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Chapter

Particle Swarm Optimization:
A Powerful Technique for Solving
Engineering Problems
Bruno Seixas Gomes de Almeida and Victor Coppo Leite

Abstract

This chapter will introduce the particle swarm optimization (PSO) algorithm
giving an overview of it. In order to formally present the mathematical formulation
of PSO algorithm, the classical version will be used, that is, the inertial version;
meanwhile, PSO variants will be summarized. Besides that, hybrid methods
representing a combination of heuristic and deterministic optimization methods are
going to be presented as well. Before the presentation of these algorithms, the
reader will be introduced to the main challenges when approaching PSO algorithm.
Two study cases of diverse nature, one regarding the PSO in its classical version and
another one regarding the hybrid version, are provided in this chapter showing how
handful and versatile it is to work with PSO. The former case is the optimization of a
mechanical structure in the nuclear fuel bundle and the last case is the optimization
of the cost function of a cogeneration system using PSO in a hybrid optimization.
Finally, a conclusion is presented.

Keywords: PSO algorithm, hybrid methods, nuclear fuel, cogeneration system

1. Introduction

Maximizing earns or minimizing losses has always been a concern in engineering
problems. For diverse fields of knowledge, the complexity of optimization problems
increases as science and technology develop. Often, examples of engineering prob-
lems that might require an optimization approach are in energy conversion and
distribution, in mechanical design, in logistics, and in the reload of nuclear reactors.

To maximize or minimize a function in order to find the optimum, there are
several approaches that one could perform. In spite of a wide range of optimization
algorithms that could be used, there is not a main one that is considered to be the
best for any case. One optimization method that is suitable for a problem might not
be so for another one; it depends on several features, for example, whether the
function is differentiable and its concavity (convex or concave). In order to solve a
problem, one must understand different optimization methods so this person is able
to select the algorithm that best fits on the features’ problem.

The particle swarm optimization (PSO) algorithm, proposed by Kennedy and
Eberhart [1], is a metaheuristic algorithm based on the concept of swarm intelli-
gence capable of solving complex mathematics problems existing in engineering
[2]. It is of great importance noting that dealing with PSO has some advantages
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when compared with other optimization algorithms, once it has fewer parameters
to adjust, and the ones that must be set are widely discussed in the literature [3].

2. Particle swarm optimization: an overview

In the early of 1990s, several studies regarding the social behavior of animal
groups were developed. These studies showed that some animals belonging to a
certain group, that is, birds and fishes, are able to share information among their
group , and such capability confers these animals a great survival advantage [4].
Inspired by these works, Kennedy and Eberhart proposed in 1995 the PSO algorithm
[1], a metaheuristic algorithm that is appropriate to optimize nonlinear continuous
functions. The author derived the algorithm inspired by the concept of swarm
intelligence, often seen in animal groups, such as flocks and shoals.

In order to explain how the PSO had inspired the formulation of an optimization
algorithm to solve complex mathematical problems, a discussion on the behavior of
a flock is presented. A swarm of birds flying over a place must find a point to land
and, in this case, the definition of which point the whole swarm should land is a
complex problem, since it depends on several issues, that is, maximizing the avail-
ability of food and minimizing the risk of existence of predators. In this context, one
can understand the movement of the birds as a choreography; the birds synchron-
ically move for a period until the best place to land is defined and all the flock lands
at once.

In the given example, the movement of the flock only happens as described once
all the swarm members are able to share information among themselves; otherwise,
each animal would most likely land at a different point and at a different time. The
studies regarding the social behavior of animals from the early 1990s stated before
in this text pointed out that all birds of a swarm searching for a good point to land
are able to know the best point until it is found by one of the swarm’s members. By
means of that, each member of the swarm balances its individual and its swarm
knowledge experience, known as social knowledge. One may notice that the criteria
to assess whether a point is good or not in this case is the survival conditions found
at a possible landing point, such as those mentioned earlier in this text.

The problem to find the best point to land described features an optimization
problem. The flock must identify the best point, for example, the latitude and the
longitude, in order to maximize the survival conditions of its members. To do so,
each bird flies searching and assessing different points using several surviving
criteria at the same time. Each one of those has the advantage to know where the
best location point is found until known by the whole swarm.

