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Abstract

Improper soil and crop management practices have resulted in loss of soil 
carbon. Worldwide, about 1417 Pg of soil carbon is stored in first meter soil depth, 
while 456-Pg soil carbon is stored in above–below ground vegetation and dead 
organic matter. Healthy soils can be helpful in combating the climate change 
because soils having high organic matter can have higher CO2 sequestration poten-
tial. Main agronomic practices responsible for soil carbon loss include improper till-
age operations, crop rotations, residue management, fertilization, and similarly no 
or less use of organic fertilizers that have resulted in the loss of soil organic matter 
in the form of CO2. The share of agriculture sector in the entire emissions of global 
GHGs in the form of CO2, N2O, and CH4 is about 25–30%. Studies have shown that 
by adapting proper tillage operations, the use of such kind of crop rotations that can 
improve soil organic matter and similarly the application of organic fertilizers, i.e., 
FYM, compost, and other organic amendments such as humic acid, vermicompost, 
etc., can be useful in soil carbon sequestration.

Keywords: soil carbon, agronomic practices, tillage, crop rotation, crop residues, 
organic fertilizers

1. Introduction

Soil carbon (C) sequestration implies the removal of atmospheric CO2, by 
plants and storage of the fixed C through incorporation into soil organic matter [1]. 
Carbon exists in a variety of forms, mainly as plant biomass, soil organic matter, 
and gas carbon dioxide (CO2) in atmosphere and dissolved in sea water. Soil organic 
carbon (SOC), which is a main component of SOM, can be separated into stable and 
labile fraction [2], and soil organic matter and its contribution play a very vital role 
during its humification formation of stable humus fraction and in the management 
of fertilization [3]. Worldwide, about 1417 Pg of soil carbon is stored in first meter 
soil depth, while 456-Pg soil carbon is stored in above–below ground vegetation and 
dead organic matter. The Earth’s soils include approximately 1500 Pg of C, which 
is about 2–3 times larger than the amount of C stored in Earth’s vegetation [4, 5]. 
The atmospheric carbon pool contains ~800 Pg of CO2-C and is escalating at the 
rate of 4.2 Pg C per year, 0.54 percent per year. Over the past 150 years, the amount 
of carbon in the atmosphere has enlarged by 30%. An increase in the atmospheric 
concentration of CO2 from 280 ppm from the pre-industrial era to 390 ppm in 
2010 (an enrichment of 39%) and other greenhouse gases (GHGs) has changed the 
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Earth’s mean temperature and precipitation [6]. There is much interaction among 
the terrestrial and atmospheric C pools through the processes of photosynthesis 
and respiration. Due to land use, conversion factors, and deforestation, biotic pool 
also contributes in the rise of atmospheric CO2 concentration at the rate of ~1.6 Pg C 
per year. Different anthropogenic sources include the combustion of fossil fuel, 
deforestation, land use conversion, soil tillage, animal husbandry, cement manufac-
turing, etc. According to an estimate, 8.3 Pg C year−1 is emitted by combustion of 
fossil fuel [6, 7], and 1.6 Pg C per year is emitted by deforestation, land-use change, 
and soil cultivation. It is anticipated that terrestrial ecosystems have contributed 
as much as half of increases in CO2 emissions from human activity in the past two 
centuries [4, 8], and about 50 Pg CO2 additions to the atmosphere has been contrib-
uted by cultivated soils [9], through the process of mineralization of soil organic 
carbon (SOC). Terrestrial C pool is estimated approximately 3120 Pg, which is the 
combination of both pedologic and biotic C pools.

Historically, agricultural soils have lost more than 50 Gt (1 Gt = 1 billion tons) of 
carbon and agriculture is responsible for soil carbon reductions up to 60–75% [9].
Total anthropogenic emission of CO2 is 9.9 Pg C per year, of which 4.2 Pg C per year 
is absorbed by atmosphere and 2.3 Pg C per year by the ocean while remaining may 
be absorbed by unidentified terrestrial sinks.

