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Abstract

Complex diseases are caused by a combination of genetic and environmental 
factors. Unraveling the molecular pathways from the genetic factors that affect a 
phenotype is always difficult, but in the case of complex diseases, this is further 
complicated since genetic factors in affected individuals might be different. 
Polycystic ovarian syndrome (PCOS) is an example of a complex disease with 
limited molecular information. Recently, PCOS molecular omics data have 
increasingly appeared in many publications. We conduct extensive bioinformat-
ics analyses on the data and perform strong integration of experimental and 
computational biology to understand its complex biological systems in examin-
ing multiple interacting genes and their products. PCOS involves networks of 
genes, and to understand them, those networks must be mapped. This approach 
has emerged as powerful tools for studying complex diseases and been coined 
as network biology. Network biology encompasses wide range of network types 
including those based on physical interactions between and among cellular 
components and those baised on similarity among patients or diseases. Each 
of these offers distinct biological clues that may help scientists transform their 
cellular parts list into insights about complex diseases. This chapter will dis-
cuss some computational analysis aspects on the omics studies that have been 
conducted in PCOS.

Keywords: polycystic ovarian syndrome, PCOS, systems biology, computational 
systems biology, protein-protein interaction analysis, network biology, pathway 
analysis

1. Introduction

Findings have shown that most pathological conditions and diseases involve 
genetic components, in diseases such as cystic fibrosis, hemophilia, and sickle cell 
disease, are caused by mutations in a single gene [1–3]. However, there are many 
other common medical problems such as cardiovascular diseases, diabetes mellitus, 
obesity, and polycystic ovarian syndrome (PCOS), which are not caused by single 
mutations [4–7]. The etiologies of those problems are much more complex where 
these disorders are highly associated with multiple genes/proteins in combination 
with multifactor including genetics, environment, and lifestyle. Many efforts have 
been done to overcome the complexity of these medical problems.
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Studying diseases at the molecular level is one of the efforts in understand-
ing complex diseases. The emergence of biological technology has yielded great 
advances in deciphering the pathobiology of diseases by generating numerous large 
omics (genomics, transcriptomics, proteomics, and metabolomics) datasets. These 
data capture a wide range of disease phenomena including mutations, gene expres-
sion, protein expression, metabolite profiling, and genetic and physical interactions 
between biological molecules, where each dataset offers distinctive of knowledge to 
understand the diseases. Complex diseases are insufficient by a single level inde-
pendent omics dataset since those diseases are regulated at multiple systems levels. 
They can be manifested by integrated omics analysis (integration of multi- 
omics data).

The multi-omics analysis has brought a new challenge to develop methods or 
pipelines, statistics, algorithms, and tools for integration, and the assistant of 
computational systems analysis is in great need. Implementing integrative analysis 
on these multiple omics data is the best way in deriving systematical and compre-
hensive views of diseases, achieving a better understanding of disease mechanisms 
and finding operable personalized health treatments. With the help of computa-
tional systems analysis, research in the field of biology and biomedicine has gained 
tremendous benefits over the past few decades.

Computational systems analysis connects interdisciplinary perspectives with 
mathematical, algorithms, statistical, modeling and simulations, data reposi-
tory, and/or network visualizations using computational technique to investi-
gate certain biological phenomenon or condition in a systems view. Currently, 
there are many studies on the integrated omics data and used network biology, 
which is one of the main techniques in computational systems analysis to obtain 
an overview at the systems level in elucidating the pathobiology of human 
diseases. Network biology could systematically connect all the molecules 
generated from the omics studies that have been identified to be related to the 
disease. Other than network biology, there are studies that used simulations 
approach to have a better understanding of diseases. Database development is 
another computational systems analysis that serves to provide overall informa-
tion about the diseases. This chapter encompasses the computational systems 
analysis, such as network biology, simulations, and data repository, which  
have been used to understand the pathobiology of human diseases,  
particularly in PCOS.

2. Network biology in disease

Early biological experiments revealed that proteins, as the main agents of 
biological function, determine the phenotype of all organisms. In the advent of 
molecular biology, it is assumed that proteins do not naturally function in iso-
lated forms; instead, they have interactions with one another and also with other 
molecules (e.g., DNA, RNA, and metabolites) that mediate metabolic, signaling 
and regulatory pathways, cellular processes, and organismal systems [8]. Most of 
the biological characteristics or phenotypes arise from the complex interactions 
between the cell’s numerous constituents [9]. Any interruptions to the interac-
tions between those molecules can disturb the normal behavior of the cells and 
contribute to the medical problems or diseases [10]. Thus, studies on network 
biology in disease are essential as it can be used to detect interrupter biological 
events since the network biology plays a role to perceive the biological role within 
the cells [11].



