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Abstract

High-entropy alloys (HEAs) are materials of high property profiles with 
enhanced strength-to-weight ratios and high temperature-stress-fatigue capabil-
ity as well as strong oxidation resistance strength. HEAs are multi-powder-based 
materials whose microstructural and mechanical properties rely strongly on 
stoichiometry combination of powders as well as the consolidation techniques. 
Spark plasma sintering (SPS) has a notable processing edge in processing HEAs due 
to its fast heating schedule at relatively lower temperature and short sintering time. 
Therefore, major challenges such as grain growth, porosity, and cracking normally 
encountered in conventional consolidation like casting are bypassed to produce 
HEAs with good densification. SPS parameters such as heating rate, temperature, 
pressure, and holding time can be utilized as design criteria in software like Minitab 
during design of experiment (DOE) to select a wide range of values at which the 
HEAs may be produced as well as to model the output data collected from mechani-
cal characterization. In addition to this, the temperature-stress-fatigue response 
of developed HEAs can be analyzed using finite element analysis (FEA) to have an 
in-depth understanding of the detail of inter-atomic interactions that inform the 
inherent material properties.

Keywords: spark plasma sintering, high entropy alloys, advance material,  
aerospace application

1. Introduction

1.1 Background/motivation

In the aerospace industry, the landing gear is essential for support during land-
ing and ground operations in an aircraft. Manufacturers attach the landing gear to 
primary structural members of an aircraft and must bear the heavy compressive 
load. Therefore, when landing, the impact energy of the aircraft will be absorbed 
through the design and a minimized load transmitted to the airframe. Thus, materi-
als used for landing gear application must be able to withstand high operating tem-
peratures, fatigue, creep, cyclic and translational movement of parts at high-speed, 



Recent Advancements in the Metallurgical Engineering and Electrodeposition

2

and chemical, erosion, wear, and oxidation degradations [1–3]. The development of 
high-performance materials with superior characteristics for aerospace application 
has continually been the challenge faced by material engineers and scientists over 
the years. However, materials engineers constantly create and improve properties of 
materials by applying the existing knowledge of science to develop advanced engi-
neering materials exhibiting better service performance through the development 
of various manufacturing techniques for different applications as shown in Figure 1 
[4–6]. The traditional alloys used for commercial purposes were designed by choos-
ing a core element which made up the matrix of the part and addition of elemental 
solutes to the primary base element [7, 8]. This basic element, which made up the 
matrix, was primarily titanium [9–11], vanadium [12], iron [13], aluminum [14], or 
nickel [15], amongst others, produced for the aerospace industry with outstanding 
benefits. According to the conventional alloying system, each element compensates 
each other’s deficiencies to give better properties of the alloy than to give the exis-
tence of the materials separately [16, 17]. However, the economy of the fabricated 
part with the conventional melting approach is the primary drive for research and 
development of powder metallurgy [18–21].

Landing gear components are typically manufactured with advanced materi-
als using conventional metallic materials such as aluminum alloy 7075 [22–30], 
alloys steel 4340 [31–36], titanium 6Al-4V [37–42], titanium 6Al-6V-2Sn [43, 44], 
titanium 15Al-3Cr-3Al-3Sn [45–47], and titanium 10Al-2Fe-3V [48–52]. The most 
versatile titanium alloys in the aerospace industry are titanium 6Al-4V, titanium 
6Al-6V-2Sn, titanium 15Al-3Cr-3Al-3Sn, and titanium 10Al-2Fe-3V because of 
their excellent properties. In the class of beta titanium alloys, Ti-15Al-3Cr-3Al-3Sn 
and Ti-10V-2Fe-3Al have been adopted for different airframe applications and 
landing operations [53]. The alloy Ti-10V-2Fe-3Al has the capability to substitute 
precipitation-hardening steels due to its in-depth hardenability and exceptional 
ductility. When it was successfully used in a Boeing 777 aerospace landing gear, the 
alloy Ti-10V-2Fe-3Al came to limelight. Initially, the alloy cost was higher than that 
of 4340 steel used in applications for landing gear [35]. However, the cost-benefit 
of using the alloy was achievable in the long run as the steel parts needed to be 