Kennedy and Eberhart inspired by the social behavior of birds, which grants
them great surviving advantages when solving the problem of finding a safe point
to land, proposed an algorithm called PSO that could mimic this behavior. The
inertial version, also known as classical version, of the algorithm was proposed in
1995 [1]. Since then, other versions have been proposed as variations of the classical
formulation, that is, the linear-decreasing inertia weight [5], the constriction factor
weight [6], the dynamic inertia and maximum velocity reduction, also in Ref. [6],
besides hybrid models [7] or even quantum inspired approach optimization tech-
niques that can be applied to PSO [8]. This chapter will only present the inertial
model of PSO, as it is the state-of-the-art algorithm, and to understand better the
derivations of PSO, one should firstly understand its classical version.

The goal of an optimization problem is to determine a variable represented by a
vector X ¼ x1x2x3 … xn½ � that minimizes or maximizes depending on the proposed
optimization formulation of the function f Xð Þ. The variable vector X is known as
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position vector; this vector represents a variable model and it is n dimensions
vector, where n represents the number of variables that may be determined in a
problem, that is, the latitude and the longitude in the problem of determining a
point to land by a flock. On the other hand, the function f Xð Þ is called fitness
function or objective function, which is a function that may assess how good or bad
a position X is, that is, how good a certain landing point a bird thinks it is after this
animal finds it, and such evaluation in this case is performed through several
survival criteria.

Considering a swarm with P particles, there is a position vector Xt
i ¼

xi1xi2xi3 … xinð ÞT and a velocity vector Vt
i ¼ vi1vi2vi3 … vinð ÞT at a t iteration for each

one of the i particle that composes it. These vectors are updated through the
dimension j according to the following equations:

Vtþ1
ij ¼ wV t

ij þ c1r
t
1 pbestij � Xt

ij

� �

þ c2r
t
2 gbest j � Xt

ij

� �

(1)

and

Xtþ1
ij ¼ Xt

ij þ Vtþ1
ij (2)

where i = 1,2,… ,P and j = 1,2,… ,n.
Eq. (1) denotes that there are three different contributions to a particle’s move-

ment in an iteration, so there are three terms in it that are going to be further
discussed. Meanwhile, Eq. (2) updates the particle’s positions. The parameter w is
the inertia weight constant, and for the classical PSO version, it is a positive con-
stant value. This parameter is important for balancing the global search, also known
as exploration (when higher values are set), and local search, known as exploitation
(when lower values are set). In terms of this parameter, one may notice that it is one
of the main differences between classical version of PSO and other versions derived
from it.

Velocity update equation’s first term is a product between parameter w and
particle’s previous velocity, which is the reason it denotes a particles’ previous
motion into the current one. Hence, for example, if w ¼ 1, the particle’s motion is
fully influenced by its previous motion, so the particle may keep going in the same
direction. On the other hand, if 0≤w< 1, such influence is reduced, which means
that a particle rather goes to other regions in the search domain. Therefore, as the
inertia weight parameter is reduced, the swarm may explore more areas in the
searching domain, which means that the chances of finding a global optimum may
increase. However, there is a price when using lower w values, which is the simu-
lations turn out to be more time consuming [1].

The individual cognition term, which is the second term of Eq. (1), is calculated
by means of the difference between the particle’s own best position, for example,
pbestij, and its current position Xt

ij. One may notice that the idea behind this term is

that as the particle gets more distant from the pbestij position, the difference

pbestij � Xt
ij

� �

must increase; therefore, this term increases, attracting the particle

to its best own position. The parameter c1 existing as a product in this term is a
positive constant and it is an individual-cognition parameter, and it weighs the
importance of particle’s own previous experiences. The other parameter that com-
poses the product of second term is r1, and this is a random value parameter with
0, 1½ � range. This random parameter plays an important role, as it avoids premature
convergences, increasing the most likely global optima [1].
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Finally, the third term is the social learning one. Because of it, all particles
in the swarm are able to share the information of the best point achieved
regardless of which particle had found it, for example, gbest j. Its format is just

like the second term, the one regarding the individual learning. Thus, the dif-

ference gbest j � Xt
ij

� �

acts as an attraction for the particles to the best point until

found at some t iteration. Similarly, c2 is a social learning parameter, and it
weighs the importance of the global learning of the swarm. And r2 plays exactly
the same role as r1.