3

Computational Systems Analysis on Polycystic Ovarian Syndrome (PCOS)
DOI: http://dx.doi.org/10.5772/intechopen.89490

In network biology, there are two types of analysis that often be performed to 
understand the pathobiology of diseases, that is, protein-protein interaction and 
pathway analysis.

2.1 Protein-protein interaction analysis

Protein is a biological molecule that plays an important role in the molecular 
process in a cell. It acts as an enzyme for metabolic reaction, DNA replication, 
molecular transporter, antigen defensive system, and cell to cell information 
transmission [12]. Proteins physically interact with each other to perform a 
biological function in a cell. Protein-protein interaction (PPI) has become a valu-
able approach to study the molecular mechanisms of disease [13]. For example, 
non-metastatic and metastatic breast tumors, as well as the markers of metastasis, 
have been classified and identified by a network-based method. Based on this 
study, the said method is more effective because it enables detection of the genes 
that play a role in metastasis, which is not otherwise picked up during differential 
expression analysis [14]. Protein networks for type-1 diabetes were constructed 
by integrating GWAS data with the information from protein-protein interaction 
databases. Eight new genes were subsequently identified, hence providing better 
knowledge of the mechanism of type-1 diabetes [15]. Besides, new pathways have 
been defined from the protein network-based Huntington, giving a deeper under-
standing of the pathogenesis of Huntington disease [16]. These studies indicate 
that a network, particularly that of proteins, could be one of the powerful tools 
in understanding the molecular basis of diseases. Thus, this method could be 
applied to unveil the molecular basis of PCOS.

There are several approaches including yeast-2-hybrid (Y2H) and mass spec-
trometry (MS) that have been used to identify the PPI [17–20]. All approaches 
have generated large interactome and progressively identified PPI network in 
several organisms such as virus (herpes virus) [21], prokaryote (Escherichia coli) 
[22], eukaryote (yeast) [18–20], nematode [23], fruit fly [24], and human [25, 26]. 
These PPI datasets have been compiled and stored in PPI databases such as 
Biological General Repository for Interaction Datasets (BIOGRID) [27], Database 
of Interacting Proteins (DIP) [28], GeneMANIA [29], Human Integrated Protein-
Protein Interaction Reference (HIPPIE) [30], Human Integrated Protein-Protein 
Human Protein Reference (HPRD) [31], Interologous Interaction Database (I2D) 
[32], IntAct [33], MIPS Mammalian Protein-Protein Interaction Database (MIPS) 
[34], Molecular Interaction database (MINT) [35], and STRING [36] (Table 1).

Combination of PPI forms a network consists of two main components, i.e. (1) 
node that represents protein and (2) edge that refers to interaction (Figure 1). PPI 
network has been applied for evolutionary study [45], gene/protein functional 
prediction [46], and also pathobiology of diseases [47, 48]. There are few analyses 
that can be applied using the PPI network approach, and PPI network topological 
analysis is one of the analyses that often are used to study the pathobiology of human 
diseases. Degree distribution, which is a fraction of a number of the interaction of a 
node with the number of the interactions in a network, is one of the components in 
the network topology that have been measured. A node that has a high degree distri-
bution is known as a hub protein. A hub protein is hypothesized to code an essential 
gene that plays an important role in a cell. Any physical or chemical alterations that 
occur to this hub protein can interrupt the interaction with other proteins, disturb 
the normal behavior of the cells and associated to a disease. Previous study by Wachi 
et al. found that proteins encode for the upregulated genes in the lung squamous cell 
carcinoma tend to have higher degree distribution [49]. Jonsson and Bates also found 
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Database Description URL Reference

Agile Protein 

Interactomes 

DataServer (APID)

Is a collection of integrated known 

validated protein interactomes 

from 400 species, including 

humans

http://apid.dep.usal.es/ [37]

BioGRID Curates sets of genetic, physical, 

and chemical interactions in 

humans and all major organisms

https://thebiogrid.org/ [27]

Database of 

Interacting Protein 

(DIP)

Is manually curated by expert 

curators. This database stores 

experimental PPI data

https://dip.doe-mbi.

ucla.edu

[38]

GeneMANIA Contains known PPI interactions, 

which are derived from curated 

PPI databases and experiments. 