In 1-m soil depth, estimated carbon pool is 2500 Pg, in two diverse forms 
including soil organic C (SOC) pool which is likely about 1550 Pg and soil inorganic 
C (SIC) pool at 950 Pg [10]. Soil inorganic C pool mostly consists of elemental C 
and carbonate minerals, i.e., calcite, dolomite, and likewise primary and secondary 
carbonates, whereas soil organic C (SOC) pool contains highly active humus and 
relatively inert charcoal C. According to United Nations Framework Convention 
on Climate Change (UNFCCC), carbon sequestration is the process of removing 
C from atmosphere and depositing it in a reservoir. It entails the transfer of atmo-
spheric CO2 and its secure storage in long-lived pools [11].

The estimation of global carbon sequestration potential of agricultural soils is 
typically made for sequestration on annual basis, and its range is from 0.4 to 1.2 
gigatons per year [1]. Land use, land use change, and forestry (LULUCF) activities 
can be a relatively cost-effective ways to offset emissions through increasing remov-
als of greenhouse gases from the atmosphere (e.g., by planting trees or managing 
forests) or through dropping emissions (e.g., by deforestation) [12]. Likewise, 
emissions of CO2 from soil can be reduced by the adoption of such practices that can 
increase C input in soils and similarly can lessen the decomposition potential of soil 
organic matter. These kinds of practices have a vital role in storage and in release of 
C within terrestrial C cycle [13]. Nowadays, intensive agriculture usually results in 
a considerable soil degradation and soil carbon depletion [14], because in present 
agriculture and human’s food chain, intensive soil utilization is very essential but it 
is very imperative so it should be followed and coupled with appropriate conserva-
tion practices [15]. Agriculture sector is responsible for the emissions of about 
30% global greenhouse gases emissions, and primarily, inappropriate soil and crop 
management practices have resulted in the loss of soil carbon. In agricultural soils, 
C sequestration means the increase of soil C storage.

Main agronomic and related practices that can be helpful in SOC sequestration 
include:

• adoption of no-tillage (NT) or minimum tillage;

• adoption of environmental and soil health friendly farming systems;

• incorporation of cover crops;
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• use of mulch either in the form of crop residues or synthetic materials;

• minimization of soil and water losses by surface runoff and erosion;

• adoption of integrated nutrient management practices for the increase of soil 
fertility;

• use of organic amendments; and

• promotion of farm forestry.

Benefits of soil carbon sequestration include the following:

• It can be helpful in the reduction of CO2 emissions.

• It can reduce the emissions of different GHGs.

• It can be helpful in the reduction of atmospheric temperatures.

• It helps in maintaining suitable biotic habitat.

• It decreases nutrients losses.

• It can improve soil health and productivity.

• It can increase water conservation.

• It can promote and sustain root growth.

• It can reduce soil erosion.

Agriculture sector can be supportive in the lessening of emissions of GHGs, and 
if suitable agronomic practices are to be adopted, then agricultural soils have the 
potential to act as a sink for CO2 sequestration. Healthy soils can be supportive in 
combating the climate change because soils having high organic matter can have 
higher CO2 sequestration potential.

2. Agronomic practices

Different agronomic and related practices that can be supportive in CO2 seques-
tration are given below.

2.1 Tillage

The main aim of tillage is the physical disturbance of upper soil layers for the 
preparation of soil bed, incorporation of fertilizers, crop residues, and similarly 
to control weeds. Tillage methods in world vary depending upon the soil, climate, 
crop management, and availability of technology. The relationship between till-
age, soil structure, and soil organic matter dynamics is essential to C sequestration 
ability of agricultural soils. Tillage effects on soil carbon dynamics are complex and 
often variable [16]. Global reductions in natural SOC due to cultivation by humans 
are obvious, and it is estimated to cause a loss of 60 (temperate regions) to 75% 
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(temporal regions) of the original SOC [17]. Conventional tillage practices led to 
decline in soil carbon from 30 to 50% globally [18] to low as 20% [19]. Plowing is 
the basic cause of SOC oxidation and emissions of CO2 to the atmosphere [20], and 
when NT, CP, and MP are under a nonsteady state, all these types of tillage systems 
may fail in the sequestration of significant amount of soil organic carbon [21]. The 
large losses of C typically follow initial cultivation [22, 23]. Moldboard plow, fol-
lowed by secondary tillage operations, is commonly used in world, which is basically 
intensive tillage practice, but over the several years, intensive tillage has replaced by 
less intensive tillage in which soil is minimum disturbed. No tillage often increases 
the stability and numbers of soil aggregates, but conventional tillage is detrimen-
tal to soil structure, which increases the decomposition of soil organic matter. 
Conservation tillage systems keep more crop residues on the soil surface and have a 
higher SOC concentration in surface layer than conventional tillage [24, 25].