Lastly, Figure 1 shows the PSO algorithm flowchart, and one may notice that the
optimization logic in it searches for minimums and all position vectors are assessed
by the function f Xð Þ, known as fitness function. Besides that, Figures 2 and 3
present the update in a particle’s velocity and in its position at a t iteration,
regarding a bi-dimensional problem with variables x1 and x2.

Figure 1.
The PSO algorithm.

Figure 2.
The velocity vector at a t iteration as being composed by two components regarding a bi-dimensional problem.
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3. Hybrid methods: coupling PSO with deterministic methods

In general, optimizationmethods are divided into deterministic and heuristic.
Deterministicmethods aim to establish an iterative process involving a gradient,which,
after a certain number of iterations, will converge to theminimum of the objective
function. The iterative procedure of this type ofmethod can bewritten as follows:

xkþ1 ¼ xk þ α
kdk (3)

where x is the variable vector, α is the step size, d is the descent direction, and k
is the iteration number. The best that can be expected from any deterministic
gradient method is its convergence to a stationary point, usually a local minimum.

Heuristic methods, in contrast to deterministic methods, do not use the objective
function gradient as a downward direction. Its goal is to mimic nature in order to
find the minimum or maximum of the objective function by selecting, in an elegant
and organized manner, the points where such a function will be calculated [9].

Hybrid methods represent a combination of deterministic and heuristic methods
in order to take advantage of both approaches. Hybrid methods typically use a
heuristic method to locate the most likely region where the global minimum is. Once
this region is determined, the hybrid formulation algorithm switches to a determin-
istic method to get closer and faster to the minimum point. Usually, the most
common approach used for this formulation is using the heuristic method to gener-
ate good candidates for an optimal solution and then using the best point found as a
start point for the deterministic methods in order to converge to local minimums.

Numerous papers have been published over the last fewyears showing the efficiency
and effectiveness of hybrid formulations [10–12]. There are also a growing number of
publications over the last decade regarding hybrid formulations for optimization [13].

In this context, PSO algorithm can be combined with deterministic methods,
increasing the chance of finding the function’s most likely global optimal. This
chapter presents the three deterministic methods in which the PSO was coupled:
conjugate gradient method, Newton’s method, and quasi-Newton method (BFGS).
The formulation of each one of those is briefly presented in the following sections.

3.1 Conjugate gradient

The conjugate gradient method improves the convergence rate of the steepest
descent method by choosing descending directions that are a linear combination of

Figure 3.
The position vector being updated at a t iteration as being composed by two components regarding
a bi-dimensional problem.
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the gradient direction with the descending directions of previous iterations. There-
fore, their equations are:

xkþ1 ¼ xk þ α
kdk (4)

dk ¼ �∇ xk
� �

þ γ
kdk�1 (5)

where γ is the conjugation coefficient that acts by adjusting the size of the
vectors. In the Fletcher-Reeves version, the conjugation coefficient is given by:

γ
k ¼

�∇ xk
� ��

�

�

�

2

�∇ xk�1ð Þkk
2 (6)

3.2 Newton’s method

While the steepest descent and conjugate gradient methods use first derivative
information, Newton’s method also uses second derivative information to accelerate
the convergence of the iterative process. The algorithm used in this method is
presented below:

xkþ1 ¼ xk þ α
kdk (7)

dk ¼ � H xð Þ½ ��1
∇U xk
� �

(8)

where H xð Þ is the Hessian of the function. In general, this method requires few
iterations to converge; however, it requires a matrix that grows with the size of the
problem. If the estimate is far from the minimum, the Hessian matrix may be
poorly conditioned. In addition, it involves inverting a matrix, which makes the
method even more computationally expensive.

3.3 Quasi-Newton (BFGS)

BFGS is a type of quasi-Newton method. It seeks to approximate the inverse of
the Hessian using the function’s gradient information. This approximation is such
that it does not involve second derivatives. Thus, this method has a slower conver-
gence rate than Newton’s methods, although it is computationally faster. The
algorithm is presented below:

xkþ1 ¼ xk þ α
kdk (9)

dk ¼ �Hk
∇U xk
� �

(10)

Hk ¼ Hk�1 þMk�1 þNk�1 (11)

Mk�1 ¼ 1þ
Yk�1
� �T

:Hk�1:Yk�1

Yk�1
� �T

:dk�1

" #

dk�1: dk�1
� �T

dk�1
� �T

:Yk�1
(12)

Nk�1 ¼ �
dk�1: Yk�1

� �T
:Hk�1 þHk�1:Yk�1 dk�1

� �T

dk�1
� �T

2

6

4

3

7

5
(13)

Yk�1 ¼ ∇U xk
� �

� ∇U xk�1
� �

(14)
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4. Recent applications and challenges

PSO can be applied to many types of problems in the most diverse areas of
science. As an example, PSO has been used in healthcare in diagnosing problems of
a type of leukemia through microscopic imaging [14]. In the economic sciences,
PSO has been used to test restricted and unrestricted risk investment portfolios to
achieve optimal risk portfolios [15].