Predicts PPI interactions in six 

species, including humans

https://genemania.org/ [29]

Human Integrated 

Protein-Protein 

Interaction rEference 

(HIPPIE)

Contains only human PPI 

interactions from experiments and 

curated PPI databases

http://cbdm-01.zdv.uni-

mainz.de/~mschaefer/

hippie/

[30]

Information 

Hyperlinked over 

Proteins (iHOP)

Provides PPIs curated from 

literature mining

https://bio.tools/ihop [39]

Human Protein 

Reference Database 

(HPRD)

Stores information regarding 

proteins in humans, including PPIs

https://www.hprd.org/ [31]

Interologous 

Interaction Database 

(I2D)

Contains integrated known, 

experimental, and predicted PPIs 

for humans and five other species

http://ophid.utoronto.

ca/ophidv2.204/

[32]

InnateDB Stores experimentally verified 

interactions between genes, 

proteins, and signaling pathways 

involved in the innate immune 

response to microbial infection in 

humans, mice, and bovines

https://www.innatedb.

com/

[40]

IntAct Molecular 

Interaction Database 

(IntAct)

All interactions are retrieved from 

literature and eleven other PPI 

databases. Is curated by EMBL-EBI 

and other PPI database teams

https://www.ebi.ac.uk/

intact/

[33]

Molecular 

INTeraction database 

(MINT)

Compiles experimentally verified 

PPIs curated from the scientific 

literature

https://mint.bio.

uniroma2.it/

[41]

STRING Is a PPI database that provides 

interaction evidence from known 

interactions (curated databases 

and experiments), predicted 

interactions (neighborhood, 

gene fusion, and co-occurrence), 

and others (coexpression and 

text-mining)

https://string-db.org/ [36]

The Extracellular 

Matrix Interaction 

Database (MatrixDB)

Stores interactions of extracellular 

matrix proteins, proteoglycans, and 

polysaccharides

http://matrixdb.univ-

lyon1.fr/

[42]

The Human Protein 

Interaction Database 

(HPID)

Compiles proteins from BIND (this 

PPI database is not open access), 

DIP, and HPRD and predicts 

potential PPIs

http://wilab.inha.ac.kr/

hpid/

[43]
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346 proteins-related to cancer have two times higher degree connectivity compared 
to the non-cancer proteins [50]. Number of interaction among proteins that are 
related to disease in the Online Mendelian Inheritance in Man (OMIM) Morbid Map 
is higher than the interaction of non-disease proteins [51].

Linkage method is another network analysis that can be used to understand the 
pathobiology of human diseases [50, 52]. The basic hypothesis in this method is 
the two proteins (pairwise linkage) that interact with each other tend to be related 
to the same diseases. Enrichment analysis done by Oti et al. [53] has demonstrated 
that the proteins that interact with each other are significantly associated with the 
same diseases. By a pairwise linkage method, they also predicted that Janus kinase 
3 (JAK3) as a protein that might be associated with severe combined immunode-
ficiency syndrome (SCID) as JAK3 directly interacts with proteins of lymphocyte 
specific protein-tyrosine (LCK), protein-tyrosine phosphatase (PTPRC), and 
interleukin 2 receptor (IL2RG) [53].

Clustering is also a technique in network analysis in human diseases. A cluster 
refers to a small group that has similar topological network properties [48, 54]. In this 
method, it is hypothesized that the proteins in a module tend to be associated with the 
same diseases. Clusters are identified using algorithms, and there are several cluster-
ing algorithms that have been developed to generate the clusters such as CFinder [55], 
clustering with overlapping neighborhood expansion (ClusterONE) [56], cluster-
ing based on maximal cliques (CMC) [57], clique percolation method (CPM) [58], 

Database Description URL Reference

The International 

Molecular Exchange 

Consortium (IMEx)

Provides nonredundant PPI 

datasets from major PPI databases 

like BIND, IntAct, MINT, DIP, and 

MIPS

https://www.

imexconsortium.org/

[44]

The Mammalian 

Protein-Protein 

Interaction Database 

(MIPS)

Compiles high-quality PPIs from 

experiments

http://mips.helmholtz-

muenchen.de/proj/ppi/

[34]

Table 1. 
List of PPI databases concerning humans.

