differential expression 
analysis by RNA-seq, should be considered that the longer transcripts generate more 
reads compared to shorter transcripts. In addition, the technical noise introduced 
into the data during the sequencing process, as part of the variability in the number 
of reads produced by execution causes fluctuations in the number of mapped ele-
ments in the sample. To reduce the technical noise introduced into the data during 
the sequencing process, the number of reads must be normalized in order to obtain 
significant estimates of the expression. Among the statistical parameters used for 
this process are the metric of reads per kilobase per million mapped reads (RPKM), 
fragments per kilobase per million mapped reads (FPKM) [50, 51]. With these 
parameters it is possible to quantify transcription levels and make the comparison 
between samples. On the other hand, fold change allows us to evaluate the rate of 
change of a transcript in both conditions [52]. Within the challenges of transcrip-
tome analysis, it is important to understand how the levels of expression differ in 
each situation studied, to achieve this objective, different methods try to model 
the biological variability such as EdgeR, DESeq, Cuffdiff [48, 53, 54]. In this way, 
there are currently different computational tools suitable for the overall study of 
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the transcriptome suitable for each stage of analysis and specialized for each type of 
transcript under study (Table 1).

3.2  Bioinformatics tools in the study of coding RNA, non-coding RNA and 
microRNAs

The identification of non-coding RNAs and small RNAs is a vital issue in 
genetic analysis [29], in this sense algorithms have been developed for the analysis 
of this type of RNAs in particular (Table 1). Currently, the tools used to classify 

Process Tools Objective References

Quality analysis of reads FastQC
Fastx-toolkit 
Trimmomatic, 
PRINSEq, Flexbar

It analyzes the quality of the 
reads
It debugs poor quality reads

[38–42]

Assembly Trinity, Trans-ABySS, 
Oases, IDBA-Tran
TOPHAT, STAR, IDBA-
Tran, HISAT

Assembly of reads without 
genome or reference 
transcriptome
Assembly of reads with genome 
or reference transcriptome

[46, 55, 56]
[43, 44, 57, 
58]

Classification of 
transcripts

BLAST, BLAT, GMAT, 
AUGUSTUS
CPAT, FEELnc, NRC, 
lncRScan-SVM

It identifies coding transcripts 
by homology or by known 
transcript characteristics

[5, 59–61]
[62–65]

Mapping TOPHAT, STAR, HISAT, 
HISAT2, Bowtie

It aligns reads with a reference 
genome or transcriptome

[43, 44, 58, 
66]

Quantification RSEM, Feature Count 
StringTie, Salmon, 
Kallisto

It estimates the number of 
transcripts with or without 
their alignment

[45, 49, 
67–69]

Classification of 
coding and non-coding 
transcripts

BEDTools, glbase It determines the coordinates of 
the reference genome

[70]

BLAST, BLAT, GMAP, 
AUGUSTUS

Through homology it manages 
to determine known sequences 
of transcripts found in 
databases

[5, 59–61]

CPAT, FELLnc, 
lncRScan-SVM, NRC

It evaluates characteristics 
of coding and non-coding 
transcripts

[62–65]

Small RNA analysis miRDeep
Pic Tar

It quantifies known micro 
RNAs and identify new RNAs

[71–73]

PiPMir It identifies new micros RNAs 
in plants

[74]

DARIO It allows the recognition of 
micro RNAs, snoRNA and 
tRNA

[73]

IntaRNA It analyzes micro RNAs in 
eukaryotes and small bacterial 
RNAs

[75, 76]

CopraRNA It makes comparative 
predictions that include 
functional enrichment analysis

[76, 77]