Figure 1. 
The evolution and characteristics of alloys.
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replaced due to potential susceptibility to stress corrosion cracking [54]. The alloy 
is therefore applied in many airframe applications of landing gear, wings, fuselage, 
doors, and cargo handling structures. Similarly, titanium alloys were not impressive 
for load-bearing components because of uneven stress distribution on parts dur-
ing operation [55]. The nomenclature of typical landing gear is shown in Figure 2, 
comprising axie, shock, and drag strut, walking beam, and torsion links which are 
made up of Ti-10V-2Fe-3Al.

Ti-10V-2Fe-3Al popularly used in landing gear and slat/flap tracks was success-
fully fabricated using alloy forgings [56, 57]. Tracks are the dynamic beams allow-
ing load transmission and movement between wings and moving slats. They are 
generally produced from maraging steel. Recently, Ti-10V-2Fe-3Al has been made of 
flap tracks fitted on the trailing side of the wings to perform similar functions. The 
total weight saving in Boeing 777 was about 40 kg by using six 5 ft. long flap tracks. 
The assessment of Ti-10V-2Fe-3Al’s corrosion resistance is very important given 
its widespread use as structural parts that are susceptible to wear and corrosion in 
simulated environments through which an aircraft flies, which also makes the mate-
rial not exceptional, and surface damage occurs in applications involving contact 
loading. In regard to this, Arya et al. [58] investigated the electrochemical corrosion 
performance of Ti-10V-2Fe-3Al alloy in different corrosive media namely, artificial 
seawater solution, Hank’s solution, 0.5 M sulfuric acid, and 0.5 M hydrochloric 
acid solution. The authors used open circuit potential, current transient time, Tafel 
extrapolation potentiodynamic polarization curves, and electrochemical imped-
ance spectroscopy to evaluate the corrosion rates. The results show that due to the 
formation of thick, compact, and stable passive film, this alloy has a lower corrosion 
rate in alkaline solution. Corrosion rate in acid solution is higher because the passive 
film is less compact, porous, and unstable. Li et al. [59] used a high-frequency 
push-pull fatigue testing machine to report the effect of fretting on the fatigue 
performance of Ti-6Al-4V and Ti-10V-2Fe-3Al alloys. For comparative analysis 
of the fretting effect on the fatigue performance of the different titanium alloy, 
the author obtained both plain and fretting fatigue curves. The result shows that 
Ti6Al4V titanium strength and plain fatigue are lower than Ti-10V-2Fe-3Al titanium 
strength. But the fretting fatigue of Ti6Al4V titanium is higher under each contact 
stress. The fatigue source depth of Ti-10V-2Fe-3Al alloy is greater than that of 
Ti6Al4V alloy. Hardening of Ti-10V-2Fe-3Al alloy is more serious after fretting. The 
wear mechanism of two titanium alloys is different; Ti1023 titanium alloy is more 

Figure 2. 
The nomenclature of main landing gear bogie truck.
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sensitive to fretting wear. According to Li et al. [60], the mechanical behavior of the 
Ti-10V-2Fe-3Al alloy under the high-temperature and dynamic loading conditions 
and the microscopic observations show that the microstructure of Ti-10V-2Fe-3Al 
alloy is sensitive to the external thermal loading. As the testing temperature is lower 
than the β phase transus, the β phase concentration almost remains unchanged 
besides a few of the refinement and spheroidize of β phase grains, which results in 
maintaining the high yield strength of the alloy. When the testing temperature is 
higher than the β phase transus, the thermal loading and mechanical loading can 
respectively cause various refinements and spheroidize of the β phase grain of alloy, 
which remarkably decreases the yield strength of the alloy. Based on the resulting 
stress and strain data obtained in simple shear, the high-temperature dynamic 
shear deformation mechanisms have been evaluated by using the characteristics of 
stress-strain behavior caused by thermal loading and mechanical loading. The high-
temperature dynamic constitutive model is established based on the experimental 
results.

