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Chapter

Evaluation of Trace Elemental
Levels as Pollution Indicators in an
Abandoned Gold Mine Dump in
Ekurhuleni Area, South Africa
Godwin Okereafor, Mamookho Makhatha,

Lukhanyo Mekuto and Vuyo Mavumengwana

Abstract

In the Blesbokspruit area of Ekuhurleni, South Africa, previous gold mining
activities resulted in many tailings dump sites. 20 representative soil samples were
used in describing the distribution of metals. The soils were very strongly acidic
ranging from 3.86 to 4.34 with a low cation exchange capacity (CEC). Based on
X-ray fluorescence (XRF) analysis, elemental composition of the soils revealed
average values of major elements such as Na2O (0.18%), MgO (0.63%), Al2O3
(6.51%), SiO2 (81.83%), P2O5 (0.04%), SO3 (3.40%), K2O (1.98%), CaO (0.45%),
TiO2 (0.51%), Cr2O3 (0.17%), MnO (0.04%), Fe2O3 (3.59%), NiO (0.04%),
As2O3 (0.02%), with Rb2O and SrO falling below 0.01%. Trace metals (TM)
contamination levels in the soils were evaluated using various pollution indices
which revealed that over 60% of the soils were between the high degree and the
ultra-high degree of contamination classes. The concentration of various trace
metals varies from 860.3–862.6 mg/kg for Cr; 324.9–328.4 mg/kg for Al; 200.9–
203.4 mg/kg for As; 130.1–136.2 mg/kg for Fe; 121.9–125.8 mg/kg for Pb; 27.3–30.2
mg/kg for Co; 23.8–26.8 mg/kg for Ni; 7.2–9.2 mg/kg for Ti; 7.1–9.2 mg/kg for Cd;
4.0–5.6 mg/kg for Zn and 0.1–0.6 mg/kg for Cu.

Keywords: mine tailings, trace metal, pollution, contamination factor,
geoaccumulation index

1. Introduction

South Africa like other developing countries is faced with the challenges of
environmental degradation via the continuous release into the environment of trace
element-containing chemicals through urbanization, agricultural and mining activ-
ities, as well as industrialization. Trace metals (TM) are naturally occurring ele-
ments that have a high atomic weight and a density at least 5 times greater than that
of water, and some of the commonly found ones particularly at contaminated sites
include Arsenic (As), Cadmium (Cd), Chromium (Cr), Copper (Cu), Lead (Pb),
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Mercury (Hg), Nickel (Ni) and Zinc (Zn) [1, 2]. Attempts towards the assessment,
mechanism and the characteristics of trace metal pollution in surrounding areas of
mines has been and continue being a theme of various scientific gatherings.

Globally, the extraction and distribution of minerals from ore deposits has been
one of the actions that contribute to environmental degradation due to industriali-
zation. The extraction and beneficiation processes often result in the release of
tailings that end up in natural percolations within the earth crust, thus paving a way
for various kinds of risk elements entering the ecosystem. Such practices result in
serious environmental complications due to the elevated concentrations and accu-
mulation of trace metals which poses risk for human health [3–7].

The mining and processing of gold is associated with certain elements such as
Copper (Cu), Antimony (Sb), Nickel (Ni), Selenium (Se), Mercury (Hg), Thallium
(Tl), Titanium (Ti), Zinc (Zn), Silver (Ag), Cobalt (Co), Lead (Pb) and Uranium
(U). Most of these metals are somewhat released into the environment via trophic
links ranging from agricultural soils to plants, animals and humans [8–10].

Pollutants from various anthropogenic activities ranging frommine effluents such
as wastewaters, tailings, runoff from agricultural pesticides and atmospheric deposi-
tion often contaminate the surrounding soils and water bodies thus posing threat to
the ecosystem and humans. This occurs via direct ingestion or contact with contam-
inated soil, the food chain (soil–plant-human or soil–plant–animal-human), drinking
of contaminated ground water, reduction in food quality (safety and marketability)
via phytotoxicity, reduction in land usability for agricultural production causing food
insecurity, and land tenure problems [11, 12]. In humans, several health challenges
such as abortion, cancer, kidney damage and sometimes death, are some of the
consequences of prolonged exposure to extreme concentrations of trace metals [13].

The importance of soil cannot be over emphasized as it is characterized as a
complex and dynamic system that is made up of sediments that are different in
relation to their physical, chemical, mineralogical and biological constituents. Soil is
an essential resource for natural living conditions of plants, animals and humans.
The role of soil as a collector filter of both organic and inorganic residues helps in
protecting groundwater and in the sequestration of toxic materials [14]. The accu-
mulation of excess metals and metalloids in soils over an extended period exposes
humans and other animals to toxicity [15]. Assessing the spatial distribution of trace
metals is soil is crucial to obtaining basic information about areas of concerns and to
prioritize site mitigation strategies [16]. However, the quantification of element
concentrations in soil as a single parameter is not enough in evaluating the extent of
contamination due to differentiation between natural background levels and
anthropogenic enrichment [3]. Indexes including geoaccumulation index (Igeo) and
contamination factor (CF) which are known to provide a better picture of the status
of elemental contamination compared to the background concentration were used
as pointers in identifying and quantifying the level of elemental pollution as well as
the intensity of anthropogenic contaminants accumulated in the soil.