Table 1. 
Computational tools in the study of the transcriptome.
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coding and non-coding sequences have two aspects, those that classify transcripts 
according to similarity and those that use known coding and non-coding proper-
ties [47]. Similarity-based tools classify transcripts, taking as reference the amino 
acid sequences of their transcripts translated with known protein coding genes, 
for example BLAST [5], BLATS [59], GMAP [60]. On the other hand, tools focused 
on coding and non-coding characteristics are based on the properties of known 
transcripts to predict whether a transcript encodes or not for a protein. The coding 
potential can be estimated using automatic learning approaches such as CPAT [62], 
FEELnc [63], lncRScan-SVM [64] and NRC [65]. These exclude transcripts based 
on properties such as transcription length, length of open reading frame (ORF), 
ORF coverage, k-mer frequency, codon usage bias, in addition to being optimized 
for different techniques [47]. In the choice of the tool to be used to evaluate the cod-
ing potential of a transcript, it will depend on what is sought in the study, if there is 
a good annotation and reference genome the tools based on similarity are practical 
and feasible in the analysis. However, in organisms that lack good gene annotations 
it is advisable to use tools based on coding and non-coding characteristics, which 
also allow to identify new genes. On the other hand, the availability of small read-
ings opened a new field of study for small RNAs such as microRNAs (miRNAs), 
small RNAs of interference (siRNA) and piwiRNAs (piRNAs); Currently there are 
specialized tools for this type of RNA that provide additional biological knowledge. 
In this case miRDeep and its varieties are widely used to quantify known and novel 
RNA (miRNA), from the sequencing of small RNA by RNAseq [71, 72]; PiPMir [74] 
has been used for the detection of miRNA in plants. DARIO (http://dario.bioinf.
uni-leipzig.de/index.py) is a web service that allows not only the recognition of new 
microRNAs but also small RNAs derived from other types of parental RNAs, such 
as snoRNA and tRNA [73]. Pic Tar is an algorithm for the identification of micro 
RNAs, which is based on functional interactions of micro RNA [78, 79]. IntaRNA 
has been designed for the study of micro RNAs in eukaryotes and small bacterial 
RNAs (RNAs) [75, 76]. CopraRNA is a comparative prediction algorithm that is 
complemented by post-processing methods that includes functional enrichment 
analysis [76, 77]. Finally, after analyzing the data, the biological conclusions must 
be carefully interpreted.

4. Proteomics data analysis

Transcriptome sequences provide resources for gene expression profile studies, 
as well as for the identification of mutations, sequence aberrations and RNA editing 
events [25], the above is possible to the existence of the open reading frame (ORF), 
however, in genomic data this does not imply the existence of a functional gene; 
despite the great advances in bioinformatics that facilitate the analysis and predic-
tion of genes with the help of comparative genomics, and although they are years 
of development of molecular simulation methods, attempts to improve models 
that are already relatively close to the structure native, they have had little success, 
which may be due to inaccuracies in the potential functions used in simulations, 
such as the treatment of electrostatic and solvation effects or it may be necessary to 
improve sampling strategies due to the relatively long folding time scale of proteins; 
the combination of chemistry and physics with the large amount of information 
in known protein structures could provide a better route for the development of 
enhanced potential functions. Currently, it is difficult to accurately predict protein 
structures from genes, the success rate for the correct prediction of structures 
remains low [25, 80, 81]. Proteomics involves various technologies for deep pro-
teome analysis, thus achieving quantification and identification of these proteins; 
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covering the part of functional analysis of genetic products, interaction studies, and 
protein localization, which helps explain the identity of an organism’s proteins to 
know the structure and function. However, considering that the proteome is highly 
dynamic due to the complex regulatory systems that control the levels of protein 
expression, its use is limited, since in addition to the use of specialized personnel, 
facilities and equipment, software is also included for equipment, and databases, 
which increases costs [80, 82, 83]. Proteomics is constantly updated, generating 
challenges ranging from sample preparation to data collection. A large amount of 
information is generated from protein folding models, three-dimensional struc-
tures, prediction of unknown protein structures and functions, data obtained from 
the separation of proteins by electrophoresis in two-dimensional gels, isoelectric 
focusing, 2D protein visualization, peptide mass fingerprinting (PMF), MS, MS 
in tandem, etc., the above generates high performance proteomes with the help 
of bioinformatics, which introduces new algorithms to handle a large amount of 
heterogeneous data [84–86].

