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Abstract

Nanoparticles offer a lot of advantageous backgrounds for many applications 
due to their physical, chemical and biological properties. Their different composi-
tion (metals, lipids, polymers, peptides) and shapes (spheres, rods, pyramids, 
flowers and so on) are influenced by the synthesis methods and functionalization 
procedures. However, in the medical field, researchers focus on the biocompatibility 
and biodegradability of the nanoparticles in their attempts for a targeted therapy 
in which the nanocarriers need to bypass certain biological barriers. Moreover, 
the increased interest in molecular imaging has brought nanoparticles in the 
spotlight for their applications in two distinct directions: therapy and diagnosis. 
Furthermore, recent advances in nanoparticle designs have introduced novel 
nano-objects suitable as both detection and delivery systems at the same time, thus 
providing theranostic applications.

Keywords: nanoparticles, nano-oncology, targeted therapy, molecular imaging, 
diagnosis

1. Introduction

Nanomedicine is able to study the organism and especially the disease at the 
nanoscale level and offers a lot of structural and functional information for the 
development of new therapeutics and diagnosis strategies [1]. Nano-oncology refers 
to the applications of nanotechnology in the oncology medical field.

Oncological malignancies affect worldwide population with an incidence of 18.1 
million new cancer cases and 9.6 million cancer deaths (GLOBOCAN 2018). Usually, 
the most used treatment scheme is surgery, radiotherapy and chemotherapy. These 
strategies are not very efficient because it does not only affect the disease site, but 
healthy tissues too, and in many cases, cancer can develop therapy resistance [2].

Nanotechnology tools have potential to overcome the side effects and the inef-
ficiency of some therapies. Due to its small size, nanoparticles (NPs) can be used 
for molecular characterization of the disease, and based on this, it can contribute 
to discover new therapies. Moreover, various oncological chemotherapeutics are 
nanoformulated and now are involved in clinical trials [3].

Besides drug encapsulation, NPs can be used for the delivery of growth factors 
and other compounds applied in tissue engineering. On the other hand, NPs’ 
properties are advantageous for new sensing and molecular imaging tools devel-
opment (Figure 1).
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For each of these applications, NPs’ formulations involve various encapsulation 
procedures, which need to meet specific characteristics. Firstly, the NPs should not 
interfere with the encapsulated compound pharmacological activity, and it has to 
prevent its premature degradation and to become biodegradable at the tumor site, 
thus decreasing its toxicity [4]. Secondly, for sensing applications, the nanosystem 
needs to have some unique chemical, electrical, and catalytical properties to provide 
accuracy of the measurements [5]. On the other hand, for molecular imaging appli-
cations, the NPs benefit from their optical properties like fluorescence in various 
spectra. Also, the features such as biocompatibility, stability and long circulation 
time are very important [6–8].

Theranostic side of the nano-oncology field focuses on developing new struc-
tures that able to perform efficient target therapy. Therefore, this type of NPs 
disposes of unique physical and chemical properties for active targeting of the 
desired cells providing imaging and therapeutic action against the disease [8].

2. Nanoparticles

The term “nanoparticles” is intensively used in the nanomedicine field in order to 
describe a particle with a size in the range of 1–100 nm. NPs are designed from a wide 
class of materials, including metals, silicates, metal oxides, polymers, organics, non-
oxide ceramics, carbon and biomolecules. For biomedical applications, NPs are pre-
sented in different morphological states such as spheres, tubes, cylinders, platelets [9].

NPs have surface modifications that can facilitate the internalization/uptake 
of therapeutic agents and also their capability to travel through the bloodstream 
to the target sites. Generally, the structure of NPs is composed of three different 

Figure 1. 
Nanotechnology applications in medicine.
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layers, including the surface layer (can be functionalized with a wide range of small 
molecules, surfactants, metal ions and polymers), the shell layer (consists of dif-
ferent chemical material according to the core of the NPs) and the core (represents 
the central portion of the NP) [10]. Therefore, NPs have exceptional characteristics 
due to their structure and design and gained an enormous interest in multidisci-
plinary fields such as drug delivery [11], cancer therapy, tissue engineering, protein 
detection, multicolor optical coding for biological assays, manipulation of cells and 
biomolecules [12], imaging, biosensors, hyperthermia, photoablation therapy and 
gene delivery [13]. They exhibit special physical and chemical properties like a high 
surface area-to-volume ratio and also a unique quantum size effect superior to their 
corresponding bulk materials. Moreover, NPs’ controllable size and shape play an 
important role in medical applications [14]. Moreover, there are some nanomateri-
als that can exhibit intrinsic therapeutic properties such as gold nanoshells, which 
have the potential to deliver photothermal therapy [15].