There are enormous impacts of mine tailings disposal sites with over 500,000
abandoned hard rock mines located in the United States, while Mexico alone is
affected by 27.1 million hectares of mining activity [17–19]. Gold mine waste was
reported in 2001 by South Africa’s Department of Water Affairs and Forestry as the
largest single source of waste constituting over 47% of mineral wastes generated in
South Africa [20]. Previous studies indicate that there are close to 300 unlined and not
vegetated tailings dumps covering over 400 km2 surface area within theWitwaters-
rand Basin of the Republic of South Africa. With tailings dumps being a major source
of contaminants, theWitwatersrand Basin’s massive tailing dumps are a possible,
environmental pollution threat [21]. Studies into the deposits in the mine regions of
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the Gauteng province of South Africa [17], revealed the deposits to be of great health
concern; containing enormous amounts of toxic metals, such as U, As, Ra, Ni, Zn, etc.

Hence, this present study was aimed at determining the contamination level of
identified trace metals in an abandoned mine tailing dump over time. In addition,
findings from this study will assist the various stakeholders in resource manage-
ment and policy implementation.

2. Materials and methods

2.1 Description of the study area

South Africa lies on the southernmost part of the African continent, and is
known to have renowned varied topography, great natural beauty, and cultural
diversity. It is a medium-sized country, with a total land area of 1,219,090 square
kilometers. Ekurhuleni falls within the East Rand region and is characterized by
rainfall known to be typical to the Highveld summer rainfall, which occurs from
October to April. The average annual rainfall varies from 715 to 735 mm an indica-
tion that the study area has a distinct moisture deficit. Frost does occur frequently
from mid-April to September, which makes temperatures below freezing common
during winter times. This area is home to mild summers with temperatures seldom
above 30°C. During spring and winter, northerly and north-westerly winds occur
and during summer north-easterly to north–north-easterly winds occur [22]. There
are many pans across the Ekurhuleni area. These pans cover a total area of 3559
hectares within the Ekurhuleni Metropolitan Municipality area and are mostly
seasonal. There are also a few lakes created by mines, which are used for recrea-
tional parks. Germiston Lake, Benoni Lake and Boksburg Lake are the three main
lakes used for recreational purposes within the Ekurhuleni Metropolitan Munici-
pality area, but which fall outside the East Rand Basin area. The tailings dump has
some informal settlements within its proximity with subsistence farming among the
dwellers as shown in Figure 1. The specific description indicating coordinates of the

Figure 1.
Location of the sampling site.
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sampling site located along Outeniqua Road & Cloverfield Weg in Springs,
Ekurhuleni are illustrated in Table 1.

2.2 Sampling (material) description

In a bid to assess the level of trace metal contamination in the mine tailings,
about 2 kilograms of 20 representative tailing samples were obtained from the
dump. Preceding the removal of top tailing samples (2 cm) using an auger, samples
were taken at a depth of 10 cm for every 50 m horizontal interval for a wider
coverage. The collected soil samples (tailings) were kept cool in an icebox (<4°C)
and transported to the laboratory for further analyses in sterile plastic bags.

3. Analysis

3.1 Experimental analysis

20 representative tailing samples of about 5 g each were oven dried at 100°C for
24 hours and passed through a 2 mm sieve. Aliquots of approximately 2 g of the
various tailing samples were weighed into a Teflon crucible and moistened with
100 mL of 1 M HCl acid for the determination of the HCl-soluble fraction of heavy
metals. The mixtures were covered and placed on a shaker for 12 hours at 130 rpm.

Station no. Latitude (S) Longitude (E)

1 260 10
0

280 27
0

2 260 15
0

280 35
0

3 260 04
0

280 40
0

4 260 17
0

280 44
0

5 260 21
0

280 50
0

6 260 30
0

290 10
0

7 260 00
0

290 15
0

8 260 27
0

290 20
0

9 260 09
0

290 35
0

10 260 38
0

290 42
0

11 260 43
0

290 47
0

12 260 34
0

290 50
0

13 260 13
0

290 53
0

14 260 19
0

300 10
0

15 260 48
0

300 15
0

16 260 36
0

300 25
0

17 260 40
0

300 29
0

18 260 14
0

300 35
0

19 260 23
0

300 40
0

20 260 54
0

300 48
0

Table 1.
Location of the Blesbokspruit gold mine tailings sediment samples.
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The solutions were filtered through a Whatman filter paper, and the filtrates were
stored in sterile bottles prior to analysis of minerals using inductively coupled
plasma-optical emission spectrometry (ICP-OES).

10 g each of the representative tailing samples were pelletized using a mold at
very high pressure and then placed in the sample compartment of the X-ray fluo-
rescence spectrometer (XRF; Rigaku ZSX PrismusII). This was done to analyze the
major and trace element oxides of the tailing samples.