In the engineering field, the applications are as diverse as possible. Optimization
problems involving PSO can be found in the literature in order to increase the heat
transfer of systems [16] or even in algorithms to predict the heat transfer coefficient
[17]. In the field of thermodynamics, one can find papers involving the optimiza-
tion of thermal systems such as diesel engine–organic Rankine cycle [18], hybrid
diesel-ORC/photovoltaic system [19], and integrated solar combined cycle power
plants (ISCCs) [20].

PSO has also been used for geometric optimization problems in order to find the
best system configurations that best fit the design constraints. In this context, we
can mention studies involving optical-geometric optimization of solar concentrators
[21] and geometric optimization of radiative enclosures that satisfy temperature
distribution and heat flow [22].

After having numerous versions of PSO algorithm such as those mentioned in
the first section, PSO is able to deal with a broad range of problems, from problems
with a few numbers of goals and continuum variables to others with challenging
multipurpose problems with many discreet and/or continuum variables. Besides its
potential, the user must be aware that the PSO will only achieve appreciated results
if one implements an objective function capable of reflecting all goals at once. To
derive such a function may be a challenging task that should require a good under-
standing of the physical problem to be solved and the ability to abstract ideas into a
mathematical equation as well. The problems presented in the fourth section of this
work provide examples of objective functions capable of playing this role.

Another challenge for one using PSO is how to handle the bounds of the search
domain whenever a particle moves beyond it. Many popular strategies that had
already been proposed are reviewed and compared for PSO classical version in [23].
Those strategies may be reviewed and understood by PSO users so this person can
pick up the one that best fits the optimization problem features.

5. Engineering problems

In this chapter, two engineering problems will be described, one involving the
fuel element of a nuclear power plant and the other involving a thermal cogenera-
tion system. In the first problem, the traditional PSO formulation is used to find the
optimal fuel element spacing. In the second problem, hybrid optimization algo-
rithms are used to find the operating condition that minimizes total cost of opera-
tion of a cogeneration system.

5.1 Springs and dimples of a nuclear fuel bundle spacer grid

In [24], the authors perform the optimization of dimples and spring geometries
existing in the nuclear fuel bundle (FB) spacer grid (SG). An FB is a structured
group of fuel rods (FRs), and it is also known as fuel assembly, and on the other
hand, an FR is a long, slender, zirconium metal tube containing pellets of fissionable
material, which provide fuel for nuclear reactors [25]. An SG is a part of the nuclear
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fuel bundle and, Figure 4 shows a schematic view of a nuclear FB; it is possible to
see in this illustration how the FRs and the SGs are assembled together. In addition,
Figure 5 gives more details on how an SG’s springs and dimples grip an FR, and
Figure 6 shows exactly what parts in the SG are the springs and the dimples that
may be in contact with an FR. For this work, the PSO algorithm had been developed
in MATLAB® (MathWorks Inc.); meanwhile, the mechanical calculations were
performed with finite element analysis (FEA), using ANSYS 15.0 software.

The springs and the dimples act as supports required having special features
once an FR releases a great amount of energy, caused by the nuclear reactions
occurring within it. Hence, the material of an FR must face a broad range of
temperatures when in operation; for example, around a variation of 300°C, this fact
is an important matter for the springs and the dimples as those must not impose an

Figure 4.
A schematic view of a nuclear fuel bundle.

Figure 5.
The top view of a spacer grid gripping an FR through its dimples and springs.
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excessive gripping force on the rod, allowing it some axial thermal expansion. On
the other hand, the upward water flow cooling the great amount of heat released by
fission occurring within the rod creates a flow-induced vibration, so the springs and
dimples must also limit the lateral displacement of the fuel rods. Besides that, the
SG may also support the FRs through its dimples and springs at many loading
conditions, that is, earthquakes and shipping and handling. To support safely the
fuel in a nuclear reactor is an important matter during operation, and consequences
such as the release of fission products from a fuel rod and a reactor safety shutdown
could happen because of a poor design.