Currently, the term “theranostics” starts to gain attention in the medical and 
research field, and it describes single biocompatible and biodegradable nanopar-
ticle, which can contain both therapeutic and diagnostic compounds (Figure 2) 
[16]. Specifically, theranostic nanoparticles (TNPs) have been designed in order to 
be applied for multiple imaging approaches including optical imaging, ultrasound 
(US), magnetic resonance imaging (MRI), computed tomography (CT), single-
photon computed tomography (SPECT) and positron emission tomography (PET) 
[17]. Moreover, TNPs are able to improve the accumulation and delivery of the 
active compounds at the tumor site, enhancing therapeutic efficacy and reducing 
the intensity of side effects on healthy tissues [18], and they can be eliminated from 
the body in a short period of time and degrade into nontoxic bioproducts [19].

2.1 Synthesis of NPs

Synthesis of NPs can be performed using various methods, which are divided 
into two main classes such as bottom-up (chemical synthesis) and top-down 
(mechanical attrition) approaches (Figure 3) [20]. Bottom-up method is based 

Figure 2. 
Theranostic nanoparticles used in the medical field in order to improve the diagnosis and therapeutic 
approaches.
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on larger nanostructures design beginning from smaller building blocks including 
atoms and molecules. Meanwhile, the top-down approach refers to larger molecules, 
which are decomposed into smaller building blocks and then converted into suitable 
NPs [10]. Traditional chemical and physical methods present some main drawback 
due to the presence of reducing and stabilizing agents, which carry a risk of toxicity 
to the environment and also to the cell [21].

Currently, green chemistry has been suggested as a valuable alternative for metal 
nanoparticles synthesis that employs biological entities including microorganisms 
and plant extracts [22]. The main role of microorganisms (bacteria and fungi) is 
involved in the remediation of toxic materials by reducing metal ions [23]. The most 
often used metal for green synthesis is silver, gold, iron, and copper [24]. Therefore, 
the size distribution of NPs is strongly depended on the presence of the biocom-
pounds, which are found in the extract. These biocompounds (phenolic compounds, 
alkaloids, enzymes, terpenoids, proteins, co-enzymes, sugar and others) are mainly 
involved in reducing the oxidative state of the metal salts from positive to zero 
oxidative state [25]. Few bacteria have been shown the potential to synthesize silver 
nanoparticles intracellularly where intracellular components have the ability to act 
as reducing and stabilizing agents, respectively [26]. Thus, the green synthesis of 
nanoparticles could be a promising approach to replace many complex physiochemi-
cal syntheses due to their advantages such as no need to use toxic chemicals, free 
from hazardous by-products and also the use of natural capping agents [27].

In their study, Mirtaheri et al. had succeeded in synthesis of mesoporous tung-
sten oxide using a template-assisted sol-gel method, which relies on the photocata-
lytic degradation of Rhodamine B [28]. Mesoporous TiO2-SiO2 were synthesized by 
Haghighatzadeh et al. using an ultrasonic impregnation method. In addition, under 
800°, they synthesized the anatase crystals with higher photocatalytic efficiency for 
degradation of methylene blue [29]. Deshmukh et al. synthesized various nanopar-
ticles using plant extracts in order to evaluate their antibacterial and antioxidant 

Figure 3. 
Common methods used to synthesis NPs via top-down and bottom-up approaches.
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activity for targeted applications [30]. Another study on this topic is showed by 
Baltazar-Encarnacion et al., which described the green synthesis of Ag nanoparti-
cles using an E. coli for the production of NPs with antimicrobial properties against 
bacteria [31]. Green biosynthesis methods are more reliable and safer than chemical 
synthesis [32].

Structural DNA nanotechnology is a precise method, which is used to control 
the NPs shape. In particular, the DNA-origami method allows the controlled 
self-assembly of 2D and 3D nanostructures with nanometer precision [33]. Such 
nanoparticles can be used to detect short oligonucleotides in a microbead-based 
assay [34] and can be applied in the biological field, nanoelectronics and nano-
photonics [35]. Therefore, these designs provide comprehensive understanding of 
cellular interactions regarding tumor detection strategies [36, 37].

Specifically, TNPs can be engineered in several ways. For example, TNPs can be 
obtained by conjugating therapeutic agents (chemotherapy and photosensitizers) to 
existing imaging NPs (quantum dots, gold nanocages and iron oxide NPs). On the 
other hand, NPs can encapsulate both imaging and therapeutic agents in biocom-
patible nanosystems such as ferritin nanocages, polymeric and porous silica NPs. 
Other unique NPs such as porphycenes, [64Cu] CuS, gold nanoshells or cages have 
inherent imaging and therapeutic characteristics [19].

2.2 Characterization of NPs

Physicochemical properties of NPs (shape, size, composition, optics) can be 
analyzed through different techniques.

The morphology of NPs is characterized through microscopic techniques includ-
ing polarized optical microscopy (POM), transmission electron microscopy (TEM) 
and scanning electron microscopy (SEM), which are the most relevant techniques 
in this area. SEM technique provides relevant information regarding the nanoscale 
level of the NPs [38]. Moreover, TEM provides features about the bulk material 
used for NPs synthesis at very low to higher magnification [39]. The morphological 
features of the NPs exhibit a relevant interest since their morphology influences the 
NP’s properties [10].