Physicochemical properties such as pH and EC (electrical conductivity) of the
soil samples (tailings) were measured in a soil-to-water suspension (1,2.5, w/w) and
a 1:5 tailings-to-water suspension using a Crison multimeter (model MM 41)
respectively [23]. Loss on Ignition (LOI) analysis was used to determine the organic
matter content (% OM) of the various tailing’s samples [24]. The grain size distri-
bution of tailing samples was determined using the hydrometer method [25].

3.2 Quality assurance and quality control

Apparatus and glassware used were acid-washed with 5% nitric acid for preci-
sion analysis while reagents were of analytical standard. The trace metals were
determined using ICP-OES (Model - GBC Quantima Sequential) operated under
specific conditions of 1300 W RF power, 15 L min�1 plasma flow, 2.0 L min�1

auxiliary flow, 0.8 L min�1 nebulizer flow, 1.5 mL min�1 sample uptake rate.
Multiple levels of calibration standard solutions prepared from a Certipur ICP
multi-element standard (Merck KGaA) was used in the calibration of the ICP-OES.
Metal determination was done using Axial view, while 2-point background correc-
tion and 3 replicates were employed in the measurement of analytical signal. The
emission intensities were determined for the most sensitive lines free of spectral
interference. By diluting the stock multi-elemental standard solution (1000 mg L�1)
in 0.5% (v/v) nitric acid, the calibration standards were prepared. The calibration
curves for all the studied elements were in the range of 0.01 to 1.0 mg L�1.

3.3 Data analyses

The history and degree of trace metal pollution in an environment can be
ascertained from the surrounding sediments by comparing the pollutant metal
concentration with an unpolluted reference material. The average shale concentra-
tion as an International standard reference for unpolluted sediment was utilized
[26]. This study applied pollution indices such as (i) metal contamination factor,
(ii) contamination degree, (iii) index of geoaccumulation, and (iv) pollution load
index to assess heavy metal contamination.

3.3.1 Assessment according to contamination factor

By calculating the ratio of the concentration of a specific trace metal in the study
area and the concentration of the background concentration of the corresponding
metal, the contamination factor was determined. Table 2 shows the various termi-
nologies in describing contamination factor class and level [27]. CF is an effective
tool for monitoring pollution over a period and for the respective metals was
calculated using the equation as prescribed by [28].

CF ¼
Mean metal concentration at contaminated site Cmð Þð Þ

Level of pre� industrial concentration of individual metal Cbackgroundð Þð Þ

(1)

5

Evaluation of Trace Elemental Levels as Pollution Indicators in an Abandoned Gold Mine Dump…
DOI: http://dx.doi.org/10.5772/intechopen.89582



3.3.2 Assessment according to contamination degree

Contamination degree (CD) refers to the sum of all the contamination factor
(CF) values of a specific sampling site. It is a diagnostic tool aimed at providing a
measure of the degree of overall contamination in surface layers in a sampling site
or core. In this study, CD was assessed using Eq. (2).

CD ¼
Xn

i¼0

cf (2)

A list of terminologies as prescribed by [29] used in describing the contamina-
tion degree of the site under investigation is summarized in Table 3.

3.3.3 Assessment according to geoaccumulation index

To quantify the level of heavy metal contamination associated with the study
site, the geoaccumulation index (I-geo) was adopted. The Igeo is an important
method used for the interpretation of the quality of sediments in the sampling site.
It is used to assess impacts due to anthropogenic activities and was determined
using Eq. (3) as prescribed by [30].

Igeo ¼ log 2

Cn

1:5Bn
(3)

where Cn is the measure of the metal concentration in the examined metal n in
the sediment, Bn is the background concentration of the element (average shale
concentration) or reference value of the metal n, and 1.5 is the correction factor due
to the lithogenic effect that could result in variations in the background values for a
given metal in the environment. There are seven grades (0–6) ranging from
unpolluted to highly polluted in the geoaccumulation index scale as described by
[30] (Table 4).

CF Description

CF < 1 Low contamination factor

1 ≤ CF < 3 Moderate contamination factor

3 ≤ CF < 6 Considerate contamination factor

CF ≥ 6 Very high contamination factor

Table 2.
Terminologies used to describe contamination factor [27].

CD Description

CD < 6 Low contamination degree

6 ≤ CD < 12 Moderate contamination degree

12 ≤ CD < 24 Considerate contamination degree

CD ≥ 24 Very high contamination degree

Table 3.
Terminologies used to describe contamination degree for soil [29].
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3.3.4 Assessment according to pollution load index

Pollution load index, which is a useful tool in heavy metal pollution evaluation,
refers to the number of times by which each heavy metal concentrations in the
sediments (tailings) exceeded the background concentration in the soil, and it pro-
vides a summary of the overall level of heavy metal toxicity in a sample. The world
average concentrations of metals using shale was used as background for identified
heavy metals in this study [26]. The PLI can provide an estimate of the various
metal contamination status and precautionary steps to be taking [31]. Using Eq. (4)
as developed by [26], the PLI of the study site was calculated by obtaining the n-
root from the n-CFs that was obtained for all the metals.

PLI ¼ CF1� CF2� CF3� … � CFnð Þ1=n (4)

where CF is the contamination factor, CFn is the CF value of metal n, and n is
the number of metals.