Tillage and cropping systems can influence microbial activity, which ulti-
mately affects SOC dynamics and stability [26, 27], and soil mineralization can be 
decreased by reducing or eliminating soil tillage and increasing cropping intensity 
and plant production efficiency. In case of no-tillage as litter accumulates at the 
soil surface, which reduces evaporation from the soil because surface residues [28] 
and similarly standing stubbles [29] decrease wind speed at the soil surface, which 
ultimately results in less turbulent exchange of water and heat. Reduction in soil 
temperature through the use of surface mulches and no-till practices is important 
for maintaining stocks of soil organic matter especially in tropical soils [30].

SOC is a prime determinant of biological activity and soil macro fauna, which 
controls most of the different soil functions, i.e., organic matter dynamics, nutrient 
release, soil structure, and its different associated physical properties  
[31, 32]. In no-tilled soils, there are generally higher densities of biota and especially 
microorganisms. A large number of studies have shown that no-tillage can increase 
soil carbon rapidly, particularly at the soil surface [33], and this increase is linked 
to increases in aggregation [34, 35]. Compared to the PT and RT systems, strong 
SOC gradients have been observed under NT systems in the surface to subsurface 
layers in paddy soil. Moreover, it has been observed that the impacts of tillage on 
SOC concentration are dependent on crop species and soil depth in paddy soil [36]. 
However, according to Grandy and Robertson [37], tilling a previously untilled soil 
quickly losses the previously reserved carbon gains by exposing carbon molecules 
to microbial attack due to the disruption of aggregates. This accelerated turnover 
also reduces the formation and stabilization of more recalcitrant organic matter 
fractions within micro aggregates that have a longer residence time in soil [38]. 
The results of a study, which was conducted to find out the influence of conserva-
tion tillage, land configuration, and residue management practices on soil health 
in a Pigeon pea+ Soybean intercropping system. The study consisted of six tillage 
systems, i.e., CT1: conservation tillage with BBF and crop residue retained on the 
surface, CT2: conservation tillage with BBF and the incorporation of crop residue, 
CT3: conservation tillage with flatbed with crop residue retained on the surface, 
CT4: conservation tillage with the incorporation of crop residue, CT5: conventional 
tillage with the incorporation of crop residue, and CT6: conventional tillage without 
crop residue. The conservation treatments significantly improved soil health. The 
pooled data of the study showed that all the conservation tillage systems, i.e., CT1, 
CT2, CT3, and CT4, had significantly higher soil organic carbon at 0–15 cm depth 
(0.62, 0.64, 0.60, and 0.62%, respectively) and at 15–30 cm depth (0.56, 0.56, 
0.54, and 0.55%, respectively) in higher soil carbon sequestrations (15.07, 15.39, 
14.58, and 14.72 t ha−1, respectively), over conventional systems. The study also 
revealed that however biological soil quality, such as soil microbial biomass carbon 
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and nitrogen, was significantly higher in all the tillage systems except conventional 
tillage without crop residue [39]. It is estimated that the adoption of conservation 
tillage globally can sequester 25 Gt C over the next 50 years, which can be helpful in 
the stabilization of atmospheric carbon [40].

All this indicates that the adoption of conservation tillage practices can be help-
ful in the reductions of emissions of CO2 into the atmosphere and similarly can be 
supportive in the sequestration of carbon in the soil.