Structural characterization is based on the study of the composition and nature 
of bonding materials. The common techniques used to study the bulk properties 
are X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), infrared 
spectroscopy (IR), Raman, Brunauer-Emmett-Teller (BET), energy dispersive 
X-ray (EDX) and Zeta size analyzer. Through XRD technique, the crystalline 
structure and the phase of the NPs are identified. The most sensitive technique used 
to characterize NPs is XPS, which determines the exact element ratio and bonding 
nature of the elements used for NPs synthesis [10].

Optical characterizations are widely used to obtain information about the 
absorption, reflectance, phosphorescence and luminescence of NPs. This method 
is based on the Beer-Lambert law and basic light principles. These properties are 
highlighted through several techniques, including diffuse reflectance spectroscopy 
(DRS), UV and UV-Vis, which reveal good knowledge about the mechanism of their 
photochemical processes [10].

2.3 Physicochemical properties of NPs

For cancer research, NPs can be modified respecting the size, shape and surface 
to improve their ability to reach tumors. Smaller NPs have the ability to accumulate 
more easily in the leaky blood vessels of tumor sites compared to larger NPs, which 
can remain at the injection site [40].
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Nowadays, ultrasmall nanoparticles (1–3 nm cores) are widely used for medi-
cal applications because of their advantages regarding biodistribution, targeting 
features, adsorption, easy surface modifications and pharmacokinetics [18, 41–43]. 
Gadolinium ultrasmall nanoparticles achieved theranostic potential without 
considerable toxicity in vivo in the case of brain cancers [44]. Another example is 
represented by ultrasmall silica nanoparticles functionalized with antibody frag-
ments used to target HER2-overexpressed breast cancer as imaging agents [42].

Metallic nanoparticles can be designed as ultrasmall constructs too. In this 
regard, it is important to mention D-peptide p53 activator gold nanoparticle con-
jugates used for cancer target therapy [45], bimetallic nanoparticles for triggered 
ultrasound cancer therapy [46] and Cu ultrasmall nanoparticles’ valuable ability for 
photothermal cancer therapy [47].

On the other hand, NP shape influences the fluid dynamics and uptake into 
tumor sites. Non-spherical NPs present excellent optical properties due to surface 
plasmon resonances and are strongly recommended for cancer phototherapy 
applications [48–50]. Furthermore, rod-like shape nanoparticles are better accepted 
and tolerated by the organism [51, 52].

Specifically, spherical NPs started to be more common than non-spherical 
NPs due to challenges in synthesis approaches and testing [53]. Spherical silver 
nanoparticles ensure anti-inflammatory potential [54] and promote camptothecin 
apoptotic activity in cervical cancer [55]. Despite the advantages offered by silver 
nanoparticles, progress in spherical gold nanoparticles makes possible their use for 
combined therapies like drug delivery and photothermy [56].

There are other significant factors that contribute to a successful therapy devel-
opment. Stability and distribution are affected by NPs charge. A positive charge is 
most effective according to tumor vessels targeting, but a switch to a neutral charge 
allows NPs to diffuse to the tumor sites [57]. In order to prolong blood circulation of 
NPs, their surface can also be modified with specific molecules (hydrophilic poly-
mers/surfactants, biodegradable copolymers such as polyethylene glycol, polox-
amine, polyethylene oxide and polysorbate 80), which facilitate cellular uptake into 
tumor tissue [58, 59].

2.4 Classification of NPs

Modern nanosystems can enhance drug diagnosis, delivery and also monitor 
therapeutic responses to the provided drugs [60]. In order to improve clinical 
outcomes, researchers tried to synthesize a theranostic platform consisting of 
multifunctional NPs, which exhibit valuable imaging properties. Therefore, TNPs 
can be composed of lipids, polymers, metals, carbon and ceramics [61].

Lipid nanoparticles are widely used in medical field due to their biodegradabil-
ity, biocompatibility, low toxicity and high loading capacity for both hydrophobic 
and hydrophilic drug molecules [62, 63]. Moreover, they can improve the pharma-
codynamics and the pharmacokinetics of therapeutic agents based on controlled 
release profile [64]. Another important characteristic of lipid NPs is their availabil-
ity for functionalization with antibodies, peptides, small molecules or aptamers in 
order to perform target therapy [65–67].

Polymeric NPs are normally organic-based NPs with a diameter lower than 1 μm. 
They can be called nanospheres or nanocapsules depending on their composition 
[68–70]. These nanoparticles have the ability to improve both the solubility and 
the bioavailability of hydrophobic drugs [71] and are intensively used as delivery 
systems [72, 73].