Interpretation of PLI values are categorized into two levels; polluted (PLI > 1)
and unpolluted (PLI < 1) whereas PLI = 1 indicate trace metal loads close to the
background level [32].

3.3.5 Assessment according to the United States environmental protection agency

The potential contamination of the tailing’s sediments was evaluated using the
proposed sediment quality guidelines by USEPA [19] Table 5. Illustrated the
various criteria.

Igeo Value Class Contamination Level

Igeo ≤ 0 0 Uncontaminated

0 < Igeo < 1 1 Uncontaminated/moderately contaminated

1 < Igeo < 2 2 Moderately contaminated

2 < Igeo < 3 3 Moderately/strongly contaminated

3 < Igeo < 4 4 Strongly contaminated

4 < Igeo < 5 5 Strongly/extremely contaminated

5 < Igeo 6 Extremely contaminated

Table 4.
Classification for the geoaccumulation index (Igeo) [30].

Metal Not polluted Moderately polluted Heavily polluted Present study

Cd — — >6 7.1

Cr <25 25–75 >75 860.3

Cu <25 25–50 >50 0.1

Pb <40 40–60 >60 121.9

Zn <90 90–200 >200 3.9

Table 5.
USEPA guidelines for sediments (mg/kg dry weights) in comparison with gold mine tailings sediments.

7

Evaluation of Trace Elemental Levels as Pollution Indicators in an Abandoned Gold Mine Dump…
DOI: http://dx.doi.org/10.5772/intechopen.89582



4. Results and discussion

4.1 Soil physical properties

Textural properties obtained from sieve analysis of the gold mine tailings sedi-
ments using classification as prescribed by [25] are presented in Table 6. These
results reveal that fine sand (0.150–0.075 mm) and clay (0.075–0.053 mm) were
the principal fractions of all sediment samples, with an average composition of
66.03% for fine sand, 23.08% clay and 10.89% silt respectively. With the larger
portion of the sediments being fine sand, there is a likelihood for nutrients accu-
mulation is high due to the higher surface-to-volume ratios [33].

Geochemical properties of the sediments such as the pH, EC and carbonate
content (see Table 7) helps in ascertaining vital information to comprehend the
soils potential to withhold heavy metals [34]. The results obtained for the sediment
pH measurements, showed that the study area is very strongly acidic ranging from
3.86 to 4.34. The low pH values in the study area were related with heterogeneous
deposits of sulfidic residues from the mine surroundings, which resulted in low pH
values that is attributed to microbial sulfide oxidation and the resultant formation

Sample no. Sieve size (ASTM)

% Materials; Retains (gms)

No. 100 No. 140 No. 200 No. 270 PAN TOTAL % Sand % Silt % Clay

1 5.68 45.51 15.84 10.25 22.72 100 67.03 10.25 22.72

2 5.75 46.82 13.79 10.58 23.41 100 66.01 10.58 23.41

3 5.40 46.52 13.61 10.62 23.85 100 65.53 10.62 23.85

4 5.37 45.84 14.71 11.25 22.83 100 65.92 11.25 22.83

5 5.42 45.93 13.93 11.81 22.91 100 65.28 11.81 22.91

6 5.39 47.88 13.01 11.20 22.52 100 66.28 11.20 22.52

7 5.42 48.23 11.87 10.78 23.70 100 65.52 10.78 23.70

8 5.88 46.38 13.42 10.44 23.88 100 65.68 10.44 23.88

9 5.94 46.82 13.00 10.32 23.92 100 65.76 10.32 23.92

10 5.66 44.46 16.15 10.58 23.15 100 66.27 10.58 23.15

11 5.86 47.20 14.22 9.88 22.84 100 67.28 9.88 22.84

12 5.42 45.30 15.83 11.32 22.13 100 66.55 11.32 22.13

13 5.38 45.92 13.68 11.84 23.18 100 64.98 11.84 23.18

14 5.62 46.34 13.74 10.68 23.62 100 65.70 10.68 23.62

15 5.48 46.82 13.81 10.31 23.58 100 66.11 10.31 23.58

16 5.23 46.92 14.81 10.22 22.82 100 66.96 10.22 22.82

17 5.98 48.22 11.62 11.69 22.49 100 65.82 11.69 22.49

18 5.36 48.80 11.78 11.38 22.68 100 65.94 11.38 22.68

19 5.92 48.24 11.34 11.75 22.75 100 65.50 11.75 22.75

20 5.68 47.36 13.37 10.94 22.65 100 66.41 10.94 22.65

Table 6.
Sieve analysis of the gold mine tailings sediment samples.
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of sulfuric acid [35]. Nutrient uptake by plants may be inhibited by the level of
acidity as most plant nutrients are optimally available to plants within 6.5 to 7.5 pH
range which also support plant root growth [36]. The low CEC values which corre-
lates with the high proportion of sand fragment is an indication that the sediments
may likely not have reliable soil sorption capacity [37]. LOI of studied soils were in
the range of (5.0–5.4%)-dry weight, which could be, attributed to growing plants
within the tailing’s sediments.