Some of the most used platforms in proteomics are: The Basic Local Alignment 
Search Tool (BLAST), Expert Protein Analysis System (ExPASy) and Protein 
Data Bank (PDB); BLAST (https://blast.ncbi.nlm.nih.gov/Blast.cgi). It is one of 
the most used and updated platforms, which uses simple but powerful methods 
for protein analysis comparing amino acid sequences, which makes it possible to 
determine homology between proteins, where the algorithms used to perform this 
procedure guarantee the best possible alignment, however, it does not guarantee 
the best structure [5, 86–90]. ExPASy gives access to a wide variety of databases 
and analytical tools dedicated to proteins and proteomics. On the other hand, PDB 
(https://www.wwpdb.org/) is the global repository of three-dimensional structures 
of macromolecules that is updated weekly and contains more than 153,000 protein 
structures, resulting from crystallographic studies, X-rays or nuclear magnetic 
resonance (NMR) created by modeling software, all these platforms contain various 
servers that help classify proteins according to their sequence, structure and func-
tion [86, 91, 92].

All this information is of great help, since it is used in different research areas, 
such as detection of diagnostic markers, candidates for vaccine production, under-
standing the mechanisms of pathogenicity, alteration of expression patterns in 
response to different signals and interpretation of functional protein pathways in 
different diseases [93–98].

5. Comparative genomics

Comparative genomics is a broad field of study that identifies differences 
between genomes and elucidates which of them are responsible for phenotypic 
changes in organisms [99]. In contrast to ‘traditional’ genomic studies that focus 
on a single genome per study [100], comparative genomics provides additional 
detailed information to that obtained from the analysis of a single genome, which 
can reveal the encoded functional potential of an organism compared to another 
[101–103]. Comparisons between different genomes of organisms lead to more 
rapid identification of different underlying mechanisms are shared between 
organisms and others that are different among them [104–106]. Likewise, compar-
ative genomics allows a better understanding of how species have evolved [107]. 
In this sense, the concept of pangenome (Figure 1) refers to the set of genes in a 
particular species [106]. The commonly used partition of a pangenome considers 
three main parts: the central genome, the expendable or accessory genome and 
the singleton genome [108]. The central genes are responsible for the basic aspects 
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of the biology of the species and its main phenotypic features; while accessory 
genes and singletons generally belong to supplementary biochemical pathways and 
functions that can confer selective advantages such as ecological adaptation [108]. 
While the global analysis of gene content (as in pangenome studies) provides 
information on differences in functional potential and possible phenotypic differ-
ences between organisms, specific central gene analyzes have also been used for 
studies of phylogenetic diversity [99, 108].

Initially, the concept of pangenome was used to refer to bacterial genomes, 
however, over time it has been used to refer to genomes of eukaryotic organisms 
such as yeasts [106, 109], plants [108, 110, 111], and viruses [108, 112]. Different 
organisms can be compared despite their phenotypic differences and with respect 
to their relationship of kinship (phylogenetic distances) [105, 113]. The assembly 
of genomes from sequencing data by Illumina or PacBio methods [114] involves 
five important stages, these steps are described in Figure 2, as well as some of the 
tools used [106].

Figure 1. 
Pangenome diagram of three different genomes.

Figure 2. 
Workflow for the de novo genome comparative analysis.
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For gene comparisons databases with different characteristics are used, for 
example, to obtain gene families and identify their orthology the EDGAR database 
[108, 115] is used, as well as, the prokaryotic-genome analysis tool (PGAT) for the 
analysis of bacterial genomes [108, 116]. There are independent applications such as 
the Pan-genome analysis pipeline (PGAP) that have specific modules to perform the 
functional analysis of genes, the analysis and determination of each of the compo-
nents of the pangenome, the detection of genetic variation as well as the analysis of 
Species evolution [108, 117], PanFunPro is a tool that allows pangenome analysis in 
protein prediction from genetic information [96]. There are tools that allow you to 
work with large amounts of data such as PanGP [118] and the large acale BSR [119].

The bacterial pan genome analysis tool (BPGA) [120] is a recently published 
package for pangenome analysis with seven functional modules; In addition to 
routine analysis, it presents a series of novel features for subsequent analyzes such 
as phylogeny, as well as tools that allow determining the presence and absence of 
certain genes in specific strains, another module to perform subset analysis, content 
analysis atypical G+C and KEGG & COG mapping of central, accessory and unique 
genes [108, 121–124].

