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Introductory Chapter: An 
Overview of Recent Advances in 
Membrane Technologies
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1. Introduction

Environmental changes, global warming, and inappropriate planning are two 
sides of the worldwide water shortage coin [1–3]. Figure 1 shows the status of 
different countries based on water-stressed scenario [4]. Based on United Nations 
report, more than 2 billion people will experience water scarcity by 2050 [4]. All the 
previous projections show the vitality of drinking water production and desalina-
tion technologies. Currently, there exist two main commercial water-treatment 
process classes including thermal-based processes (including multistage flash 
distillation (MSF), vapor compression (VC), and multieffect distillation (MED)) 
and membrane filtration processes (including reverse osmosis (RO), nanofiltration 
(NF), and related energy recovery devices (ERD)). Thermal processes were more 
common previously. However, membrane technologies are outweighing the older 
processes. Main reasons for RO desalination process growth have mentioned to be 
rapid technical advances along with its simplicity and elegance [5–9].

Despite all advances in the field, fouling in its different types (colloidal matters, 
organic fouling of natural and synthetic chemicals, inorganic fouling (scaling), 
and biological fouling (biofouling)) is the remaining issue of industrial membrane 
processes [9, 10]. Various types of fouling will result in feed pressure increment 
and higher operational costs, more frequent requirement of chemical cleaning 
of the modules and shortened lifetime of the membranes. Fouling types happen 
simultaneously and could affect each other. This is while biofouling is identified as 
the critical issue as it is imposed to the membrane surface by living and dynamic 
microbiological cells and viruses. As the biological attachment, division of the 
cells and colonization on the surface occurs, the microbiological species and the 
exopolymeric substance produced by them, create resistance to antimicrobial 
treatments and the resulted biofouling starts to impose bio-corrosion and lowering 
the performance of the system [11]. Exposure of the membrane systems to feed’s 
biological contamination highly depends on the environmental factors of the feed 
itself (nutrient content, available biological species, temperature, light, turbidity, 
and currents (tides and waves)) [12]. Items under feed water and microorganism 
classes are related to the microorganism proliferation and conditions supporting 
their existence. This is while main efforts over process enhancement and modifica-
tion of membranes are attributed to the membrane-specific properties such as 
composition and surface structure-characteristics (classified under the title of 
membrane properties). Apparently, the issue of biofouling could own various levels 
of severity in different locations. Biofouling is mentioned to be responsible for 45% 
of the overall fouling that occurred in nanofiltration (NF) and RO plants [13–16]. 
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This is while FO processes as another prospective water treatment process, due to 
its inherent distinctions from pressure driven membranes processes, owns different 
fouling and biofouling profiles [17]. There have been several reviews covering dif-
ferent aspects of the process from material, technological, process, modeling, and 
economics aspects [18–30].

Another aspect of membrane-based water desalination technologies is their 
sustainability. Energy consumption optimization and recovery along with control-
ling footprint of the desalination plants have been focused more recently to further 
improve the technology [5]. Energy consumption in RO plants is mostly due to 
high-pressure pumps (more than 50% (Figure 2)) (energy consumption profiles 
in various plants might differ as water resource specifications are not identical). 
Groundwater resources are easier to treat and desalt in general as they are more 
restricted and less polluted [31]. Minimizing this energy input by using high-tech 
pumps, developing highly permeable membranes, eliminating fouling and biofoul-
ing issues on membrane surfaces and using energy recovery devices (ERD) [6, 32]. 
Another aspect, which has received more attention, is renewable energy-assisted 
water desalination renewable energy desalination (RED). Coupling desalination pro-
cesses with clean renewable energy resources such as hydropower, wind, solar pho-
tovoltaic, geothermal, wave and tidal, etc. is an essential step in further improving 
the technology due to the high-energy demand of the processes [33, 34]. While RED 
plants are meant to be renewable energy dependent, they are commonly connected to 
the power distribution grid due to techno-economical limitations. Desalination plant 
capacity and renewable energy resource type could affect the final costs within these 
approaches. Several combination of renewable source and desalination technologies 
are considered individually and in a combined cycle. These combinations could be 
practical and promising depending on their scale, geographical characteristics of 
the installation, available technical infrastructures in the region, plant’s remoteness, 
and access to electrical grid. Efforts for finding hybrid and newly developed low-cost 
processes have been addressed as a concern for sustainable water production [35].

Figure 1. 
Classification of water-stressed countries (based on water maps issued in [8]).
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While various advances in membrane technology are being reported, the only 
commercialized ones are polyamide (PA) thin-film composites and the rest are in 
fundamental development stage [36]. One of the emerging membrane technol-
ogy candidates is forward osmosis (FO) also introduced as “direct osmosis,” [37] 
“manipulated osmosis” [38], or “engineered osmosis” [39]. Despite the fact that 
it was introduced back in 1970s [40], the process has recently gained more atten-
tion. This is proved by grown number of publications since 2006–2016, with a total 
number of 1700 papers covering FO topics [17].