4.2 Metal content

The summary of the determined heavy metal concentrations within the
sediments of the study area by using ICP-OES are presented in Table 8. The
concentration of various heavy metal varies from 860.3–862.6 mg/kg for Cr;
324.9–328.4 mg/kg for Al; 200.9–203.4 mg/kg for As; 130.1–136.2 mg/kg for Fe;
121.9–125.8 mg/kg for Pb; 27.3–30.2 mg/kg for Co; 23.8–26.8 mg/kg for Ni;
7.2–9.2 mg/kg for Ti; 7.1–9.2 mg/kg for Cd; 4.0–5.6 mg/kg for Zn and 0.1–0.6 mg/kg
for Cu. Chromium (Cr) was identified as the most abundant heavy metal in the
sediment samples. Mean concentration of the metals were Cr: 861.5 mg/kg; Al:
326.8 mg/kg; As: 202.2 mg/kg; Fe: 134.3 mg/kg; Pb: 123.7 mg/kg; Co: 28.8 mg/kg; Ni:
25.4 mg/kg; Ti: 8.5 mg/kg; Cd: 8.3 mg/kg; Zn: 4.5 mg/kg and Cu: 0.2 mg/kg dry
weights. The average order of metal concentration is Cr > Al > As > Fe > Pb > Co >

Station no. pH C.E (mS/cm) CEC (meq/100 g) LOI (%)

1 3.86 1.30 8.5 5.1

2 4.34 1.50 8.8 5.4

3 4.28 1.80 9.0 5.0

4 4.30 1.90 8.3 5.1

5 3.92 1.40 9.1 5.3

6 4.34 1.60 8.8 5.1

7 3.89 1.40 8.5 5.4

8 3.87 1.40 9.1 5.1

9 3.86 1.40 9.0 5.2

10 4.27 1.80 8.8 5.2

11 4.28 1.80 9.4 5.4

12 4.28 1.80 8.5 5.1

13 3.88 1.40 9.3 5.2

14 3.86 1.40 8.7 5.2

15 4.30 1.60 8.3 5.4

16 3.87 1.40 9.1 5.1

17 3.86 1.40 9.0 5.1

18 4.31 1.50 8.5 5.2

19 4.27 1.90 8.8 5.1

20 4.28 1.80 9.3 5.2

Table 7.
Geochemical properties of gold mine tailings sediments.
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Ni > Ti > Cd > Zn > Cu. The mineral composition of the sediments and mining
activities that took place within this region may be attributed to the high element
concentrations in the soil samples.

In comparison to the interim sediment quality guidelines (ISQG) proposed by
the Canadian Council of Ministers of the Environment [38], the elemental pollution
status of the tailings (soil) were assessed Table 8. The heavy metals from the
studied tailings sediments except for Zn and Cu all exceeded the ISQG. This implies
that the sediments are toxic and could result in the introduction of sediment con-
taminants into the aquatic food web through predation by organisms at higher
trophic levels.

In trace amounts, Arsenic is one of the priority toxic metals due to its several
deteriorating effects to both plants and animals. The level of identified arsenic in
the sediment is worrisome. As a non-essential element, Arsenic is not required for
the growth of living organisms, though recent discovery reports a bacterium that