Metallic NPs are designed from metal precursors, including noble metals (Cu, 
Ag, and Au). The most researched area in biomedical field is represented by gold 



7

Theranostic Nanoparticles and Their Spectrum in Cancer
DOI: http://dx.doi.org/10.5772/intechopen.88097

NPs, which possess unique optical and electronic characteristics as well as chemical 
inertness. Also, their availability for surface functionalization [74–76] makes them 
very useful for a lot of medical applications such as biosensing [77], bioimaging 
[78] and photothermal therapy [79]. Silver nanoparticles exhibit unique proper-
ties such as thermal conductivity, high electrical conductivity, catalytic activity, 
chemical stability, antibacterial and improved optical properties [80]. These NPs 
are suitable for photonic [81], electronic [82], antimicrobial and disinfectant 
applications [83, 84], biosensors [85], drug delivery, photothermal therapy [26] and 
cellular imaging [86].

Another class of metallic nanoparticles is represented by semiconductor nano-
crystals, which are well known as quantum dots. Many studies report their potential 
use in biomedical imaging [87], drug and gene delivery [88] and also in diagnosis 
[89] based on their unique chemical and optical properties.

Magnetic NPs represented by iron oxide NPs possess unique chemical, bio-
logical and magnetic characteristics including non-toxicity, chemical stability, 
biocompatibility, high magnetic susceptibility and high saturation magnetiza-
tion [90, 91]. The main drawback of iron nanoparticle is that it has a tendency to 
oxidize [13]. To eliminate this unwanted process, coating with a biocompatible 
shell, such as a polymer [92], ceramics [93] or metals [13], is needed in order to 
prevent conglomeration. In addition, iron oxide NPs can be functionalized with 
proteins, antibodies, enzymes and anticancer drugs [13] and are investigated for 
different applications including magnetic hyperthermia [94], contrast agents in 
MRI (magnetic resonance imaging) [95], targeted drug delivery [96], multimodal 
imaging and gene therapy [61].

In the term of carbon-based NPs, fullerenes and carbon nanotubes exhibit 
promising biomedical applications. Fullerenes are suitable for multiple func-
tionalization steps according to their particular globular network structure [97]. 
They are widely used as excellent antioxidants [98], antiviral agents [99, 100], 
drug and gene delivery systems [101–103] and photosensitizers for photody-
namic therapy [104, 105]. On the other hand, elongated design of carbon nano-
tubes diagnostic imaging strategies [106–110], drug delivery [111–113] and also 
photothermal therapy [114, 115].

Ceramics NPs are inorganic non-metallic solids, which are synthesized by heat-
ing and successive cooling [116]. Therefore, these ceramics NPs are intensively used 
in the research field as photocatalysis, catalysis, agents for photodegradation of dyes 
and imaging agents [117].

There are significant challenges in engineering and designing new nanosystems. 
The “nanoparticle loaded nanoparticle” concept is described as an innovative strat-
egy composed of at least two different nanoparticles. For example, porous nanopar-
ticles made by silica can encapsulate DNA-conjugated small gold nanoparticles in 
their pores with great applicability in penetrating tumors [118].

Hybrid constructs gained increased interest in obtaining programmed nanopar-
ticles. DNA nanorobots built of a DNA robot and a DNA aptamer that confers 
molecular recognition of nucleolin are used for target therapy in cancer [119].

3. Cellular internalization and endosomal escape

Once the delivery system comes in the proximity of its target site, the drug must 
be internalized in order to fulfill its biological effect. While free drugs usually have 
the ability to pass through cellular membranes and accumulate inside the cell unless 
they are externalized by efflux pump mechanisms, NPs are internalized differently, 
mainly through various types of endocytosis [120], as presented in Figure 4.
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Phagocytosis is a mechanism by which specialized cells known as phagocytes 
recognize and engulf large particles (≥0.5 μm) into vesicles called phagosomes 
[121]. This process involves actin polymerization and the extension of pseudopods, 
which surround the opsonized target object [122] leading to its internalization 
(Figure 4(5)). Phagosomes fuse with early endosomes, followed by late endosomes 
and then lysosomes, becoming highly acidic and possessing hydrolytic enzymes 
leading to the degradation of the engulfed object [122].

Macropinocytosis is a process by which nonselective molecules suspended in 
extracellular fluid are internalized into the cell, giving rise to endocytic vesicles. 
Like phagocytosis, it involves cytoskeleton rearrangement beneath the plasma 
membrane. This leads to a plasma membrane circular ruffle formation that extends 
and entraps extracellular material, producing a so-called macropinosome [123]. The 
maturation of these vesicles involves shrinking while concentrating their contents, 
migration and digestion or recycling of their contents [124]. Depending on the cell 
line, macropinosomes can fuse with lysosomes or directly to the plasma membrane 
expelling their content to the extracellular space (Figure 4(4)) [124, 125].