Utama et al. [61] reported surface height irregularities that occurred during 
machining Ti-10V-2Fe-3Al beta (β) titanium alloy. The author observed the height 
differences in two different regions, “soft region” and “hard region.” The hard 
region has higher Fe and lower Al content, resulting in higher β-phase stability to 
resist the precipitation of the primary alpha (αp) phase caused by a solution treat-
ment process failure. By contrast, a higher volume fraction of the αp phase and a 
lower volume fraction of the matrix consisted of a combination of β and secondary 
alpha (αs) phase.

A high number of αs/β interfaces in the matrix with a predicted 520 HV hard-
ness resulted in harness improvement of the hard region. Hence, the hard and soft 
regions had different wear resistance capabilities during the machining process, 
resulting in surface height irregularities. Jiao et al. [62] reported that a compli-
cated and unique phase transformation process takes place with forming different 
microstructures from forging and reconstruction method to study the spatial 
distribution of α phase in different grains present in the Ti-10V-2Fe-3Al alloy 
specimen. Since the process involves repeated heating and cooling during deposi-
tion, there was development of the complex and unique phase transformation 
process in the different microstructures. Their results showed plate-like morphol-
ogy formation of α laths in the deposited alloy, and a tetrahedral relationship 
followed their precipitation from the β phase. The different orientation of the grain 
results in different specific morphologies. The α laths are perpendicular to each 
other when the cutting plane is parallel to the (100) plane of the BCC cell. If the 
cutting plane is parallel to the plane (111), a special morphology is established with 
a mixture of plate-like and rod-like phase α. Liu et al. [63] examined the evolution 
of microstructure and compression properties of Ti-10V-2Fe-3Al titanium alloy 
and solution treatments at temperatures ranging from 710 to 830°C, followed by 
treatment with aging. Ti-10V-2Fe-3Al alloys with α + β-phase have higher mechani-
cal properties than single β-phase alloys. The content of the equiaxed α phase 
decreases with the increase in solution temperature. As a result, the alloy strength 
increases as the plasticity decreases. The highest yield strength value of 1668 MPa 
was obtained in the sample treated with a solution of 770°C treated for 2 hours, 
then water quenched and 520°C aging for 8 hours followed by air cooling. The 
stress-induced phase of martensite α” appeared in the sample solution treated at 
830°C after dynamic compression of SHPB.

Tabachnikova et al. [64] measured the influence of temperature on Young’s 
modulus for different structural states by mechanical resonance spectroscopy. 
The heat treatment of the samples led to an increase (∼25%) of Young’s modulus. 
Ren et al. [65] established that “Ti-10V-2Fe-3Al has the tendency to spall in a 
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brittle-ductile mixed fracture manner with very rough fracture surfaces covered by 
ductile dimples”. The authors investigated the spall fracture behavior of a typi-
cal metastable β-titanium alloy, Ti-10V-2Fe-3Al, by subjecting it to shock loaded 
through a series of plate impact tests. The microstructural characteristics of the 
spall planes were systemically investigated for the influence of the shock-induced 
SIM phase transformation on the fracture behavior of the β-titanium alloy. The 
authors concluded that the spall strength of Ti-10V-2Fe-3Al is ca. 3.1 GPa at shock 
pressure below 8.5 GPa dropped by nearly 20% as the shock pressure exceeds 
9 GPa due to the abundance of SIM phases with increased shock pressure. The 
microvoids in the spalled Ti-10V-2Fe-3Al mainly nucleate at the intersections of 
the grain boundary and the α martensite lath, which obviously showed that the 
shock-induced β-to-α martensite phase transformation strongly affected the spall 
fracture behavior of this alloy. The shock-induced β-to-α phase transformation has 
a detrimental effect on the spallation resistance of titanium alloys, which should 
be minimized in structural materials of titanium alloys that need to withstand 
shock wave loading. Srinivasu et al. [53] reported the presence of continuous grain 
boundary in Ti-10V-2Fe-3Al which is surrounded by a softer precipitate-free zone 
that leads to flow localization, thereby influencing fatigue crack propagation. The 
authors therefore studied the effect of processing and heat treatment on the tensile 
properties and fracture toughness of Ti-10V-2Fe-3Al, a high-strength metastable 
beta titanium alloy. The alloy was subsequently subjected to thermomechanical pro-
cessing that included combinations of rolling and solution heat treatment in both 
α-β and β phase fields. The rolling temperatures ranged from 710°C (sub-transus) 
to 860°C (super-transus) and the temperatures of the solution treatment ranged 
from 710°C (sub-transus) to 830°C (super-transus). A systematic microstructural 
investigation (optical as well as scanning electron microscopy) was undertaken to 
correlate the property trends with the underlying microstructure, which is strongly 
dependent on the sequence of thermomechanical processing. A subtransus rolling 
followed by subtransus solution treatment resulted in a morphology being equiaxed 
while a super transus rolling followed by subtransus solution treatment resulted in a 
phase being more acicular/lenticular in morphology. While α-β rolling followed by 
α-β heat treatment gave better tensile properties, α-β heat treatment followed by β 
rolling resulted in superior fracture toughness.