Finally, one can understand that as the springs and the dimples of an FB must
have a geometry able to comply with conflicting requirements so the FRs remain
laterally restrained, avoiding it from bowing and vibrating [26], using an optimiza-
tion algorithm could be useful.

Jourdan et al. [13] had performed the optimization of the dimples and springs of
an FB’s SG using PSO classical version algorithm. The authors chose some geometry
variables that should be important to features such as the gripping stiffness and the
stress distribution in the spacer grid, which are the optimization goals in their work.

Thus, the position vector is written as Xt
i ¼ di1, di2, di3, di4, di5, di6ð ÞT, and these

lengths are those in Figure 7, while Table 1 shows the range of such variables, that
is, the search domain of the problem.

Figure 6.
A part of an SG strip with one spring and two dimples.
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In PSO simulations from Ref. [24], for each position vector Xt
i, there is an FEA

model with the geometry variable values of its related vector. In such FEA model,
there are boundary conditions of an elastic static analysis. The boundary conditions
considered in these simulations regard one spring and two dimples gripping two
FRs, one in contact with the spring and the other one in contact with two dimples.
Contacts were not modeled actually in order to simplify the model, and those were
replaced by displacements similar to the condition of an FR with the diameter of
9.7 mm being gripped in the available space considering the Xt

i geometry. Other
boundary conditions are also the restriction of translations and rotations on the
welding nodes. Figure 8 presents these boundary conditions regarding any position
vector. All simulations were built using SHELL181 finite element [27], considering
the material to be the Inconel 718.

Figure 7.
Variable lengths that should feature the goals of the optimization.

Variable Lower bound (mm) Upper bound (mm)

d1 50 70

d2 10 15

d3 5 30

d4 5 10

d5 1 5

d6 1 5

Table 1.
Variable boundaries for the SG optimization.
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The goals of the optimization performed in [24] are three: first, to minimize the
stress intensity (SI) within the structure; second, to create an SG geometry featur-
ing a gripping stiffness value as close as possible to some Kreference; and finally, to find

a geometry that allows some axial thermal expiation by the FR. These three features
are the main mechanical design requirements for an SG [26].

A simulation considering a population of P ¼ 100 particles in a swarm and an
inertial weight of w ¼ 0:3 was performed in [26]. In order to obtain good results
from PSO simulations, in other words, to determine the variable values that might
fit on actual desired features, one must derive a fitness function able to properly
grade all the optimization goals at once, without privileging none of the goals
comparing to all others.

It should be noted that the grades assessed by the fitness function could be in an
increasing scale or in a decreasing one, depending on the conception of the PSO
algorithm. In [26], the authors chose to perform the search at a decreasing scale,
and then the fitness function, Eq. (15), was designed to be minimized.

f Xð Þ ¼ σþ ck kcalculated � kreference
� �

if displacement≥0:4mm

f Xð Þ ¼ 1, 000, 000 otherwiseð Þ
(15)

The fitness function implemented assesses three different terms through two
conditions. The two conditions regard the fact that the SG must allow some axial
thermal expansion by the FR. To do so, a parameter displacement is created, and it
measures the space that an FR with 9.7 mm diameter will use when gripped by an
SG with some position vector geometry. Thus, a geometry producing a displacement

Figure 8.
Model’s boundary condition considering any position vector.
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over 0.4 mm will receive a high grade, meaning that this is an undesired feature, as
the algorithm performs its optimization at a decreasing scale. The value of 0.4 mm
is considered to be a good value for the design of an SG [28–31].

The σ parameter represents the SI, and then it is easy to understand that as the SI
gets lower this term also does, which is desirable. Finally, the term

ck kcalculated � kreference
� �

plays the role of finding a geometry that its stiffness, that is,

kcalculated, gets as close as possible to a reference stiffness kreference, where this last

parameter is set to be 27.2 N/mm [31]. Meanwhile, the parameter ck is a coefficient
that must be set in order to fit the order of magnitude between the fitness function’s
terms, so none of them gets greater importance. In [24], ck parameter had been
calibrated by performing several PSO simulations, and then, this value was set to be
60. One should notice that the fitness function does not require a unit consistency,
as its value is only a mathematical abstraction.