Caveolae are small (60–80 nm) plasma membrane invaginations, important 
in processes such as endocytosis, transcytosis, potocytosis and certain signaling 
pathways [126]. Caveolin-dependent endocytosis is a triggered, energy-dependent 
event involved in the uptake of extracellular molecules and membrane components 
[127]. It is dependent on actin and dynamin, a GTPase, which is present at the 
neck of caveolae and is responsible for the release of the caveolar vesicle inside the 
cytoplasm [128]. These vesicles deliver the internalized molecules to caveosomes 
or to early endosomes (Figure 4(2)). Caveosomes bypass lysosomes, thus being an 
important approach for administering easily degradable therapeutic agents [129].

Clathrin-mediated endocytosis involves the uptake of extracellular molecules 
through invagination of the plasma membrane. The vesicles are formed when 
ligands interact with receptors on the plasma membrane, thus recruiting clathrin 
triskelions and adaptor proteins, which form a multifaceted cage structure [130] 

Figure 4. 
Cellular internalization through endocytosis.
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that is released inside the cell with the help of dynamin. These vesicles are known 
as clathrin-coated vesicles and can lose their clathrin coat and fuse with early 
endosomes (Figure 4(1)). They are directed towards degradation in lysosomes or 
recycled to the plasma membrane [131].

Extracellular cargo can also be internalized via clathrin- and caveolin-indepen-
dent pathways (Figure 4(3)) [132].

Depending on the internalization mechanism, NPs have different fates. They 
can face lysosomal degradation when internalized through clathrin-mediated 
endocytosis while skipping this process when taken up through a caveolin-mediated 
mechanism [133].

Many nanomaterials are degraded in endocytic vesicles leading to new 
approaches of carrier designs that are able to escape the endosomal or lysosomal 
degradation. Three main strategies, presented in Table 1, are commonly used to 
bypass this cellular barrier for drug administration. They rely on molecules, which 
possess the ability to destabilize the endosomal membrane in a pH-dependent or 
independent way or to fuse with the endosomal membrane, leading to the release 
of previously internalized cargo. Another approach involves the photochemical 
membrane rupture via photothermal nanomaterials.

4. Diagnosis through molecular imaging mechanisms

Molecular imaging is a medical discipline related to medical imaging and is 
representing the evolution of imaging techniques for diagnosis and therapy moni-
toring. It involves cell biology and molecular biology [143].

Current clinical applications of molecular imaging are CT, SPECT, PET, MRI, US 
and also hybrid imaging techniques SPECT/CT, PET/CT or PET/MRI. CT, MRI and 
US provide anatomical information, while PET/CT, and SPECT/CT offer functional 
and molecular information [144]. All these techniques are based on the accumula-
tion of a contrast agent at the target site [145].

Strategy Mechanism Examples Ref.

Endosomal 
membrane 
destabilization

pH dependent pH buffering (proton 
sponge effect)

Polyamines 
(PEI, PEAAc, 
Mglu-HPG)

[134]

Pore-formation Listeriolysin O 
(LLO)
GALA peptide

[135]

pH independent Pore formation Amphotericin B
Melittin

[136, 137]

Fusion with endosomal membrane Flip-flop mechanism GALA peptide [138, 139]

Via viral fusion proteins/
peptides

HA2 fusion 
peptide/
hemagglutinin

[140]

Photochemical membrane rupture Light-induced ROS and/
or heat generation

TatU1A-
photosensitizer 
conjugates
M-PLL 
(melanin-poly-
L-lysine)

[141, 142]

Table 1. 
Approaches for endosomal escape.
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Even if they provide high-resolution images from anatomical [146] to molecular 
level for further clinical investigations [147–153], there are some disadvantages 
regarding the use of them. High doses of radiation and exposure can cause DNA 
damage in some tissues [154, 155]. Also, radiopharmaceutical biodistribution and 
effectiveness may cause image artifacts and also side effects for the patient [156–
159]. Moreover, the patient care quality is not granted in most of the cases [156].

4.1 NPs involved in diagnosis imaging strategies

Diagnostic imaging using NPs refers to the detection of specific disease sites 
through molecular recognition of tumor cell particularities like the overexpres-
sion of several genes and the presence of different cell surface molecules or media 
excreted compounds/molecules that are involved in various disease processes, 
microenvironment particularities and also cell development stages [160, 161].

Physical properties of nanoparticle systems are very important for molecular 
imaging applications. Nanoparticle accepted diameters for this application are 
between 30 and 150 nm. Usually, the nanoparticle surface is modified using a ligand 
in order to target specific tumor cell molecules. As more ligands are attached on the 
nanoparticle surface, there are more chances to bind the target cell. The amount of 
signaling groups influence the sensitivity of the detection method [145].

Some NPs have innate optical properties like QDs [162] and metallic NPs due 
to surface plasmon resonance [48, 163–165]. QDs nanoparticles labeled with 
18F-Fluoropropionate and functionalized with RGD peptides demonstrate proper 
optical characteristics for PET imaging of prostate cancer [166].