In recent years, research has shown that advanced engineering materials used 
in industries are susceptible to corrosion and fatigue-related failures [66]. Authors 
attribute these challenges to design shortcomings, poor selection of materials, 
beyond the design limits, overloading, insufficient maintenance, and manufactur-
ing defects [67]. The resulting repair and replacement costs take up almost half of 
the total budget; therefore, the performance of materials, particularly fatigue and 
corrosion resistances, has received widespread attention. According to Hemphill 
[68], the major drawback of this material is the formation of microcracks, which 
developed during fabrication as a manufacturing defect causing severe fatigue 
challenges. Current applications of Ti-10V-2Fe-3Al mainly in the wide range of 
aircraft structural components [69] are exceeding 200 flying components in each 
Boeing 777 alone [70, 71]. These applications were made by ingot metallurgy and 
forging [72], based on Boeing’s original development for use in the Boeing 757 
[73]. However, a primary problem with the process is the high buy-to-fly ratio [74], 
which results in about 90% scrap or a material utilization factor of just as much as 
10%. Another issue is the severe segregation of α and β phases in the Ti-10V-2Fe-3Al 
as-cast ingot due to the presence of α and β stabilizers at 15 wt.%. This results in the 
so-called “beta flecks” in the forged microstructures [69].

Powder metallurgy (PM) allows the manufacture of near-net shape and effec-
tively eliminates segregation by using micrometer-sized powder materials [69, 75]. 
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There are many advantages of powder metallurgy compared to the conventional 
process in terms of fabricate titanium-based composite, low cost, full densification, 
no segregation, no inner defect, internal stress, excellent stability, and uniform 
microstructure. The high buy-to-fly ratio associated with many titanium compo-
nents, combined with difficulties in forging and machining and recent availability 
issues, has resulted in a strong drive for near-net titanium manufacturing. PM [76]. 
is a very promising way to achieve this goal. Accordingly, a variety of PM-based 
techniques have been implemented to fabricate Ti-10V-2Fe-3Al using either pre-
alloyed powder or titanium or TiH2 and master alloy powder blends [71, 77]. 
Generally, fully dense Ti-10V-2Fe-3Al alloy consolidated by hot isostatic pressing 
(HIP), or HIP + forging, with or without subsequent solid solution treatment 
and aging [78], can achieve tensile properties such as wrought alloys. Technically, 
the simplest and most attractive PM manufacturing route is the cold compaction 
and sinter approach [69]. Its potential for titanium manufacturing on a variety of 
titanium materials [79] has been well demonstrated. Although Ti-10V-2Fe-3Al’s 
tensile properties were previously reported [80], the densification process, sinter-
ing mechanism, microstructural evolution during sintering, and their correlations 
with sintered mechanical properties were not given sufficient details. In contrast, 
the literature on powder-based titanium alloy manufacturing has focused largely 
on Ti-6Al-4V, with a focus on achieving full densification with respect to differ-
ent manufacturing conditions [80, 81]. Therefore, there is an ultimate need to 
understand and establish the fundamentals of the cold-compaction-and-sinter PM 
approach for the fabrication of high strength or specialty solute rich titanium alloys 
such as Ti-10V-2Fe-3Al.