Figure 1. 
PPI and PPI network. PPI network is formed from several PPI. The color of the nodes refers to the protein.
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density-periphery based clustering (DPClus) [59], density-periphery overlapping-
based clustering (DPClusO) [60, 61], identifying protein complex algorithm (IPCA) 
[62], local clique merging algorithm (LCMA) [63], restricted neighborhood search 
clustering (RNSC) [64], Markov clustering (MCL) [65], molecular complex detection 
(MCODE) [66], and so on. Wu et al. developed the clustering algorithm to identify 
the clusters, and they found that the proteins in the same clusters are associated with 
the same diseases [67]. Rezaei-Tavirani et al. identified clusters using ClusterONE 
algorithm to search for potential biomarkers in esophagus adenocarcinoma [68]. Xiao 
et al. also used clustering methods to identify the candidate proteins for endometriosis 
biomarkers by their own clustering algorithm and they found the majority of pre-
dicted biomarkers in the generated clusters involved in endometriosis pathway [69].

PPI network can be also applied to understand the association between diseases 
as clinically and there is the occurrence of comorbidity, which is a condition of a 
patient that is simultaneously affected more than one disease. Disease association 
network based on PPI analysis can be used as a framework to classify the disease, 
identify the risk of having other diseases, predict the effect of disease, and search for 
a more effective therapeutic technique for disease [70, 71]. There are few hypotheses 
in constructing the disease association network, and one of them is diseases can be 
associated when those diseases shared the proteins and interactions (Figure 2).

The components in a disease association network are similar to the PPI network. 
It consists of node and edge, where node refers to disease and edge is the interaction 
of disease. The first human disease network has been constructed among 867 diseases 
using PPI information by Goh et al. (Figure 3) [73]. This network has been used to 
understand how diseases comorbid to each other by identifying the shared proteins and 
interactions between the diseases [72]. The disease association network is also useful to 
predict the disease biomarkers. Ahmed et al. have successfully identified 73 potential 
biomarkers for neurological diseases, that is, Alzheimer’s disease, epilepsy, and dys-
lexia, by integrating the protein-disease association with the PPI information [74].

Figure 2. 
Two different approaches to identify the association between diseases. The first approach used shared nodes (red 
nodes) between diseases. The second approach used shared interactions (blue edges) between disease-related 
proteins [72].
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To summarize, PPI analysis is a powerful approach that can be applied to 
improve the understanding of the pathobiology of diseases, which in turn can 
appraise approaches to diagnose, prevent, and treat the diseases. The analysis of 

Figure 3. 
Human disease association network. This network was constructed by Goh et al. using PPI information [73].

Figure 4. 
Example of a biological pathway. This is the insulin signaling pathway that was retrieved from the KEGG 
database [80].
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network properties can provide the opportunity to interpret the normal and altered 
biological behaviors that lead to diseases.

2.2 Pathway analysis

A pathway is a group of molecules that interact to perform the same biological 
function. PPI network has a type of node that is protein and the undirected network 
(Figure 4). Meanwhile, the pathway consists of a few types of nodes, which are sig-
naling genes, proteins, complex, and metabolites, which are connected by several 
interactions such as activation, inhibition, binding, and others. A pathway depicts 
a mechanism in performing a specific biological activity in a cell. As a PPI network, 
a combination of several pathways forms a pathway network. Pathway information 
can be retrieved from several pathway databases such as Kyoto Encyclopedia of 
Genes and Genomes (KEGG) [75], Reactome [76], WikiPathways [77], BioCyc [78], 
and BioCarta [79]. Table 2 shows databases that have pathway information in 
human.

There are three main types of pathways, that is, signaling, regulatory, and meta-
bolic pathways. Signaling pathway visualizes the cellular response after receiving the 
extracellular signal. The signal transmission starts when the extracellular gives a signal 
to activate the receptor that is located in the cell surface. The activated receptor will 
bind to the signal and alter the intracellular molecules to respond [84]. Any disrup-
tion in the signaling pathway can cause disease since the cells cannot be normalized 
or properly respond when the signals are received [85]. Regulatory pathway displays 
the gene or protein expression in a cell, either it is upregulated or downregulated. The 
biological activities such as transcription, translation, and post-translational modifica-
tion are among the activities that involve the regulatory pathway [86]. Meanwhile, in 
a metabolic pathway, the primer metabolite will be modified into another metabolite 
through a series of chemical reactions catalyzed by enzymes [87].