Gold nanoparticles proved long circulation time and useful optical properties 
like high spatial resolution and high sensitivity for CT imaging. By functionaliza-
tion with chitosan polymers, they were used for colorectal adenocarcinoma imaging 
[167]. Also, they were conjugated with antibodies for lymph nodes and metastases 
imaging in squamous cell carcinoma, head and neck cancer [168]. Moreover, gold 
nanoparticles radiolabeled with 111In and 125I can be used in SPECT imaging of 
epidermoid carcinoma [169].

Iron oxide nanoparticles are widely used in MRI imaging because they can 
improve and enhance the contrast [170]. In glioblastoma, iron oxide nanoparticles 
functionalized with peptides and polymers accumulate within tumor microenvi-
ronment by forming self-assembly structures [171].

Furthermore, polymeric materials such as mesoporous silica nanoparticles carry 
tumor targeting properties and are proposed for PET imaging in breast cancer. 
Besides this, they are able to perform drug delivery applications [172].

Regarding US imaging, perfluorocarbon nanoparticles can be used for a real-
time and non-invasive analysis of thyroid carcinoma [173].

Considering the other nanoparticle formulations (nanoliposomes, micelles, 
polymersomes, dendrimers and aptamers), these ones need to be functionalized 
with specific contrast agents and fluorophores. The advantages to implement NPs 
such as molecular imaging tools are biocompatibility and biodegradability [174], 
encapsulation properties [175], water solubility in some cases [176] and targeting 
ligands accessibility [177].

Fluorophores are widely used in diagnosis applications and imaging of cellular 
processes. One drawback of conventional fluorophores is represented by the loss of 
fluorescence after a long exposure to light, known as photobleaching.

Various processes are known to induce the molecular relaxation without 
the emission of light, which depends on different chemical or physical factors 
like temperature, pressure, the presence of organic molecules or polymers and 
ionic strength, resulting in a decrease in the fluorescence intensity, referred to 
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as quenching [178]. Quantifying this decrease in fluorescence emission can give 
information about the concentration of a specific compound in the proximity of the 
nano-objects. Lately, numerous diagnostic techniques based on this phenomenon 
have been introduced [179, 180].

On the other hand, another luminogen system based on a process called 
aggregation-induced emission (AIE), developed by Ben Zhong Tang’s group in 2001 
[181], gathered increased interest for imaging and theranostic applications. Most 
luminescent systems have a lower efficiency in an aggregated state, thus limiting 
the concentration that can be used for imaging purposes and at the same time the 
achievable intensity of the emitted light. However, in the case of AIEgens, aggregation 
works constructively becoming highly luminescent in concentrated solutions or in an 
aggregated state. The utilization of AIEgens in theranostics has lately become a reliable 
approach, because of several advantages that include good biocompatibility, excellent 
optical properties and simple preparation and conjugation [182]. One example implies 
the conjugation of an AIEgen (TPS) with a short peptide (DEVD) that is susceptible to 
caspase-3 cleavage and that is bound to a prodrug that induces apoptosis [183].

5. Targeted therapy

Targeted therapy is a form of treatment, which implies the ability of a drug to 
accumulate at a target site in the body and thus decrease the side effects in healthy 
cells and tissues. Nanocarriers are often used to improve the bioavailability of 
the active compounds at the target site and allow the use of significantly reduced 
concentrations, therefore limiting the exposure of normal cells to the toxic effects 
of the drugs [184].

The most common strategies for drug delivery include local drug delivery, pas-
sive targeting, physical targeting, magnetic targeting and active targeting [185].

Local drug delivery is a promising strategy for the treatment of metabolic disor-
ders (diabetes and obesity) [186], periodontitis [187] and bone disorders [188] due to 
its potential to keep drug availability in the target site for a prolonged period of time.

Passive targeting is based on enhanced permeability and retention effect (EPR 
effect) present in many tissues [189, 190]. Macromolecules and NPs from the 
bloodstream accumulate preferentially in tumors and inflamed sites, where the 
permeability of the vasculature is often enhanced. Moreover, the lymphatic drain-
age system is damaged in tumors, leading to a prolonged retention of the macromol-
ecules and NPs in the tumor interstitium [191].

Physical targeting depends on the optical, thermal and electrical properties of the 
carriers [192], which can disintegrate at lower pH values or higher temperature and 
release the free drug. The tumor microenvironment is more acidic compared to the 
normal surrounding tissues, due to the accumulation of lactate, and therefore pro-
vides an opportunity for the use of pH-sensitive nanocarriers in cancer therapy [193].

Another approach for drug targeting refers to the accumulation of superpara-
magnetic carriers in target sites under the action of external magnetic field. Thus, 
a larger dose of the drug can be released at the tumor site for an increased period of 
time and side effects of chemotherapy can be diminished [194]. Once systemically 
administered, besides the type and intensity of the magnetic field and size of the 
NPs, many biological factors influence the infiltration of the superparamagnetic 
carriers to the target site, including the effect of Brownian motion, blood viscosity, 
interaction of the particles with the red blood cells and blood matrix [195].