2.2 Nutrient management

Chemical fertilizers are a source of emission of GHGs, especially N2O. In addi-
tion to it, fertilizer production and its transportation are also associated with the 
emissions of GHGs. Judicious use of fertilizers increases crop yields and profit-
ability, and about 50 Pg CO2 additions to the atmosphere has been contributed by 
the cultivated soils [9], through the process of mineralization of soil organic carbon 
(SOC). The use of fertilizers has dramatically increased agricultural productiv-
ity, but studies reveal that the chronic use of nitrogen fertilization decreases soil 
microbial activity [41–44]. Continuous use of balanced fertilizers is necessary for 
sustainable soil fertility and productivity of crops [45]. Crop residues and nutrients, 
especially N, help in carbon sequestration up to 21.3–32.5% [46]. However, ultimate 
effects of continuous nitrogen fertilization on soils are complicated and remain 
unclear. For example, in the long-term experiments in Canada, SOC sequestration 
were 50–75 g cm−2 per year in well-fertilized soils with optimum cropping systems 
[47]. Research in the Great Plains shows that SOC sequestration is improved by the 
application of N fertilization [48–52], but opposite to it, long-term experiments 
in the Northern Great Plains (ND) have also shown that N fertilizer increased 
crop residue returns but generally did not increase SOC sequestration [53]. Liu 
Enke et al. [54] reported the results of a long-term study which was initiated in 
Northwest China in 1979, to find out the effects of fertilization on SOC and SOC 
fractions for the whole soil profile such as (0–100 cm) soil depth. The experiment 
included six treatments, i.e., unfertilized (control), N fertilizer (N), nitrogen and 
phosphorous fertilizer (NP), straw plus N and P fertilizers (NP + S), Farmyard 
manure (FYM), and Farmyard manure (FYM) plus N and P fertilizers (NP+ FYM). 
Results showed that SOC storage in 0–60 cm in NP + FYM, NP + S, FYM, and NP 
treatments increased by 41.5, 32.9, 28.1, and 17.9%, respectively, as compared to 
control treatment. Application of organic manure plus inorganic fertilizer also 
enlarged labile pool in 0–60 cm soil depth. These results show that long-term 
applications of organic manure have the most beneficial effects in building carbon 
pools among the investigated types of fertilization.

The results of Morrow plots, which is the world’s oldest experimental site 
under continuous corn (Zea mays L.), revealed that after 40–50 years of synthetic 
fertilization that exceeded grain N removal by 60–190%, a net decline occurred in 
soil C despite increasingly massive residue C incorporation, the decline being more 
extensive for a corn-soybean (Glycine max L.) or corn-oats (Avena sativa L.) rota-
tions than for the continuous corn rotation and of greater intensity for the profile 
(0–46 cm) than the surface soil [55]. Nayak et al. (2012) [56] reported that the 
application of combined inorganic fertilizers with or without manure can sequester 
carbon in the 0–60 cm soil layer at the Indean Sub-Himalayas. Majumder et al. [57] 
reported the results of a study that was conducted in hot humid subtropical Eastern 
India. According to them after 19 years in a puddle rice-wheat (Triticum aestivum 
L.) system, NPK + FYM treated plots had 14% larger labile C pools compared with 
the control plots in the 0–60 cm soil depth.
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It can be concluded that the appropriate use of fertilizers according to the soil 
condition can be helpful in the maximum sequestration of carbon along with 
maximum crops production and in the reductions of emissions of different GHGs.

2.3 Animal manure and compost application

Animal manure is animal’s excreta which is collected from livestock farms and 
barnyards and is used to enrich the soil, while compost is the material which largely 
consists of decayed organic matter and is used for fertilizing and conditioning of 
agricultural soil. Application of manures is important for the maintenance of soil 
health [58, 59] and is the source of C, and its application to different crops fields has 
effects on C contents [60]. As compared with the application of only NPK, applica-
tion of FYM along with NPK increased C sequestration in the rice-wheat cropping 
system [61], while green manuring, as compared with the application of FYM along 
with green manure, sequestered more C in a Maize-Wheat cropping system [62]. 
Composting not only increases the net primary production but also enhances the 
C contents of the soil [63]. It has been reported that decreasing of manures and 
organic fertilizers application influences not only stable organic compounds but 
also soil microorganisms and nutrient regimes [64, 65]. Liu et al. [53] supported 
the positive effect of incorporation of mineral fertilizers with organic manures. 
Similarly, application of different organic wastes, i.e., municipal solid waste 
(MSW), farm yard manure (FYM), sugar industry waste (filter cake), and maize 
cropping residues, at 3 t C ha−1 alone and with a full or half dose of NPK mineral 
fertilizer showed that the addition of organic wastes (filter cake or MSW) has the 
best potential for improving SOC retention, WUE, and wheat yield in an irrigated 
maize-wheat cropping system [66].

This all indicates that the use of animal manure, compost, etc. along with other 
inorganic fertilizers is beneficial for both soil health and environment.