FO is based on a natural driving force, there is no need for external energy 
sources (rather than a small pressure) (around 2–3 bar to eliminate the frictional 
resistance on two sides of the membrane). This also means that less intense fouling 
occurs one the membrane surface in comparison with pressure-driven RO mem-
branes [23]. Moreover, lower operating pressure means lower operating and capital 
cost due to less-pressure vessel incorporation in the plant [41]. Several proven 
applications of the process, such as concentration and dehydration, are efficiently 
put into practice. This is while the application of FO as a desalination process is 
not economical since it requires further purification step when it comes to water 
desalination [42].

In case of desalination, it is reported that the energy cost comprises 20–35% 
(with statistically higher reported values) of the final cost of the produced water, 
and this will change based on the size of the plant and the energy and electricity 
costs in each region [43]. Lower operation pressure and lower fouling profile in FO 
process have turned the process into an interesting membrane process, yet it cannot 
be considered as an alternative to RO in majority of applications. FO, in theoretical 
studies, is economical in comparison with pressure driven membrane processes if 
draw solution regeneration would not be needed. Yet, there is no practical justifica-
tion to support theoretical studies at this time. Accordingly, process development 
researches must target such applications [44].

Figure 2. 
Reverse osmosis process plant component and for energy consumption shares of total production cost.
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Rather than water treatment, academic researches over FO applications are 
reported in waste water treatment and recycling (municipal [45, 46], hospital [47, 
48], landfill leachates [49, 50], pharmaceuticals [51, 52], industrial [53, 54]) salinity 
gradient based or pressure-retarded osmosis (PRO) power production [55, 56], 
trace organic treatment (pharmaceutical) [57–59], drink processing [60–62], and 
agriculture industries [63].

Rather than PRO process (which was failed practically in its only ongoing 
project), several other areas of energy production are taking advantages of 
membrane technologies, of which, most important ones are fuel cells [64] and 
biofuel production and purification [65]. Ion exchange membranes are subject of 
many intensive researches and the field has been improved intensively thanks to 
the engineering enhancement and material development for fuels cells [66–68]. 
Fuel processing and bio-based hydrocarbon production and purification areas 
are also taking advantages of membrane process. Rather than simple applica-
tions of oily waste waters resulted from the industry and filtration separation 
(complementary application of membranes [69, 70]), membrane-based process 
integration and intensifications have resulted in higher productivity. An instance 
of this would be transesterification membrane reactors for biodiesel production, 
which offers an ecofriendly, high quality product, low cost and small foot print 
fuel production path [71–73].

Integration and intensification or processes using membranes are a significantly 
highlighted section of the field. These include several concepts such as using simple 
and nonreactive membranes in a reactor as an extractor-contactor to remove one 
of the products in reaction environment so that the yield could be enhanced in an 
equilibrium reaction. Beside this, functionalized membranes (on the surface or within 
their structures) could act as catalysts and separated filters simultaneously [74]. 
Membrane-based process intensifications could result in lower consumption of energy, 
lower environmental footprint, lower required area, and higher efficiencies. This could 
finally result in a cheaper product such as processed fuels, purified, desalinated water, 
etc. [75–77]. Table 1 offers different application of membranes in reactors as instances 
of process intensification opportunities for membranes.

Mutual application of membranes and nanoparticles is result in a new field of 
separation science entitled as mixed matric membranes (MMM) [78, 79]. More 
specifically, inorganic nanomaterials with specific properties such as antibacteri-
ally [11, 80], antifouling [81], photocatalytic behavior [82, 83], specific func-
tional groups [84] for detailed purposes such as providing active binding sites for 
functionalization, etc. As nanomaterials could be synthesized with different and 
adjustable properties, MMMs could be tailor-made for specific target in gas-
separation processes [85], thin-film-composite-assisted water desalination [86], 
forward-osmosis-assisted water desalination [87, 88], integrated waste water 
treatment and water desalination processes [89], fuel-cell-based energy produc-
tion [90], valuable species recovery [91, 92], etc. Separation mechanisms could 
also be tunable as the MMMs would be governed by both solution-diffusion and 
sieving-sorption mechanisms [93]. More importantly, mechanical properties and 
stability of MMMs are generally improved as the structures are reinforced due to 
presence of inorganic phase [94]. Table 1 offers a comparison between polymeric, 
inorganic, and mixed matrix membranes.