Station no. Cr Al As Fe Pb Co Ni Ti Cd Zn Cu

1 862.6 327.4 201.7 134.1 125.6 28.4 26.1 9.0 9.2 4.7 0.6

2 860.4 327.9 203.4 136.2 122.9 30.2 25.3 8.3 8.8 4.0 0.1

3 861.3 328.0 202.9 133.7 123.1 29.5 26.4 9.2 8.1 4.1 0.2

4 862.4 328.4 202.4 130.1 124.7 28.8 24.7 8.1 7.9 3.9 0.2

5 862.1 326.5 202.1 132.5 121.9 29.6 23.8 8.7 7.2 5.6 0.3

6 861.5 325.7 201.7 134.9 122.1 29.3 25.1 7.9 8.3 4.3 0.1

7 860.6 324.9 203.0 135.3 123.5 28.7 25.7 8.5 7.5 5.2 0.1

8 861.1 328.1 201.9 135.1 123.2 29.2 26.3 9.0 7.9 4.9 0.3

9 860.7 327.9 202.6 135.9 124.1 27.5 26.8 9.2 9.0 4.2 0.1

10 860.3 326.3 202.1 132.7 124.8 29.1 25.2 8.1 8.5 5.1 0.1

11 860.6 325.4 201.7 136.0 122.3 27.3 25.7 8.3 7.1 5.3 0.1

12 861.0 326.7 200.9 131.8 122.5 27.9 23.9 8.7 8.7 5.0 0.2

13 862.1 326.1 201.2 135.9 124.9 28.7 24.3 7.6 8.3 5.5 0.6

14 860.5 327.9 201.4 134.1 123.1 28.3 26.0 9.1 9.1 4.5 0.1

15 862.5 328.2 203.0 133.7 122.7 28.0 25.8 9.2 8.3 5.0 0.2

16 862.3 326.3 202.6 134.9 125.8 29.1 24.6 8.3 8.5 5.3 0.3

17 862.4 325.9 201.5 133.5 123.7 29.5 24.2 8.0 8.1 4.1 0.1

18 861.9 327.4 202.3 134.2 125.1 29.7 26.5 7.2 8.0 4.8 0.4

19 861.6 326.1 201.9 134.9 124.3 28.1 25.7 8.4 8.5 4.4 0.5

20 862.0 325.6 203.1 135.7 125.3 28.4 26.3 8.7 8.8 4.6 0.1

Mean 861.5 326.8 202.2 134.3 123.7 28.8 25.4 8.5 8.3 4.5 0.2

Max 862.6 328.4 203.4 136.2 125.8 30.2 26.8 9.2 9.2 5.6 0.6

Min 860.3 324.9 200.9 130.1 121.9 27.3 23.8 7.2 7.1 3.9 0.1

Bn

ISQG

90

52.3

88,000

NA

13

7.24

47,200

NA

20

30.2

19

NA

50

NA

4600

NA

0.3

0.7

95

124.0

45

18.7

Table 8.
Heavy metals concentration (mg/kg dry weight) in gold mine tailings sediments.
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replaces phosphorus with As for a number of cellular functions [39]. Plants often
accumulate As by root uptake from soil or by absorption of airborne As deposited
on their leaves [40]. Arsenate, a dominant specie of Arsenic in soils, based on its
similarity to phosphate usually compete for the same uptake carriers in the root
plasmalemma of most plants. In so doing interrupts with several metabolic pro-
cesses that end up inhibiting plant growth and development through arsenic-
induced phytotoxicity [41, 42]. Some of the toxicity symptoms may include inhibi-
tion of seed germination, decrease in plant height, depressed tillering, reduction in
root growth and some necrosis, decrease in shoot growth, lower fruit and grain
yield, reductions in chlorophyll and protein contents, and in photosynthetic capac-
ity and even death [41–46]. Due to migration and expansion of residential areas into
former mining territories, the danger of human exposure to soil As has risen in the
last two decades which have affected adversely the health of many [47]. Continued
exposure to As results in several clinical manifestations such as melanosis
(hyperpigmentation), keratosis, and leukomelanosis (hypopigmentation) of which
cutaneous lesions are the highest reported [48, 49]. As is also a well-known carcin-
ogen, causing skin, lung, bladder, liver, and kidney cancers [50, 51].

The average concentration of Copper (Cu) being 0.2 mg/kg was within the
maximum acceptable concentration of 6.6 mg/kg for agricultural soil and safe limit
of the Republic of South Africa [52].

As an important micronutrient, Cu is required for the growth of both plants and
animals. In humans, it aids in the production of blood hemoglobin while plants
utilize it in seed production, disease resistance, and regulation of water. In high
levels, Cu could cause anemia, liver and kidney damage, as well as stomach and
intestinal irritation [53]. Cu typically occurs in drinking water from Cu pipes, as
well as from additives intended to control algal growth. The interaction of Cu with
the environment is complex, however different studies revealed that most Cu
introduced into the environment rapidly becomes, stable and results in a form
which does not pose a danger to the environment [54, 55].

Zinc is an important metal due to its enzymatic and regulatory functions in
biological systems. Being a readily mobile element, Zinc (Zn) when in high doses
exhibit toxic and carcinogenic effects that could result in serious hematological and
neurologic complications, liver and kidney disorders, hypertension, gastrointestinal
misery, loose bowels, pancreatic harm and a host of other ailments in both humans
and animals [56]. On the earth crust, Zinc is found in an average concentration of
80 mg/kg in association with ores of other metals such as Pb, Cu and Cd [57].

Chromium (Cr) has an average concentration of 100 mg/kg in the earth crust
and the only known ore of commercial value is chromite (FeO.Cr2O4). Contamina-
tion by Cr could result in toxicity in plants depending on its state of valency since Cr
(VI) due to its being highly mobile is toxic, while Cr (III) as less mobile is less toxic.
The subsequent uptake, translocation, and accumulation of Cr by plants is depen-
dent on its speciation. Cr in its trivalent (III) and hexavalent (VI) forms are known
to be of biological importance. Generally, Cr poses the greatest threat to humans,
animals and plants. Decreased seed germination, reduction of growth, decreased
yield, inhibition of enzymatic activities, impairment of photosynthesis, nutrient
and oxidative imbalances, and mutagenesis are some of the symptoms of Cr toxicity
in plants [58]. In a previous study by López-Luna et al. [59], the toxicity of Cr (VI),
Cr (III), and Cr tannery sludge were compared with respect to Cr mobility in soil
and toxicity in wheat, oat, and sorghum plants and findings were that Cr(VI) was
more mobile in soil and caused higher toxicity on those plant seedlings, while
tannery sludge was the least toxic [60]. In humans, prolonged exposure results in
kidney and liver disorders [61].
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Lead (Pb) is the largely known immobile nonessential element among the heavy
metals with most of its compounds being noxious in nature. Pb on the earth crust
has an average concentration of 0.1 mg/kg. There is a gradual phase out of Pb from
the materials regularly used by humans due to it being a metal toxicant. Mostly via
food chain, Pb penetrates human or animal metabolism. The observed Pb content
within the samples was very high and have been reported globally to be very
harmful to humans and other animals as a long-term exposure could result in the
bioaccumulation and biomagnification that end up in serious neurological health
challenges. In plants, concentrations above 5 mg/kg of Pb causes severe growth
retardation, discoloration, and morphological deformities. Pb accumulates in the
body organs (i.e., brain), which may lead to poisoning (plumbism) or even death.
The presence of lead often affects the gastrointestinal tracts, kidneys, and central
nervous system. Infants exposed to lead are likely to suffer impaired development,
lower IQ, shortened attention span, hyperactivity, and mental deterioration [62].
Adults usually suffer decreased reaction time, loss of memory, nausea, insomnia,
anorexia, and weakness of the joints when exposed to Pb [63]. Lead performs no
known essential function in the human body, it can merely do harm after uptake
from food, air, or water.