2.4 Crop rotations

Crop rotations mean the sequence of crops grown in regularly recurring succes-
sions on the same area of land. The succeeding crops may be for 2 or more years. 
Differences in crop rotations, climates, soils, and different crop-related manage-
ment practices also affect carbon sequestration. Intensive cropping systems result 
in the depletion of SOM, but the use of balanced fertilization with NPK, application 
of organic amendments, and similarly application of crop residues can increase 
carbon sequestration levels to 5–10 Mg ha−1 per year because these amendments 
contain 10.7–18% C, which can also be helpful in the sequestration of carbon [67]. 
Different legume crops, such as peas, lentils, alfalfa, chickpea, sesbania, etc., can 
serve as substitute sources for nitrogen. Applications of crop rotations especially by 
using legume cover crops, which contain carbon compounds that are likely more 
resistant to microbial metabolism, can make soil carbon more stable [68]. Syswerda 
et al. [69] reported the results of a long-term study (over a 12-year period) of an 
organic management system that involved various crop rotations. According to 
them despite of extensive tillage for weed control, increase in soil carbon sequestra-
tion was recorded. The results of a long-term study, which was conducted in Dingxi, 
Northwest China, during 2013–2015, were shown in-spring wheat-field pea rotation 
in a rain-fed semi-arid environment. The treatments were: conventional tillage with 
stubble removed (T); no tillage with stubble removed (NT); no-till with stubble 
retained (NTS), and conventional tillage with stubble incorporation (TS). The 
SOC, microbial biomass carbon, and root biomass in NTS increased over T and NT, 
and similarly, average grain yield across the 3 years in NTS was better than T and 
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NT [70]. Recently, much attention has been given to alternate tillage and cropping 
systems as a means to mitigate the agricultural emissions of CO2 [27, 71]. Different 
types of cropping systems, i.e., cover cropping, ratoon cropping, and companion 
cropping, can be helpful in carbon sequestration. Intercropping which includes row 
inter cropping, strip inter cropping, mixed cropping, and relay intercropping can 
increase the income and can also raise soil fertility [72]. Some of the examples of 
inter cropping are wheat and mustard, cotton and peanut, peanut and sunflower, 
wheat and chickpea, etc. [73]. Organic farming can also improve soil organic carbon 
as compared with the conventional farming [68, 74]. Research regarding the resto-
ration of grassland also shows that through their biotic and biotic effects, legume 
species have more positive effects on the restoration of grasslands as compared with 
the application of mineral fertilizers [75].

This above shows that keeping in view the economic considerations, selection of 
appropriate crop rotations according to the soil and environmental conditions can 
be helpful in the sequestration of carbon, which not only improve soil fertility but 
also reduce the emissions of CO2 into the atmosphere and increase farmer’s income.

2.5 Residues management

Crop residues are detached vegetative parts of crop plants that are intentionally 
left to decay in agricultural fields after crop harvesting. Worldwide, the annual 
production of crop residues is about 3.4 × 109 tones, and if 15% of these total 
residues are applied to the soil, it can increase the C contents of the soil, because, for 
example, one ton of cereal residue contains 12–20 kg N, 1–4 kg P, 7–30 kg K, 4–8 kg 
Ca, and 2–4 kg Mg. Mulching is detached vegetation, which includes wheat straw, 
compost, or may be plastic sheets, which are spread around plants to protect them 
from excessive evaporation and cold stress and similarly to promote SOM contents 
in soil.