6. Functional genomics

Functional genomics studies and assigns functions to the genome of an 
organism, including genes and non-genetic elements [125, 126], with the sup-
port of molecular and cellular biology studies, focused on the dynamic aspects 
of transcriptomics, proteomics and metabolomics [127], that allow to know 
the relationship of genes, their transcription, translation and protein-protein 
interactions [128, 129], that promote the phenotypic characteristics of each 
organism [125, 126]. A functional genomic approach can use multiple techniques 
for data analysis in a single study [129]. Apart from the tools of transcriptomics 
and proteomics, functional genomics needs of studies that allow us to know 
gene interactions [130, 131], genetic variations (polymorphisms) in different 
individuals through the study of SNPs [126, 132]. Likewise, it is important to 
know the regulation of genes in the expression of proteins that first carries out 
the analysis of promoter sequences, followed by the expression of the promoters 
and subsequently the expression of proteins [126, 133, 134]. Another study used 
for a rapid and systematic analysis of the expression of a large number of genes 
is the microarrays, which make it easier to observe the differential expression of 
genes from DNA or cDNA, as well as, allowing the finding gene functions novel 
and unexpected [135]. In addition, compare the pattern of gene expression under 
different conditions [136]. SAGE serial analysis of gene expression based on the 
study of cDNA allows to examine gene expression in a cell [126]. To perform a 
functional genomic observation, an assembled and identified genome must be 
had, which does not contain gaps, to avoid erroneous annotations. Subsequently, 
the assembled genome is compared with a reference genome, which together 
allows to predict genes. Next, the mapped elements are combined, and the 
biological information that allows to define an optimal set of annotations or func-
tions is assigned. At the end, the data will have to be validated, this is achieved 
through manual inspections, experimental checks and quality measures [137]. To 
perform the genome annotation there are computational tools, one of the most 
used and friendly is Blast2GO which is a bioinformatics platform for high quality 
functional annotations and analysis of genomic data sets [138]. The data obtained 
can be shared with the public through databases so that other researchers can 
access them. Currently, GEO of NCBI is the public functional genomics database 
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that provides tools that help users in the consultation and download of data [139]. 
Likewise, KEGG is a database that is used as a tool to understand the high-level 
functions and utilities of the biological system, such as the cell, the organism or 
the ecosystem, based on molecular level information, generated by sequencing of 
the genome and other high performance [140]. There are also databases that store 
specific information on each of the most important model organisms (Table 2).

7. Phylogeny in the protein evolutionary process

The sequencing of the genome of an organism, has allowed to know the set of 
all its genes, elucidating the functions and products that they express, as well as the 
mechanisms of regulation in different metabolic processes, where endless proteins 
participate. To determine their possible functions, biochemical and genetic analyzes 
are used in a classical way, however, sequencing has contributed to the knowledge 
about the type of amino acids that make it up, and through the use of software 
multiple sequences have been aligned, where they have those that have been 
fully characterized as well as proteins where their biochemical characteristics are 
unknown and by homology between amino acids can be inferred in the functions 
that these proteins can present [149]. The use of bioinformatics, in protein analysis 
is a challenge, in recent years, phylogenetic profiles have been fundamental to 
relate homologous proteins by aligning their sequences, where it has been revealed 
that many share highly conserved regions and similar structures [150]. Phylogeny 
analyzes the changes that occur within the sequences and groups them in a diagram 
with ramifications, called a phylogenetic tree, all those sequences that belong to the 
same family can be grouped into a clade and in turn into subfamilies, providing data 
on their evolution and functional diversity [151].

Eukaryotic cells during their evolution have captured microorganisms that origi-
nated mitochondria, chloroplasts and other organelles, where their genes have been 
transferred to the nuclear genome, allowing the transport of encoded proteins in 
the nucleus. The different locations of proteins in the cell, and the different proteins 
that participate in cellular processes, have originated phylogenetic analyzes on the 
location of proteins in the cell, finding that they are closely related to prokaryotic 
proteins that have eukaryotes. The proteins of chloroplasts and mitochondria have 
a composition of amino acids, length, sequences and conserved regions very similar 
to those of prokaryotes [152, 153]. One of the limitations to analyze proteins among 