Industrial waste materials, lime, fertilizer and sewage sludge constitute the
major sources of nickel into soils [64]. Till date, nickel (Ni) remains a heavy
metal of environmental concern as a result of decreased soil pH, due to reduced
use of soil liming in agricultural soils and mobilization arising from increased
acid rain in industrialized areas [65]. With decreasing pH, Ni exhibits increased
solubility and mobility, thus, soil pH is the major factor controlling its solubility,
mobility and sorption, while clay content, iron- manganese mineral and soil
organic matter are of secondary importance [66]. Nickel (Ni) concentrations
were observed to be high which could result in toxic effects to both plants and
animals due to its ability to replace other metal ions in enzymes, proteins or
bind to cellular compounds [65]. Nickel (Ni) is reported to interact with at least
13 essential elements namely calcium, chromium, cobalt, copper, iodine, iron,
magnesium, manganese, molybdenum, phosphorus, potassium, sodium and
zinc [67]. As a result, prolong exposure of humans to oxides and sulfides of
nickel is linked with possible risk to lung and nasal tumors, skin allergies, nasal
sinusitis, rhinitis and dermatitis [68]. Symptoms of nickel toxicity in plants
besides inhibited growth include chlorosis, stunted root growth and brown
interveinal necrosis [69].

Cadmium (Cd) is being discussed on a global platform as one of the most eco-
toxic metals with a tendency of adversely affecting biological activities, plant
metabolism, soil health and human health. The usage of Cadmium (Cd) is widely
seen in Ni/Cd batteries, as rechargeable or secondary power sources exhibiting high
output, long life, low maintenance, and high tolerance to physical and electrical
stress. Observed levels of Cadmium was high and of great concern because it is very
biopersistent and, once absorbed by an organism, remains resident for many years.
In humans, Cadmium is known to affect several enzymes. Previous research
revealed that renal damage that results in proteinuria is the consequence of Cd
adversely affecting enzymes responsible for reabsorption of proteins in kidney
tubules [70]. A prolong exposure to this metal even at very low concentration also
reduces the activity of delta-aminolevulinic acid synthetase, arylsulfatase, alcohol
dehydrogenase, and lipoamide dehydrogenase, which often cause anemia, cardio-
vascular disorders and hypertension whereas it enhances the activity of delta-
aminolevulinic acid dehydratase, pyruvate dehydrogenase, and pyruvate decarbox-
ylase [71].
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4.3 Pollution status

The assessment of the overall contamination of the studied area was based on the
contamination factor Table 9. The average contamination factor for single metal
from this study revealed the sediments as slightly contaminated with Ni and Zn,
moderately contaminated with Co and highly contaminated with Cr, As, Pb and Cd.
The highest average contamination factor value was that of Cd (27.63). Overall, the
degree of contamination values of the sediments from the study site indicate very
high contamination.

The average index of geoaccumulation values and contamination levels from the
various sampling points within the study area as shown on Table 10 reveals an
uncontaminated status for Co (0.01), Ni (�1.09) and Zn (�3.39) respectively.
However, Cr and Pb within the area showed a moderately contamination level with
average Igeo values being 1.85 and 1.42 respectively. The site was however moder-
ately to strongly contaminated with As (2.34) and Cd (2.91).

As indicated in Table 10, Pollution load index (PLI) ranged from 2.56–2.75, with
mean value 2.67. PLI values of the different stations are above 1 which strongly
indicate that the sediments are all polluted by heavy metals, an indication of dete-
rioration of the study site.