Spark plasma sintering (SPS) has been applied in the preparation of alloys, 
functional materials, ceramics, cermets, nanocomposites, and intermetallic 
compounds [82]. In recent times, extensive efforts were made towards research 
and development of SPS as a promising technique for high entropy alloys. Unlike 
conventional sintering methods, which usually use alternating heat current [83], 
SPS uses an on-off pulse current to heat the graphite die directly to complete the 
sintering process. Considering the SPS sintering mechanism, it is specifically 
assumed that an electrical field is formed between grains during sintering and 
high-temperature plasmas are excited under the action of pulse current to cause a 
cleaning effect on the surface of particles, leading to a sintering enhancement [84]. 
The spark plasma sintering method has several advantages over other conventional 
sintering techniques like hot pressing, mechanical alloying, and isostatic pressing 
due to high chances of sintering materials of near full densification and little grain 
growth [85]. SPS unique features also include a low heating profile, which makes it 
possible to sinter powders with controlled grain size and limited chemical interac-
tion with other constituents [86]. The SPS method has proven its high effective-
ness in fabricating ceramic composites and alloy materials for nano-applications, 
biomaterials, and electronic materials. From the traditional alloy design concept 
of titanium 10Al-2Fe-3V, however, HEAs are not based on a single element but on 
multi-component systems consisting of at least five main elements in an equal or 
near-equal atomic percentage (at.%) with no noticeable difference between the 
solute and the solvent [87]. According to existing physical metallurgy and phase 
diagrams, such multi-element alloys can produce many phases and intermetallic 
compounds, resulting in complex and fragile microstructures that are difficult to 
analyze and engineer but are likely to have finite practical values [88]. Experimental 
results indicate, beyond expectations, that the higher mixing entropy in these alloys 
enhances the formation of random solid-solution phases with simple structures 
such as face-centered cubic (FCC) structures [89], body-centered cubic (BCC) 
structures [90]), or hexagonal close packing (HCP) structures [91], thereby 
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reducing the number of phases [89, 92, 93]. The new alloy design strategy has since 
opened up an enormous, unexplored multi-component alloy field. The alloy design 
strategy has achieved unimaginable successes, and great efforts have been devoted 
to the development and application of many HEAs [94], in various fields because of 
their excellent performance, such as unique wear resistance [95], excellent strength 
and thermal stability at elevated temperatures [96], superior high elongation [93], 
high fatigue, and fracture toughness [97]. Han et al. [98] showed that the “addition 
of Ti is beneficial to the strength and the compressive ductility of the HEAs at room 
temperature”. The authors presented a new refractory HEA alloy of TiNbMoTaW 
fabricated from addition of Ti to NbMoTaW alloy. The new TiNbMoTaW HEA 
was found to have a BBC phase structure that can be maintained even after 24-hour 
annealing at 1200°C. The room temperature yield strengths and compressive 
plastic strains of the developed TiNbMoTaW and TiVNbMoTaW HEAs have been 
significantly enhanced in comparison with the mechanical performance of HEAs 
NbMoTaW and VNbMoTaW. Also, with impressive yield strengths of ~586 and 
~659 MPa at 1200°C, the TiNbMoTaW and TiVNbMoTaW HEAs showed very 
promising high-temperature strength. As a result of these property profiles, it was 
suggested that the newly developed TiNbMoTaW and TiVNbMoTaW HEAs have 
potentials in applications of high-temperature structural materials.