Pathway database such as KEGG also provides pathways that visualize the mech-
anisms of several complex diseases such as cancer, diabetes mellitus, Alzheimer’s 
disease, Parkinson’s disease, and so on [75]. Basically, a complex disease involves 
several pathways that include all signaling, regulatory, and metabolic pathways. The 
combination and the integration of several pathways with other types of data such 
as PPI is one of the valuable approaches that can be used to improve the under-
standing of complex disease mechanisms [88].

As an analogy, it is essential to have a diagram such as a circuit diagram for an 
electrician to understand the principle of electricity. A diagram such as a biological 
network is also important in the medical field to assist the researchers or clinicians 
to understand the mechanisms of diseases. The biological network can suggest a 
novel means of developing molecular therapies where the network is the target of 
therapy rather than individual molecules within the network.

3. Modeling and simulation

Mathematical modeling and computer simulation are another computational 
systems analysis that has been used to study disease progression and drug develop-
ment [89, 90]. While the biological network is generally constructed in the static 
state using annotated genes, proteins, and metabolites and linked these molecules 
using information from PPI and pathway databases, modeling and simulation are 
constructed in quasi-steady state, where they require additional data including 
physicochemical and physiological balances and bounds (mass and energy con-
version) [91]. Modeling and simulation have been widely used in several chronic 
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Database Description URL Reference

BioCarta A pathway database that provides gene interaction within pathways for human cellular processes https://cgap.nci.nih.gov/

Pathways/BioCarta_Pathways

[79]

HumanCyc One of the pathway databases in BioCyc that consists of human metabolic pathways https://humancyc.org/ [81]

Kyoto Encyclopedia of Genes 

and Genomes (KEGG)

A repository to understand the high-level functions and utilities of the biological system of several 

organisms including humans that were obtained from genome sequencing and other high-throughput 

experimental technologies

https://www.kegg.jp/ [80]

PANTHER Contains several biological information such as pathways of proteins coupled with tools for protein 

analysis for several organisms including humans

http://pantherdb.org/ [82]

Reactome A pathway database for several organisms including humans that provides tools for pathway analysis https://reactome.org/ [83]

Wikipathways A pathway database that contains pathway information of several organisms such as humans https://www.wikipathways.org/

index.php/WikiPathways

[77]

Table 2. 
Lists of human pathway database.
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diseases such as diabetes, Alzheimer’s disease, coronary heart disease, and infec-
tious diseases such as meningitis and influenza [89, 92–95].

In this approach, there are several types of models that have been applied to 
understand the human diseases, which are pharmacokinetics (PK) model, phar-
macokinetics/pharmacodynamics (PKPD) model, disease progression model, 
metamodel, and Bayesian model averaging [90]. PK model is widely used in the 
field of clinical pharmacology as it simulates the rate and extent of drug distribu-
tion to different tissues and the rate and impact of drug disposition. It is a very 
important model as it predicts the impact variability in target patient populations 
in response to drug administration [96]. PKPD model is another model in the drug 
development where it integrates PK and PD components. This model establishes 
and measures the relationships of dose-concentration-response and describes and 
predicts the effect-time courses in consequence of a drug dose [97]. Meanwhile, 
the disease progression model is the time course quantitative descriptor of disease 
status. It was first simulated in 1992 in Alzheimer’s disease using the cognitive 
component of the Alzheimer’s disease assessment scale (ADASC) to assess the 
dis ease severity [93]. This model characterizes the natural progression of the dis-
ease by incorporating biomarkers of disease severity and/or clinical outcomes. 
Disease progression model is often used to quantify the effects of drug treatment 
on disease progression by integrating with PK and PKPD models [98]. Metamodel 
involves model development by combining results from multiple previous studies. 
In human disease study, this model can be used to compare the effects and safety 
of new treatments with other treatments, to reevaluate data of mixed or different 
result situations, and to describe PD or disease progress models [90, 99]. In the 
meantime, Bayesian model averaging combines models as there is a situation where 
previous studies show several models for a drug in a certain disease, and it is unclear 
which model is suitable. The Bayesian model averaging reduces the uncertainty by 
allowing all existing models to contribute to a simulation with weighing the inputs 
on the basis of certain criteria such as the quality of data or model [90, 92].