Reference organisms Databases References

Escherichia coli https://www.genome.jp/kegg-bin/
show_organism?org=eco

[141]

Saccharomyces cerevisiae https://www.yeastgenome.org/ [142]

Arabidopsis thaliana https://www.arabidopsis.org/ [143]

Caenorhabditis elegans https://wormbase.org/#012-34-5 [144]

Drosophila melanogaster http://www.flybase.org/ [145]

Danio rerio http://zfin.org/ [146]

Mus musculus http://www.informatics.jax.org/ [147]

Homo sapiens: variation in 
humans

https://www.genome.jp/kegg-bin/
show_organism?org=hsa

[148]

Table 2. 
Databases of reference organisms used for genomic analysis.
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related organisms is that genomes must be complete, in order to determine the pres-
ence or absence of genes in these species [154].

The high number of sequences that are stored in the different databases, have 
allowed to infer in the evolutionary relationships of different proteins, which when 
presenting homology retain their function during long evolutionary times, however, 
homologous proteins can perform the same activity, but the substrates they use can 
come from different routes [155]. When organisms adapt to different environmental 
conditions they cause mutational changes in genome sequences, causing amino acid 
substitutions in enzymes, making them improve their efficiency and specificity, to 
maintain their catalytic function. Not all genes that code for proteins are susceptible 
to mutation, due to the presence of essential amino acids in function, stability and 
folding, and therefore a restriction is generated. Many of the mutations are usually 
random and, in those proteins, where these changes have been observed, it is due to 
an evolutionary pressure. If the protein plays an important role in the functions of 
the organism and the mutation brings improvements in activity, the change in the 
genome is maintained and optimized, favored by selective pressure, otherwise, when 
the function of the protein is not relevant. In the cell, the mutant gene is removed 
from the genome by random deletions. Evolutionary mechanisms have given rise 
to homologous protein families, which share a common ancestor [155]. The study 
of ancestral enzymes has suggested that these presented a high thermostability, 
due to the Precambrian era that was thermophilic, in addition to the fact that most 
microorganisms and other organisms adapted to these environments with high 
temperatures. The ancestral protein alignments with the current ones show evidence 
of a slow evolution in structure, but not in amino acids [156]. Therefore, enzymes 
are the product of years of evolution, where they have undergone changes to obtain a 
specific function, as well as greater affinity with the substrate and/or act on multi-
substrates. Therefore, the genetic variability has generated homologous genes (they 
descend from a common ancestor and are called orthologs) that encode adapted 
proteins to perform their catalysis in extreme conditions. However, there are also 
paralogous genes, which have diverged, to encode proteins with different activi-
ties [157], many times a particular characteristic is preserved, such as the binding 
of a molecule or reaction mechanism, but they specialize in carrying out the same 
reaction but on different substrates, different regulation mechanisms, as well as cell 
localization. On the other hand, orthologous proteins tend to have the same function 
and their sequences have a high conservation [155].

To analyze these changes in the sequences, bioinformatics programs use 
algorithms and mathematical models, based on empirical matrices of amino acid 
substitution, as well as those that incorporate structural properties of the native 
state, such as secondary structure and accessibility [158]. Protein phylogeny 
studies are currently necessary to know protein-protein interactions in biological 
systems. Molecular or structural analyzes on proteins will require more informa-
tion to respond if a protein is present in one or several species, as well as to predict 
the common ancestor and evolution times [159]. There are different methods to 
estimate the genetic distance of proteins, among the most used are the minimum 
distance, which predicts the phylogenetic relationship minimizing the total distance 
of the pairs of sequences adjacent nodes tree. While those of maximum parsimony 
and maximum likelihood, use the multiple sequence alignment, however, the 
maximum parsimony maximum builds a tree minimizing the total evolutionary 
changes between adjacent proteins and the maximum likelihood tries to minimize 
the probability of making such changes. The bioinformatics tools that use these 
algorithms are: TOPAL, Hennig86 and PAML, the computational packages that 
allow to occupy any of these are PHYLIP and PAUP, as well as MOLPHY, PASSML, 
PUZZLE, TAAR [160].
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8. Protein modeling