Figure 9 shows the fitness improvement performed to optimize the geometry of
an SG’s dimples and spring. This simulation resulted in an optimized geometry with
an SI of 196 MPa and a gripping stiffness of 27.2 N/mm.

In [31], the authors performed an FEA and a real experiment to measure the SI
and the gripping stiffness of the Chashma Nuclear Power Plant Unit 1’s
(CHASNUPP-1’s) SG spring under the same conditions as considered in [24]. The
results from [31] regarding a real SG that is in operation at CHASNUPP-1, which
might not have been optimized, are 27.2 N/mm for the gripping stiffness and
816 MPa for the SI; meanwhile, the optimized result found in [24] has the same
gripping stiffness although with an SI over 75% lower than CHASNUPP-1’s SG.
Thus, when comparing the results of the most likely optimal found using the PSO
algorithm with those from a real SG [31], one can conclude that PSO had played its
role well to design the component under study.

5.2 Cost of a cogeneration system

The second problem involves minimizing the function that represents the total
cost of operation of a cogeneration system called CGAM. It is named after its
creators (C. Frangopoulos, G. Tsatsaronis, A. Valero, and M. von Spakovsky) who

Figure 9.
Fitness improvements from simulation performed in [24].
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decided to use the same system to compare the solution of the optimization problem
with different methodologies [13]. Figure 10 indicates the system.

The CGAM system is a cogeneration system consisting of an air compressor
(AC), a combustion chamber (CC), a gas turbine (GT), an air preheater (APH), and
a heat recovery steam generator (HRSG), which consists of an economizer for
preheating water and an evaporator. The purpose of the cycle is the generation of
30 MW of electricity and 14 kg/s of saturated steam at a pressure of 20 bar.

The economic description of the system used in the present work is the same as
the one adopted in the original work and considers the annual fuel cost and the
annual cost associated with the acquisition and operation of each equipment. More
details can be found in [32]. The equations for each component are presented below:

Air compressor:

ZAC ¼
C11 _ma

C12 � ηAC

� �

P2

P1

� �

ln
P2

P1

� �

(16)

Combustion chamber:

Zcc ¼
C21 _ma

C22 � P

P3

 !

1þ exp C23T4 � C24ð Þ½ � (17)

Turbine:

ZGT ¼
C31 _mg

C32 � ηGT

� �

ln
P4

P5

� �

1þ exp C33T4 � C34ð Þ½ � (18)

Preheater:

ZAPH ¼ C41
_mg h5 � h6ð Þ

Uð Þ ∆TLMð Þ

� �0:6

(19)

Figure 10.
CGAM system.
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Heat recovery steam generator:

ZHRSG ¼ C51
QPH

∆TLMð ÞPH

� �0:8

þ
QPH

∆TLMð ÞPH

� �0:8
 !

þ C52 _mst þ C53 _mg
1:2 (20)

The general expression for the investment-related cost rate ($/s) of each com-
ponent is given by the following equation:

_Zi,invest ¼
ZiφCRF

N:3600
(21)

CRF is the capital recovery factor (18.2%), N is the number of annual plant-
operating hours (8000 h), and φ is a maintenance factor (1.06). In addition, c f is

the fuel cost per unit of energy (0.004 $/MJ). Table 2 indicates the cost constants
adopted for each component. The following equation represents the total cost of
operation rate:

F ¼ c f _m fPCI þ _ZAC þ _ZAPH þ _ZCC þ _ZGT þ _ZHRSG (22)

In order to perform the optimization of Eq. (22), the five decision variables
adopted in the definition of the original problem are considered: the compression
ratio (P2=P1), the isentropic efficiency of the compressor (ηCA), the isentropic
efficiency of the turbine (ηGT), the air temperature at the preheater outlet (T3), and
the fuel gas temperature at the turbine inlet (T4). To optimize the objective func-
tion, three optimization routines coupling PSO with different deterministic
methods were used as indicated in Table 3.