While in the case of passive targeting the physicochemical properties of the nano-
carrier system play the major role, active targeting relies on the interaction between 
the surface of the carrier and antigens expressed on target cells. NPs are functionalized 
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by adsorption or chemical conjugation with a large variety of ligand types such as 
peptides, small molecules, proteins, and aptamers, which present a high specificity for 
epitopes or receptors that are uniquely expressed or overexpressed on the target sites 
[196]. Examples of commonly used ligands and their targets are presented in Table 2.

6. Theranostic NPs recently developed

Theranostics refers to the use of the nanoparticle for molecular imaging and 
therapy. Considering the biological barriers, the biocompatibility, easy surface 
modifications, controlled pharmacokinetics and biodistribution and accommoda-
tion in various microenvironment conditions are still necessary to be accomplished 
[211]. Polymers are widely used for NP formulations because of biocompatibility 
and biodegradability properties in vivo [212–215]. Besides coating the nanoparticle 
surface with polymers, the fluorophores and other contrast probes are widely used 
to achieve high-sensitivity molecular imaging.

There are three main theranostic directions that involve the use of nanoparticles. 
The first strategy refers to treatment effect evaluation through molecular imaging 
with NPs as contrast agents. The aim of the second one is to assess a nanoparticle 
therapeutic strategy with molecular imaging probes. The third one describes 
nanoparticles as target therapy agents and molecular imaging tools at the same time. 
In this regard, for the first two procedures, the NP system is either the evaluator or 
the evaluated component, and for the last strategy, these roles are overlapping. Each 
one of these roles makes possible the development of future therapies (Figure 5).

The nanoparticles’ evaluator role (Figure 5(1)) can be emphasized in the next 
study. Zhang et al. developed Annexin A5-conjugated polymeric micelles with dual 
role: detection of apoptosis via SPECT and optical imaging and also therapy outcomes 
investigation. In this study, the apoptosis was induced by drugs like cyclophospha-
mide, etoposide, poly (L-glutamic acid)-paclitaxel and cetuximab (IMC-C225) 
anti-EGFR antibody. The NPs were used to observe the apoptosis-induced processes 
in lymphoma and breast cancer in vivo. Therefore, SPECT and fluorescence molecular 
tomography allowed cellular death visualization in tumors [216].

Class Ligand Targeted 

biomarker

Disease (clinical trials = *) Ref.

Antibodies Trastuzumab, 
cetuximab, 
Anti-CD20 mAbs 
(Rituximab)

HER2 receptor, 
EGFR, CD20

Breast cancer*, esophageal 
carcinoma*, pancreatic 
adenocarcinoma*, head and 
neck cancer*, non-Hodgkin’s 
lymphoma*, rheumatoid 
arthritis*

[197–203]

Peptides Transferrin Transferrin 
receptor

Cancer [204, 205]

Small 
molecules

Folic acid Folate receptor Rheumatoid arthritis*, ovarian 
cancer, lung cancer*

[206, 207]

Aptamers A10RNA, AS1411, 
Anti-MUC1

Extracellular 
domain of 
the PSMA, 
nucleolin, 
MUC1

Prostate cancer, breast cancer [208–210]

*Refers to clinical studies.

Table 2. 
Commonly used molecules for active targeting.
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NP effect evaluation (Figure 5(2)) can be performed based on probes that are 
currently used in clinical molecular imaging. For example, 2-deoxy-2-[F-18]fluoro-
D-glucose (18F-FDG) probe is used for metabolic activity measurements via PET/CT 
imaging. This radiolabeled probe can act as prognostic biomarker for nanoparticle-
assisted photothermal therapy monitoring in neuroendocrine lung cancer in vivo [217].

Another strategy is to ensure both imaging and therapy at the same time 
(Figure 5(3)). In this situation, the nanosystem can be composed of two different 
components bonded together in order to perform a theranostic action.

The easiest way is to make use of the optical properties developed by some 
materials at nanoscale. Therefore, metallic nanoparticles can scatter and absorb the 
light in the NIR wavelength domain and are promising tools for cancer photother-
mal therapy [218].

In a different way, nanoparticles can be associated with molecular imaging 
techniques in order to enhance their efficiency. For example, doxorubicin-loaded 
polymeric micelles and perfluoropentane stabilized by the same block copolymer can 
perform US imaging and target therapy for breast and ovarian cancer [219, 220].

Some designs suggest the use of two different nanoparticles, which by conjuga-
tion with targeting ligands and drug molecules provide tumor visualization and 
target therapy. For example, quantum dot-mucin 1 aptamer-doxorubicin conjugates 
were used for ovarian cancer targeting and proved suitable optical properties for 
imaging and controlled release of the drug [221].

In addition to the molecular imaging techniques previously described, some 
nanoparticles can be used for photodynamic and photothermal therapy in order to 
perform targeting therapy.