Complex diseases involve many genes, proteins, and metabolites, and these 
molecules are either activated or deactivated in certain tissues in particular time, 
depending on the disease status or in the influences of several factors such as drug 
administration. Hence, modeling and simulation are efficient approaches in the 
computational systems analysis as these approaches manage to dynamically monitor 
and understand the progress of diseases in particular situation, which in turn can 
assist in improving the specific treatment and developing the efficient drugs for 
complex human diseases.

4. Data repository

Data are the most important resource in computational systems analysis. Most 
of the analyses require the integration of several data to understand the diseases, 
particularly complex diseases in a systemic view. For example, several omics data 
(genomics, transcriptomics, proteomics, and/or metabolomics) were integrated 
with interactions data (PPI or pathway) to construct network biology. Modeling 
and simulation also involve omics data integration to capture the complexity of 
molecular events causing the diseases. In addition, cellular and physiological pro-
cesses are complex systems [100] that are controlled by signals from the extracel-
lular environment and coordinated by intracellular interaction and transcriptional 
or gene regulatory networks assembled into functional modules [101]. In order to 
understand cellular processes as interconnected and interdependent systems and 
in the context of a biological phenomenon, requires an integrative approach that 
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draws upon data from as many diverse data sources as possible including data from 
the literature, public databases, biochemical and kinetic experiments, phenotype 
studies and high-throughput analyses of the genome, transcriptome, proteome, 
interactome, and metabolome.

Hence, data repository or database development is one of the main approaches 
to facilitate the arbitrary querying of the data to perform the computational systems 
analysis. Besides, recent developments in high-throughput approaches enable the 
analysis of the transcriptome, proteome, interactome, metabolome, and phenome 
on a previously unprecedented scale, thus contributing to the deluge of experi-
mental data and scattering in an unorganized way. The data repository is one of the 
efforts in combining the growing sets of experimental data in a proper way that can 
be publicly accessed to have further analysis. For example, there are databases such 
as ArrayExpress [102], Gene Expression Omnibus (GEO) [103], and CIBEX [104] 
that stores datasets for gene expression studies to be publicly accessed. Other than 
that, there are also literature databases such as PubMed, Scopus Online, and Google 
Scholar for the researchers to retrieve published studies, and there are several stud-
ies that provide the generated omics datasets in the supplementary section.

There are also databases such as disease databases that have performed several 
analyses prior to deposit the data into the database. The human disease databases 
have been developed in order to store information about diseases such as genes, pro-
teins, metabolites, drugs, literature, biological processes, tissues, and others that are 
related to a particular disease in order to understand the pathobiology, pathogenesis, 
and pathophysiology of diseases. Currently, databases, such as DisGeNET [105], 
MalaCards [106], Online Mendelian Inheritance in Man (OMIM) [51], Open Targets 
[107], GWAS Catalog [108], GWASdb [109], DISEASES [110], and Human Gene 
Mutation Database (HGMD) [111], have been developed to store several informa-
tion about human diseases. There are also databases that have been developed that 
specifically store data or information of a disease such as T2D-Db [112] and T2D@
ZJU [113] for type-2 diabetes, AlzBase [114], AlzGene [115], and NIAGADS [116] 
for Alzheimer’s disease, and The Cancer Genome Atlas (TCGA) [117] and The 
International Cancer Genome Consortium (ICGC) [118] for human cancers.

Nowadays, the number of databases that hold a growing number of generated 
data is also increased, which has led to a new challenge in selecting the best and 
suitable database for further computational systems analysis. Nevertheless, the 
presence of current available data repository or databases has eased the researchers 
without having to extensively search the data to integrate the data and visualize the 
data into a network and/or model in order to harness a comprehensive systems-level 
understanding of pathophysiological processes of human diseases.

5. Computational systems analysis progress in PCOS

PCOS is a heterogeneous disorder that may be affected by multiple factors 
including genetic, lifestyle, and environment. The definition of PCOS is unclear, 
where it is defined by a combination of different features that lead to its diagnostic 
criteria remain controversial. PCOS women also experience multi-symptoms, and 
the diseases that comorbid to PCOS are widely varied [6, 119]. The complexity in 
PCOS is evident that many genes, proteins, and metabolites involved in the pathobi-
ology of PCOS. All omics platforms have been applied to identifying the molecular 
basis of PCOS (Table 3) [120].