Air compressor C11 ¼ 39:5 $= kg
s

� �

C12 ¼ 0:9

Combustion chamber C21 ¼ 25:6 $= kg
s

� �

C22 ¼ 0:995

C23 ¼ 0:018 K�1
� �

C24 ¼ 26:4

Gas turbine C31 ¼ 266:3 $= kg
s

� �

C32 ¼ 0:92

C33 ¼ 0:036 K�1
� �

C34 ¼ 54:4

Preheater C41 ¼ 39:5 $= m1,2ð Þ U ¼ 0:018kW= m2Kð Þ

HRSG C51 ¼ 3650 $= kW
K

� �0,8
C52 ¼ 11, 820 $= kg

s

� �

C53 ¼ 658 $= kg
s

� �1,2

Table 2.
Cost constants.

Heuristic Deterministic

Hybrid 1 Particle swarm Conjugate gradient

Hybrid 2 Particle swarm Quasi-Newton

Hybrid 3 Particle swarm Newton

Table 3.
Hybrid methods.
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To solve the thermodynamic equations of the problem, the professional pro-
cess simulator IPSEpro® version 6.0 was adopted. IPSEpro® is a process simula-
tor used to model and simulate different thermal systems through their
thermodynamic equations. This program was developed by SimTech and has a
user-friendly interface, as well as a library with a wide variety of components,
allowing the user to model and simulate conventional plants, cogeneration sys-
tems, cooling cycles, combined cycles, and more. The optimization method rou-
tines were written in MATLAB® (MathWorks Inc.), and the algorithm was
integrated with IPSEpro® in order to solve the thermodynamic problem and
perform the optimization.

To perform the optimization, the limits for the problem variables were
established, as indicated in Table 4 [33].

Table 5 presents the results found for the variables in each method and the value
of the objective function. Figures 11–13 present the graphs of the evolution of the
cost function in relation to the function call for the performed optimizations.

In order to evaluate the algorithm’s efficiency, a comparison was made
between the results obtained in the present work and those obtained by [32, 33]. It
is worth mentioning that the thermodynamic formulation used by [32] is slightly
different from that constructed in the simulator; therefore, some differences in
the final value of the objective function were already expected. In [33], the CGAM
system was also built in IPSEpro® and the optimization was performed in
MATLAB® using the following optimization methods: differential evolution
(DE), particle swarm (PSO), simulated annealing (SA), genetic algorithm (GA),
and direct pattern search (DPS). A comparison between the results is presented in
Figure 14.

It is possible to verify that the hybrid methods used in this work have excellent
performance, and the values found are compatible with the other references. This
result consolidated the use of hybrid formulations used to optimize the objective
function of the problem.

Limits

7 ≤ P2=P1 ≤ 27

0.7 ≤ ηCA ≤ 0.9

0.7 ≤ ηGT ≤ 0.9

700 K ≤ T3 ≤ 1100 K

1100 K ≤ T4 ≤ 1500 K

Table 4.
Variable limits.

Hybrid 1 Hybrid 2 Hybrid 3

P2/P1 9.46 9.04 8.29

ηCA 0.83 0.83 0.85

T3 600.43 612.53 606.47

ηGT 0.88 0.88 0.88

T4 1210.95 1212.67 1214.65

Cost function ($/s) 0.33948 0.33953 0.33949

Table 5.
Optimization results.
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Figure 12.
Hybrid 2 optimization.

Figure 13.
Hybrid 3 optimization.

Figure 11.
Hybrid 1 optimization.
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6. Conclusions

In the present work, it was possible to present the basic fundamentals involving
the PSO method. The advantages and disadvantages of the method were discussed,
as well as interpretations were provided to its algorithm. It was also possible to
discuss about hybrid methods that combine deterministic and heuristic methods in
order to extract the advantages of each one.

As discussed earlier, it is impracticable to say that the result obtained by an
optimization method such as PSO is the global maximum or minimum, so some
authors call the results as the most likely optimal global. Thus, some strategies can
be employed in order to verify the validity of the optimal results obtained. One of
the strategies is to compare with the results obtained by other optimization algo-
rithms, as used in the present work. In the absence of optimal data available, due to
either computational limitations or even lack of results of the subject, it is possible
to use as strategy the comparison of information from real physical models, that is,
that were not obtained through optimization algorithms, but instead good engi-
neering practice and judgment gained through technical experience.

In addition, it was possible to apply the PSO algorithm to different engineering
problems. The first involves the spacer grid of the fuel element and the second
involves the optimization of the cost function of a cogeneration system. In both
problems, satisfactory results were obtained demonstrating the efficiency of the
PSO method.

Figure 14.
Comparison between the results obtained and bibliographic references.
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