Crop residues play an important role in the SOC management and improve-
ment of soil quality [76]. Mulching improves soil moisture, reduces soil erosion, 
and similarly reduces the loss of carbon from the soil and crop residues, which 
are incorporated into the soil to enhance the soil organic matter. A direct seedling 
mulch-based cropping system increases soil organic matter, as a result of increased 
carbon inputs and decreased soil disturbance [27]. Mulch can increase soil organic 
matter (SOM) and carbon sequestration in the top 0–5 cm soil depth. It improves 
soil’s physical and chemical properties and can increase carbon sequestration in 
agricultural soils up to 8–16 Mg ha−1 per year. Mulch-based cropping systems 
enhance the buildup of soil organic matter, principally as a result of increased 
carbon inputs and decreased soil disturbance [27]. Direct seedling straw mulch 
has the potential to ameliorate the heat stress, and it improves the infiltration rate, 
reduces evaporation [77, 78], and similarly increases soil organic carbon and N 
efficiency [79]. Increasing residues inputs to soils entails increasing net primary 
productivity (NPP). Many agricultural soils, which have been significantly reduced 
from their original C levels through cultivation, will show C gains in proportion to 
increases in C inputs. Soil C levels are governed by the balance between the inputs 
of C through plant residues and the losses of C basically through decomposition. 
Therefore, C can be increased in soil by increasing residues inputs and or reducing 
decomposition rates (i.e., heterotrophic soil respiration). Litter quality also affects 
rates of its decomposition [80]. The results of a 4-month study, which was con-
ducted in a greenhouse controlled condition and in three rates of straw residue and 
farm yard manure, were added to uncultivated and cropland soils. Two treatments 
of straw residue and farm yard manure incorporation were used into: a soil surface 
layer and a 0–20 cm soil depth revealed that the application of organic matter, 
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especially the incorporation of farm yard manure, led to significant increase in the 
final soil organic carbon content, and higher amount of soil organic carbon were 
stored in the cropland soil than in the uncultivated soil. The results showed that 
carbon sequestration ranged farm yard manure > straw residue and cropland soil > 
uncultivated soil. The results revealed paying more attention to the role of organic 
residue management in carbon sequestration [81].

This all shows that the application of mulch and the use of crop residues can 
improve soil microbial activity, ameliorate the heat stress, and help in water storage 
and improvement of soil organic carbon.

2.6 Cover crops

Cover crop is grown for the benefit of soil rather than the crop yield. Cover 
crops improve soil quality by increasing soil organic carbon through biomass, by 
improving soil aggregates and stability, and by protecting the soil from surface 
runoff. Similarly, green manuring increases the biomass returned to the soil, which 
results in the form of enlarged soil carbon sink. Studies reveal that the adoption of 
cover crops is an efficient measure to mitigate climate change [82]. According to 
Olson 2010 [83], the use of cover crops in intensive row crop rotations with dif-
ferent tillage treatments has been found to sequester soil organic carbon (SOC). 
Kenneth et al. [84] reported the results of a study which included different kinds of 
tillages, i.e., no-till (NT), Chisel plow (CP), and moldboard plow (MP) with and 
without cover crops. The average annual corn and soybean yields were statistically 
same with or without cover crops. The average annual corn and soybean yields were 
statistically same for NT, CP, and MP systems with or without cover crops for the 
same soil depth layer and for tillage treatments. However, all tillage treatments, i.e., 
NT, CP, and MP, sequestered SOC with cover crops.

Keeping in view the cropping systems, suitable selection and planting of cover 
crops can be helpful in improving the soil organic carbon.

2.7 Use of improved crop varieties

Selection of improved varieties of different crops, which can improve both 
above and below ground biomass, can also improve the soil organic carbon. 
Machado et al. [85] reported that crop species that have massive rooting systems 
have the potential to improve SOC in soils under NT. Similarly, according to Kell 
[86, 87] by improving root growth in agricultural crops, soil carbon storage can 
match anthropogenic emissions for the next 40 years. This all indicates that the 
use of improved crop varieties having extensive root systems and better yields can 
increase both yields and soil fertility.

2.8 Soil biota management

Soil microbial activities can be helpful in the biological carbon sequestration 
because microbes improve the soil physical, chemical, and biological proper-
ties. The soil biota consists of a large number and a range of micro- and macro-
organisms and is the living part of soils. They interact with each other and with 
plants, directly providing nutrition and other benefits. Their physical structure 
and products help a large to soil structure. They are also responsible for organic 
matter decomposition and for the transformations of organically bound nitrogen 
and minerals that are available to plants. Through biological control mechanisms, 
these organisms regulate their own populations and as well as those of incoming 
microorganisms. Micro- and macro-organisms are very crucial in maintaining 
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ecosystem function, and their populations are significantly affected by the differ-
ent crop management practices. Microorganisms include bacteria, fungi, fungi, 
protozoa, and some nematodes. These also include a range of invertebrates such as 
micro- and macro-arthropods, termites, and earthworms. According to an estimate, 
micro-organisms constitute about one quarter of the total biomass on the Earth 
[88]. These organisms are affected by the management of soils in the agricultural 
and forest ecosystems. Soils also differ in their ability to support the survival and 
growth of different groups of micro- and macro-organisms. Research findings show 
that carbon sequestration was higher up to 49.9 g C kg−1 in soils which were rich in 
soil microbes such as soil bacteria and fungi [89]. Therefore, the use of different 
kinds of microbes, which are beneficial both for soil and environment, will increase 
soil carbon sequestration and improve the crops yields.