Station no. Contamination factor of single metal Degree of contamination

Cr As Pb Co Ni Cd Zn

1 9.58 15.52 6.28 1.49 0.52 30.67 0.05 64.11 Very high

2 9.56 15.65 6.15 1.59 0.51 29.33 0.04 62.83 Very high

3 9.57 15.61 6.16 1.55 0.53 27.00 0.04 60.46 Very high

4 9.58 15.57 6.24 1.52 0.49 26.33 0.04 59.77 Very high

5 9.58 15.55 6.10 1.56 0.48 24.00 0.06 57.33 Very high

6 9.57 15.52 6.11 1.54 0.50 27.67 0.05 60.96 Very high

7 9.56 15.62 6.18 1.51 0.51 25.00 0.05 58.43 Very high

8 9.57 15.53 6.16 1.54 0.53 26.33 0.05 59.71 Very high

9 9.56 15.58 6.21 1.45 0.54 30.00 0.04 63.38 Very high

10 9.56 15.55 6.24 1.53 0.50 28.33 0.05 61.76 Very high

11 9.56 15.52 6.12 1.44 0.51 23.67 0.06 56.88 Very high

12 9.57 15.45 6.13 1.47 0.48 29.00 0.05 62.15 Very high

13 9.58 15.48 6.25 1.51 0.49 27.67 0.06 61.04 Very high

14 9.56 15.49 6.16 1.49 0.52 30.33 0.05 63.60 Very high

15 9.58 15.62 6.14 1.47 0.52 27.67 0.05 61.05 Very high

16 9.58 15.58 6.29 1.53 0.49 28.33 0.06 61.86 Very high

17 9.58 15.50 6.19 1.55 0.48 27.00 0.04 60.34 Very high

18 9.58 15.56 6.26 1.56 0.53 26.67 0.05 60.21 Very high

19 9.57 15.53 6.22 1.48 0.51 28.33 0.05 61.69 Very high

20 9.58 15.62 6.27 1.49 0.53 29.33 0.05 62.82 Very high

Average 9.57 15.55 6.19 1.51 0.51 27.63 0.05 61.01 Very high

Table 9.
Contamination factor (CF) and degree of contamination at various sampling station at the Blesbokspruit
abandoned gold mine tailings site.
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It is evident from the present study that the abandoned gold mine tailings site is
not polluted with Zn and Cu, but heavily polluted with Cd, Cr and Pb when
evaluated by comparison with the sediment quality guideline proposed by USEPA.

5. Conclusion

The successful assessment of trace metal contamination of the abandoned gold
mine tailings at Blesbokspruit-Ekurhuleni was done using indices such as
geoaccumulation index, contamination factor, and degree of contamination and
pollution load index. The sediment was mostly dominated by fine sand and silt/clay.
Based on sediment quality guidelines proposed by the USEPA, the contamination of
the sediment by Zn and Cu was negligible while Cd, Cr and Pb were detected at
high concentrations. The evaluated pollution load index indicated that the sedi-
ments in the tailings dump are polluted while the geoaccumulation index revealed
that Cr, Pb, and As contaminated the site, thus indicating very high degrees of
contamination of the sediments at the mine dump. The high metal contaminants
could be attributed to anthropogenic activities from previous extensive gold mining
activities that took place within the area. Considering agricultural activities and
human dwellers within the surrounding areas of the mine tailings, there are high
tendencies of deleterious impacts. As a further precaution, this study strongly
supports the call for analysis of the stream and drinking water quality, including the

Station no. Cr As Pb Co Ni Cd Zn PLI Description of PLI

1 1.85 2.34 1.43 0.00 �1.05 3.02 �3.51 2.72 Polluted

2 1.85 2.34 1.41 0.06 �1.09 2.97 �3.51 2.63 Polluted

3 1.85 2.34 1.41 0.04 �1.05 2.89 �3.51 2.61 Polluted

4 1.85 2.34 1.43 0.01 �1.11 2.87 �3.51 2.56 Polluted

5 1.85 2.34 1.40 0.04 �1.14 2.77 �3.22 2.67 Polluted

6 1.85 2.34 1.40 0.03 �1.11 2.91 �3.51 2.67 Polluted

7 1.85 2.34 1.42 0.01 �1.08 2.81 �3.22 2.64 Polluted

8 1.85 2.34 1.41 0.02 �1.05 2.87 �3.51 2.68 Polluted

9 1.85 2.34 1.42 �0.04 �1.02 3.00 �3.51 2.63 Polluted

10 1.85 2.34 1.43 0.02 �1.08 2.94 �3.22 2.68 Polluted

11 1.85 2.34 1.41 �0.04 �1.08 2.76 �3.22 2.66 Polluted

12 1.85 2.33 1.41 �0.02 �1.14 2.96 �3.22 2.65 Polluted

13 1.85 2.34 1.43 0.01 �1.14 2.91 �3.22 2.73 Polluted

14 1.85 2.34 1.41 �0.01 �1.05 3.01 �3.51 2.71 Polluted

15 1.85 2.34 1.41 �0.02 �1.08 2.91 �3.22 2.67 Polluted

16 1.85 2.34 1.43 0.02 �1.11 2.94 �3.22 2.75 Polluted

17 1.85 2.34 1.42 0.04 �1.14 2.89 �3.51 2.57 Polluted

18 1.85 2.34 1.43 0.04 �1.05 2.88 �3.51 2.69 Polluted

19 1.85 2.34 1.42 �0.01 �1.08 2.94 �3.51 2.68 Polluted

20 1.85 2.34 1.43 0.00 �1.05 2.97 �3.51 2.71 Polluted

Table 10.
Geoaccumulation index (Igeo) and pollution load index (PLI) at various sampling station at the Blesbokspruit
abandoned gold mine tailings site.
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staple crops that are cultivated within the vicinity of the dump site, to ascertain the
levels of heavy metals within such crops. Stringent mitigation plans or conversion of
the tailings into value-added products should be considered.
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