Membranes are also being intensively used in the area of biomedical applica-
tions and more specifically blood purification. Since its emerge back in 1960s, 
membranes were used as a main component of dialyzers in hemodialysis (HD) 
process [96]. Modules, membrane modalities, and membrane materials in HD have 
experienced a huge improvement so far [97–101]. All modifications have targeted 
more efficient clearance of uremic toxins and controlling body originated mediators 



5

Introductory Chapter: An Overview of Recent Advances in Membrane Technologies
DOI: http://dx.doi.org/10.5772/intechopen.89552

as a result of defensive system activations. Currently, medium cut-off membranes 
(60 kDa) are candidates of higher performance with acceptable clearance and low 
nutrient loss [73, 102]. After many years of development, zwitterionized mem-
branes are most recent generation of hemocompatible dialyzers [96–99].

Rather than FO applications in food industries (as previously mentioned early 
in the same chapter), the area takes advantages of several other membrane-based 
processes. Main known applications are beer, beverage and juice concentrations 
[103–105], and protein recovery from waste streams [104, 106]. More importantly, 
justification of minerals in dairy streams (milk) to offer value-added products is an 
interesting application of membranes in food industry [107]. Protein purification 
(more specifically whey) was conventionally performed by chromatography-based 
processes. Membrane separation technologies, however, are out weighting those 
industrial processes due to higher yield and lower energy consumptions [108]. Since 
nutrition substances own molecular weight and size with different ranges, various 
membrane processes with different pore size distributions are applied for each 
specific separation, concentration, or recovery target [109]. Since the technology 
is one of the main ones in food industries for at least two decades, many integrated 
processes are now being used for better productions, such as enzymatic hydrolysis 
ultrafiltration [110]. While the applications might differ from what academic areas 
have gone through for desalination and water treatment, barriers and accordingly 
research targets are similar. These include antifouling and antibacterial membrane 
surfaces, narrow molecular weight cut-off and pore size distribution for higher 

Membranes Advantages Disadvantages

Polymeric 
membranes*

Easy synthesis and fabrication
Low production cost
Good mechanical stability
Easy for upscaling and making variations in 
module form
Separation mechanism: Solution diffusion

Low chemical and thermal 
stability
Plasticization
Pore size not controllable
Follows the trade-off between 
permeability and selectivity

Inorganic 
membranes*

Superior chemical, mechanical, and thermal 
stability
Tunable pore size
Moderate trade-off between permeability and 
selectivity
Operate at harsh conditions
Separation mechanism: molecular sieving 
(<6 Å), surface diffusion (<10–20 Å), capillary 
condensation (<30 Å), and Knudsen diffusion 
(<0.1 μm)

Brittle
Expensive
Difficulty in scale up

Mixed matrix 
membranes*

Enhanced mechanical and thermal stability
Reduced plasticization
Lower energy requirement
Compacting at high pressure
Surpasses the trade-off between permeability and 
selectivity
Enhanced separation performance over native 
polymer membranes
Separation mechanism: combined polymeric and 
inorganic membrane principle

Brittle at high fraction of 
fillers in polymeric matrix
Chemical and thermal 
stabilities depend on the 
polymeric matrix

*Polymeric membranes: microfiltration, ultrafiltration, nanofiltration, and reverse osmosis filters, which are fabricated 
only from organic monomers or polymers; ceramic membranes: all filters fabricated from inorganic materials, mixed 
matrix membranes: are membrane filters fabricated from both organic and inorganic materials.

Table 1. 
Characteristics of different membranes [95] (with permission from publisher).
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separation efficiencies, and more stable membranes regarding to their structural 
and mechanical properties [111–114].

2. Outlook

For past few decades, different aspects of membrane technology application 
have grown to different extents. The most significant application share of the 
technology is devoted to water treatment, to both pre- and posttreatments, water 
desalination, and wastewater treatment. Different aspects of these processes, 
however, are still being intensively worked on to enhance the economic aspects to 
minimize the power consumption and environmental aspects (controlling brained 
streams side effects) of water treatment. Other areas such as cosmetics, pharma-
ceutical, fuel processing, and production and food industries are all taking benefits 
from various range of membrane processes. Yet, as the applications are more limited 
and the processes are fairly complicated, the growth rate is not comparable to water 
treatment industry. More specific application of thin-film filters in association with 
biomedical areas (artificial organs) are also experiencing continuous improve-
ments. This is while the issues in these specific areas are focused more on hemocom-
patibility, biocompatibility, and life-sustaining ability of the technologies rather 
than on the financial aspects.

© 2020 The Author(s). Licensee IntechOpen. Distributed under the terms of the Creative 
Commons Attribution - NonCommercial 4.0 License (https://creativecommons.org/
licenses/by-nc/4.0/), which permits use, distribution and reproduction for  
non-commercial purposes, provided the original is properly cited. 
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