Even though all omics have been performed in PCOS, the pathobiology of PCOS 
is still far from understood. Since the prevalence of PCOS women is increased 
and if they are left untreated, PCOS women are at higher risk to develop other 
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chronic diseases (endometrial cancer, type-2 diabetes and cardiovascular diseases), 
and other approaches such as computational systems analysis need to be done to 
improve the understanding in PCOS. By far, several studies have integrated the 
omics platforms using computational systems analysis to provide a systems-level 
understanding of PCOS.

5.1 PPI and pathway analysis

In PCOS, PPI- and pathway-based analysis is also often used to identify the genes/
proteins, ontologies, and pathways that might be involved in this disorder. Among 
the earliest full-paper study in using PPI analysis in PCOS was published in 2009. In 
this work, Mohamed-Hussein and Harun combined seven microarray datasets and 
integrated with PPI information and successfully identified a hypothetical protein, 
C1ORF123, and several ontologies that might be highly involved in PCOS [128]. Prior 
to this study, there is an article outline in 2007 by Menke et al. that used a Newman 
algorithm to identify the small set of modules in the constructed PCOS PPI network 
that could lead to PCOS phenotypes [129]. Shen et al. [130] have constructed the 
regulatory network and PPI network by integrating several data such as genome-wide 
methylated DNA immunoprecipitation (MeDIP), regulatory interactions and PPI 
to investigate the relationship of insulin resistance (IR) with PCOS. In a regulatory 
network, the significant methylated genes, CCAAT enhancer binding protein beta 
(CEBPB) formed a network that regulated other genes that may play a role in both 
IR and PCOS. Meanwhile, the constructed PPI network showed that the methylated 
genes in PCOS-IR have a higher number of interactions and might act as key drivers to 
perform proper cellular functions. Shen et al. [130] also found several enriched path-
ways such as cancer pathways and MAPK signaling and ontologies including regula-
tion of metabolic process from both constructed networks that might be responsible 
in both PCOS and IR [130]. Shim et al. used pathway-based analysis on genome-wide 

Omics Description Examples of previous studies Reference

Genomics Identification genetics 

evidence in PCOS women

Identified 16 loci associated risk 

of PCOS in Chinese and European 

subjects

[121–124]

Transcriptomics Identification of 

differentially expressed 

genes (significantly 

up-regulated and down-

regulated genes) between 

non-PCOS and PCOS 

women

Identified 243 differential expressed 

gene in the granulosa cells between 

non-PCOS and PCOS patients

[125]

Proteomics Detection of differentially 

expressed protein 

between non-PCOS and 

PCOS women

Identified 186 significantly expressed 

proteins in the follicular fluid between 

non-PCOS and PCOS women

[126]

Metabolomics Detection of altered 

metabolites between non-

PCOS and PCOS women

The altered metabolites in the sera 

between non-PCOS and PCOS 

women revealed disruptions in several 

metabolic pathways such as steroid 

hormone biosynthesis, amino acids 

and nucleotides metabolism, and 

glutathione metabolism, as well as 

lipids and carbohydrates metabolism

[127]

Table 3. 
Omics approaches in PCOS.
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association study (GWAS) dataset of PCOS and successfully identified several PCOS 
pathways associated with ovulation and insulin secretion [131].

Kori et al. [132] used PPI and pathway analysis by integrating three microarray 
datasets of PCOS with PPI data, performing the pathway enrichment analysis and 
comparing the PCOS results with ovarian cancer and endometriosis. These analyses 
found that PCOS is closely related to endometriosis and ovarian cancer as they 
shared several molecules and pathways such as MAPK signaling, cell cycle, and 
apoptosis [132]. The integration of a microarray dataset with PPI information from 
REACTOME has found several proteins including Rho GTPase activating protein 
4 (ARHGAP4), Rho GTPase activating protein 9 (ARHGAP9), ras homolog family 
member G (RHOG) and LYN proto-oncogene, Src family tyrosine kinase (LYN), 
and pathways such as RhoA-related pathways, and glycoprotein VI-mediated activa-
tion cascade might involve in the PCOS pathogenesis [133].