2.9 Bio char

Bio char is carbonized biomass, which is obtained from sustainable sources and 
sequestered in soils. It can also be obtained by pyrolysis synthetically. Application 
of Bio char can also improve the soil health through carbon sequestration, because it 
improves the crop yield and maintains the cation exchange capacity, water holding, 
and nutrient retention capacity of the soil. It remains stable for thousands of years 
and thus reduces the release of terrestrial C to the atmosphere in the form of CO2 
[90]. It has been reported that Bio char can improve carbon sequestration in soil due 
to prolonged residence time [91]. Another study also reveals that the application of 
Bio char reduces the co-localization of polysaccharides-carbon and aromatic carbon 
by reducing the carbon metabolism due to carbon stabilization in Bio char-activated 
soil [92]. It has also been reported that soil management by using different kinds 
of organic amendments and their incorporation by earthworms can also support 
micro-aggregates formation, C, and N retention in agricultural soils [93].

2.10 Agroforestry

Agroforestry is the combination of agriculture and forestry in which perennial 
trees and shrubs are grown in combination with agricultural crops. Planting of 
different kinds of trees, including orchards, fruit plants, and woodlands into the 
croplands, can improve soil carbon sequestration. Agroforestry has an enormous 
potential for carbon sequestration in croplands [94] because agroforestry practices 
accumulate more C than forests and pastures because they have both forest and 
grassland sequestration and storage patterns active [95–97]. Young [98] have also 
reported the estimated potential of C gains from agroforestry. Agricultural soils 
can sequester more quantities of carbon by the adoption of agroforestry. The 
carbon sequestrations potential of agroforestry systems is estimated between 12 
and 228 Mg ha−1, so on the Earth’s total suitable area for crop production, a total of 
about 1.1–2.2 Pg C can be sequestered in the agricultural soils in the next 50 years 
[99]. The results of a meta-analysis from 53 published studies, regarding changes in 
soil organic carbon (SOC) stocks at 0–15, 0–30, 0–60, 0–100, and 0 ≥ 100 cm, after 
land conversion to agroforestry, revealed a significant decline in the SOC stocks of 
26 and 24% in land-use changes from forest to agroforestry at 0–15 and 0–30 cm, 
respectively. The transition from agriculture to agroforestry significantly enhanced 
the SOC stock of 26, 40, and 34% at 0–15, 0–30, and 0–100 cm, respectively. 
The results also showed that conversion from pasture/grassland to agroforestry 
produced significant SOC stock increases at 0–30 cm (9%) and 0–30 cm (10%). 
Switching from uncultivated/other land-uses to agroforestry increased SOC by 25% 
at 0–30 cm, while a decrease was observed at 0–60 cm (23%) [100].
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The carbon sequestration potential by agroforestry is estimated up to 9, 21, 50, 
and 63 Mg Cha−1 in semiarid, subhumid, humid, and temperate regions, respec-
tively; however, it has been reported that intensively managed agroforestry practice 
in combination with annual crops is like conventional agriculture, which does not 
contribute in carbon sequestration [101].

Agroforestry also helps in the optimization of water use, and similarly, it 
improves the farmer’s income. So, the promotion of agroforestry keeping in view 
the soil condition, climate, and along with crops production is beneficial for soil, 
environment, as well as the farmers.

3. Conclusion

CO2 is increasing at the rate of 2.3 ppm per year, which is resulting in the 
increase of global warming and environmental pollution. Agriculture sector is 
responsible for up to 30% emission of GHGs. Sustainable agriculture is essential for 
the survival of humankind. Adoption of different agronomic management practices 
can be helpful in the sequestration of carbon. Such practices include no-tillage or 
reduced tillage, nutrient management, cover crops, crop rotations, green manur-
ing, application of animal manures, agroforestry, etc. Adoption of these different 
agronomic practices will not only improve the crops yields but will also improve 
farmer’s income.

© 2019 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 
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