Photodynamic therapy (PDT) implies the use of photosensitizer agents that 
under laser irradiation exert cytotoxic activity by generating reactive oxygen species 
[222, 223]. This therapy is very appreciated regarding multidrug resistance cancers 
and is suppose that it can replace the conventional chemotherapy [224]. PDT-
specific nanoparticles are used as photosensitizer carriers [225, 226]. Moreover, 
these nanocarriers can be functionalized with targeting ligands for better tumor 
selectivity and also with drug molecules for therapeutic effectiveness [227–229]. 
Gold nanoparticles loaded with a fluorescent drug Pc4 targeting PSMA-1 membrane 
antigen in prostate cancer are promising tools for surgical guidance and further 
therapeutic intervention [228]. EGFR-targeted liposomal nanohybrid cerasomes 
are proposed for PDT and immunotherapy in colorectal cancer due to their sensitive 
detection properties and anti-tumor efficacy [229].

By a theranostic point of view, photothermal therapy (PTT), also known as 
hyperthermia or thermal ablation therapy, acts as a diagnosis and a treatment 

Figure 5. 
Theranostic NPs action strategies.
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Stage Nanoparticle 

type

Therapeutic agent Diagnostic agent Pathology Target Ref.

Pre-
clinical

Liposomes 
(100–200 nm)

Paclitaxel pH-sensitive poly(ethylene oxide) (PEO)-
modified poly(beta-amino ester) (PbAE) 

nanoparticles

Ovarian adenocarcinoma EPR [235]

Silica 
(100–200 nm)

Paclitaxel and camptothecin Superparamagnetic iron oxide 
nanocrystals

Pancreatic cancer Folic acid [236]

Iron oxide 
(10–25 nm)

Anti-EGFRIgG Iron oxide nanoparticles Glioblastoma EGFR [237]

Gold nanorod 
(10 x 40 nm)

Heat Thermal/CT Breast cancer EPR [238]

Quantum dots 
(30–50 nm)

Paclitaxel, doxorubicin, 
5-fluorouracil

Quantum dots Many cancers CD44, folic acid [239]

Clinical 
trials

Silica (6–7 nm) cRGDY Ultrasmall inorganic hybrid nanoparticles Melanoma and malignant 
brain tumors

ανβ3 integrin [240]

Cyclodextrin 
(70 nm)

RNAi Transferrin Solid tumors Transferrin 
receptor

[241]

Silica-gold 
nanoshell

Photothermal ablation Nanoshell (MR and optical) Head/neck cancer, primary 
and/or metastatic lung 

tumors

EPR [242]

Gold (27 nm) Tumor necrosis factor alpha Gold nanoparticles Solid tumors EPR (passive 
mechanism)

rhTNF (active 
mechanism)

[243]

Iron oxide Endorem (superparamagnetic 
particles of iron oxide)

Iron oxide Healthy volunteers none [244]

Abbreviations: EPR, enhanced permeability and retention effect; EGFR, epidermal growth factor receptor; cRGDY, peptide cyclo-(Arg-Gly-Asp-Tyr); rhTNF, recombinant human tumor necrosis factor alpha; 
RNAi, ribonucleic acid interference; MR, magnetic resolution.

Table 3. 
Nanoparticles used in clinical (according to clinicaltrials.gov) and pre-clinical work.
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strategy. It uses electromagnetic radiation in infrared (IR) region and provides high 
specificity analysis and minimal invasiveness [230]. The nanocarriers used for PTT 
need to have the capacity to target the tumor site after heat generation under laser 
irradiation [231]. For this purpose, various drug molecules and targeting ligands are 
encapsulated into nanoparticles. Gold nanoshells targeting HER2 positive breast 
cancer proved optical contrast and high tissue penetration under NIR irradiation 
[218]. Polymer nanoparticles functionalized with IR820 and doxorubicin were used 
in ovarian cancer and showed prolonged circulation time and drug accumulation 
at the target site [232]. It is important to mention that the generated temperature 
is usually between 42 and 45°C and sometimes higher depending on tumor tissue 
[233, 234].

6.1 Theranostic nanoparticles used in the clinic

There are various types of theranostic NPs that can be designed and used for 
cancer diagnosis and therapy. Their applicability is highlighted by liposomes, which 
are intensively used in clinical trials due to their specific features. In Table 3, several 
theranostic nanoparticles used in clinical (clinical trials) and pre-clinical work for 
cancer diagnosis and therapy are shown.

Theranostics has the potential to predict and evaluate therapy response, offer-
ing advantageous opportunities to modify the ongoing treatments and to develop 
new ones even in a personalized manner [245]. Nanoparticles have gained a lot of 
confidence in becoming important tools for a lot of medical applications due to 
their properties [17, 19].

The newest designs focus on hybrid nanostructures for better sensitivity and 
accuracy. These nanohybrids are currently studied and they proved effectiveness 
in cancer targeting by combining different imaging techniques with drug delivery 
strategies [246–248].
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