Other than identifying the molecular basis and the biological functions that 
might relate to PCOS, PPI and pathway analysis are also applied to decipher the 
molecular relationship of PCOS with other diseases and improve the knowledge 
on PCOS treatments. Liu et al. [134] construct a PPI network, which consists of 
PCOS-related genes and target genes of Erxian decoction (EXD) to understand the 
pharmacological basis of the EXD action in treating PCOS. EXD is a traditional 
Chinese medicine composed of six types of herbs that can alleviate several prob-
lems such as ovarian failure, which is a problem that commonly experiences by 
PCOS women. In the constructed network, Liu et al. [134] identified 50 genes that 
might be key genes that involved in PCOS treatment with EXD since these genes 
are the EXD targets that are found to be related to PCOS [134]. Ramly et al. [135] 
also used PPI and pathway analysis to identify protein and pathways to explain the 
relationships between PCOS and 17 diseases such as migraine, ovarian cancer, and 
schizophrenia. They used a clustering approach by MCODE [66] to identify shared 
proteins between PCOS and other diseases and pathway enrichment analysis to 
identify pathways that might connect PCOS and PCOS-associated diseases [135].

Based on aforementioned studies, it is proved that PPI- and pathway-based can 
be used to identify genes/proteins, biomarkers, ontologies, and pathways that are 
related to PCOS, which in turn could improve the diagnosis and treatment in PCOS.

5.2 Data repository in PCOS

As mentioned, there are many datasets that have been generated by the omics 
platforms to identify the pathobiology of PCOS. The datasets are randomly dis-
tributed, and it is very tedious if the researchers intend to retrieve the information 
about PCOS. Hence, it is essential to have a repository that stores comprehensive 
information on PCOS.

There are three databases that have been developed by far to deposit the collated 
molecular information generated by previous studies, which are PCOSBase (www.
pcosbase.org) [136], PCOSKB (http://pcoskb.bicnirrh.res.in/) [137], and PCOSDB 
(http://pcosdb.net/) [138]. Both PCOSKB and PCOSDB contain 241 and 208 genes 
that related to PCOS, respectively. These databases searched for the PCOS-related 
genes against scientific literature. Meanwhile, PCOSBase identified 8185 PCOS-
related proteins that were obtained from previous disease databases and gene and 
protein expression studies. All of the PCOS databases provided detailed description 
for each entry that is related to PCOS and link to the original databases such as 
UniProt (https://www.uniprot.org/) and NCBI (https://www.ncbi.nlm.nih.gov/) 
for extensive information. As PCOSBase, biological information such as chromo-
somal location, gene ontologies, pathways, domains, disease-associated, and tissue 
localization have been annotated to all PCOS-related proteins. Figure 5 shows the 
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example homepage of PCOSBase, where it provides search box to facilitate the users 
to search with keywords and shows the number of entries for each functional details 
that are deposited in the database.

All of these databases are developed as an effort for other researchers in identi-
fying PCOS biomarkers. Besides, the information from the databases has been used 
to integrate with other information such as PPI and pathway to have a systems-level 
view of PCOS. PCOSBase provided a menu (“Network”) that contained a biological 
network of PCOS as examples of analysis on the PCOS-related proteins from this 
database. The network provided in the database can give an insight into improving 
the knowledge, particularly in PCOS.

6. Conclusion and future perspective

PCOS is an endocrine disorder that linked many clinical symptoms and the 
diversity of diseases. The PCOS complexity requires the development of novel 
analysis methods such as the simultaneous analysis of omics data using compu-
tational systems analysis. In addition, the availability of multi-omics datasets has 
opened the avenue to gain new insights into related molecular pathophysiological 
changes in PCOS. Thus, the previously generated data should be fully utilized 
as a whole to have a systems-view of PCOS. As mentioned in this chapter, the 

Figure 5. 
PCOSBase homepage.
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computation systems analysis such as PPI and pathway analysis has been per-
formed, and several examples of studies using this approach have been provided. 
The specific data repository of PCOS has also been developed, which could be used 
for further analysis by PCOS researchers. However, there is a lack of studies that 
integrate the omics datasets using modeling and simulation to investigate PCOS in 
a systems-level. This approach should be put into consideration in the future as this 
approach can dynamically elucidate the PCOS progression and improve the PCOS 
diagnosis and treatment. Although there is a limitation particularly the state of the 
incompleteness of biological information such as human interactome and pathway 
annotation, the analysis on current data by computational systems analysis should 
be continuously performed as these efforts could constantly enhance the knowledge 
of a complex syndrome, which is PCOS.
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