One of the challenges of protein engineering and biology is to improve indus-
trial processes, to achieve this it is necessary to determine the tertiary structure of 
proteins from the amino acid sequence, in order to design new proteins and even 
new medicines. Many of the protein structures that we know today have been 
obtained through experimentation by X-ray crystallography, NMR spectroscopy 
or cryo-EM, however, the large amount of proteins, makes these processes require 
more time and increase costs [161]. Modeling through bioinformatics programs 
has managed to predict the atomic structure of several proteins from their amino 
acid sequence, by comparison with known protein structures, commonly called 
templates, although these do not present an accuracy with traditional techniques, 
the processes are faster and more economical in addition to providing low resolu-
tion data during sequence comparison [162, 163]. If the protein studied presents a 
homolog of known structure, the analysis is easier and the generated model is of 
higher resolution, but if the homologs do not exist or are not identified, the model-
ing is constructed from scratch [164]. De novo modeling is based on the assembly of 
proteins using short peptide fragments, originating from known proteins based on 
similarity, although advances have been made using this process, it has only worked 
on proteins that contain less than 100 amino acids, on large proteins size is difficult 
to analyze due to lack of information, as well as the type of software used [161, 165].

The 3D protein structures provide data at the molecular level, functions and 
properties, among which are the study of the catalytic mechanism, design and 
improvement of ligands, union of macromolecules with proteins, functional 
relationships through structural similarity and identification of conserved residues 
[55]. The interest in finding new protein models is generating a large amount of 
data, which is being stored in different databases, including Protein Data Bank, 
where the coordinates of the experimentally obtained atoms are stored; until 
2014 this base contained more than 80 million sequences and more than 100,000 
experimentally obtained 3D structures [166, 167]. These data have allowed the 
classification of proteins in different hierarchical levels as family, superfamily and 
fold in relation to their structure and evolution. All those that are grouped into a 
family are evolutionarily related to high sequence similarity. It is suggested that 
the different families that maintain a structure and function, present a common 
ancestor and are grouped into superfamilies and the difference between these is 
due to the folds or secondary structure that they possess [160]. In the last decade, 
the predictions by computational models have revealed the structure and function 
of many proteins, but the advances have been in some cases slow and expensive, 
due to the programming methods used and the precision of these during modeling. 
Currently working on automated bioinformatics servers that will generate models 
with a high percentage of accuracy [168, 169]. One of the most used servers world-
wide is SWIIS-MODEL, which was the first to model proteins through homology, 
and in recent years has been automated allowing complex modeling, as well as the 
introduction of the modeling engines ProMod3 and QMEAN [167, 170, 171].  
Most modeling algorithms use the following steps: (1) Identification of related 
structures, (2) template choice, (3) target sequence alignment with templates, 
(4) molding construction, (5) model evaluation. However, one of the limitations 
during homology protein modeling is the choice of model proteins or templates as 
well as alignments against the problem sequences [172, 173]. When the similarity 
of the sequences between the problem protein and that of the databases is low, the 
relationship and alignment can be improved if structural information is included 
during the analysis [166]. Advances in biocomputing have allowed the generation 
of tools for modeling proteins that are more reliable and easier to use, reducing 
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time and cost in the analysis. However, it is necessary to carry out experimentation 
to confirm that the prediction is correct, in addition to improving the efficiency 
of the techniques and with more known protein sequences and stored in the data-
bases, therefore the different bioinformatics tools will play an important role in the 
postgenomic era [160].

9. Conclusions

Bioinformatics has evolved with daily work, which has allowed us to know how 
the biological molecules of a cell interact for their proper functioning, in addition 
to predicting various biological phenomena. In the last decade, the omic sciences 
have generated a great amount of data increasing the knowledge of the biological 
functions so that in the future they are able to predict diseases or formulate drugs 
with greater efficiency, however it is still necessary, to have a higher percentage of 
sequenced genes of the different organisms, as well as protein sequences, that allow 
enriching the databases, and with this more precise mathematical models are gener-
ated, which will benefit the computer programs so that they are more efficient, 
reliable, easy to use, reducing time and cost in the analyzes. This discipline becomes 
an essential part of biological studies every day, so its expansion and growth will be 
infinite, due to the evolutionary changes that are taking place in the cells caused by 
the different environmental phenomena.
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