Consequently, extensive research has been conducted to develop next-genera-
tion aerospace materials with high mechanical performance and superior corrosion 
resistance to achieve improvements in both performance and cost repetition. For 
traditional alloys, one or two principal components are selected based on a specific 
property requirement, and other alloying components are added to further improve 
their properties because of the huge formation of bulk intermetallic compounds 
which occurred as a result of the atomic ratios of elements reaching a 40% mark 
and above. Thus, this depletes the reliability of the alloy during service. Therefore, 
the search for an alloy with atomic ratios lower than 35% commenced in 1996 [99]. 
Hence, the possibility of combining several metallic principal elements in equal 
atomic compositions was explored and it was named high-entropy alloys (HEAs). 
HEAs always have the combination of at least five principal elements, each with an 
atomic percentage (at. %) between 5 and 35%. Generally, the atomic percentage 
of each minor element, if present at all, is always smaller than 5. The definition is 
expressed as follows in Eqs. (1) and (2) [94, 102]:

   n  major   ≥ 5, 5at . %≤  c  i   ≤ at35at . %   (1)

   n  minor   ≥ 0,  c  j   5at . %   (2)

where nmajor represents the major elements, nminor represents the minor elements, 
ci represents the atomic percentages of the major element, and cj represents the 
atomic percentages of the minor element.

This definition shows that HEAs need not to be equimolar or near-equimolar, 
and even contain minor elements to balance various material properties [100]. 
HEAs can easily be formed into simple FCC phase structures [101], BCC [102], and 
HCP [91] solid-solution structures. One renowned HEA is an equimolar-shaped 
Cantor alloy [102] consisting of Fe (BCC), Co (HCP), Cr (BCC), Mn (BCC), 
and Ni (FCC), with a solid-solution FCC phase when dendritically cooled in the 
as-shaped sample. Then, by adding Cu (FCC), Nb (FCC), or V (BCC), the five-
component alloy was extended to a six-component alloy system, showing the simple 
solid-solution FCC structure in the as-cast alloy with different lattice parameters. 
When the HCP type Ti was added, a solid-solution phase of the FCC formed a BCC 
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structure [103]. Another typical example is the AlxCoCrFeNi (molar percentage, 
2 ≥ x ≥ 0) system prepared by arc melting [104]. The CoCrFeNi as-cast alloy has 
a solid-solution phase of pure FCC. The AlxCoCrFeNi system changes the crystal 
structure from FCC to FCC + BCC phases by increasing the Al molar percentage 
from 0 to 2 and finally to a single BCC phase [104]. A typical TaNbHfZr alloy has a 
structure with only BCC [105].

Alloy design is a novel means of maximizing and synergizing metal counter-
parts in HEA multi-material systems. The design encompasses several consid-
erations such as atomic radius, solid solution solubility, powder stoichiometry, 
processing technique, and the processing conditions or parameters chosen. Thus, 
HEAs possess dynamic and exceptional properties, such as high hardness and 
strength profiles, good oxidation and corrosion resistance, and high-temperature 
softening resistance, which are crucial in prospective engineering applications. 
HEAs fabricated by SPS have been reported to possess excellent densification 
properties, as well as high strength and hardness profile. Mohanty et al. [106] 
research output on a multicomponent equiatomic AlCoCrFeNi high entropy alloy 
developed by spark plasma sintering established a high mechanical strength. 
The sintered samples at the optimum temperature of 1273 K displayed the high-
est microhardness. Fang et al. [85] also researched the mechanical behavior of 
Al0.5CrFeNiCo0.3C0.2 high entropy alloy. They recorded a compressive strength of 
2131 MPa and a Vickers microhardness of 617 HV of the Al0.5CrFeNiCo0.3C0.2 high 
entropy alloy. Zhao et al. [107] fabricated HEAs on a carbon steel substrate via 
spark plasma sintering, which are considered as excellent coating materials due 
to their high hardness, good wear, and corrosion resistance. The microstructure 
evolved from FCC to FCC + BCC mixed structure. AlxCrFeCoNiCu (x = 0, 1, 2, 3) 
coating has an average hardness of approximately 682 HV0.2, which is the highest 
hardness in all the HEA coatings. Compared with AISI 52100 steel, spark plasma 
sintered Al2CrFeCoNiCu and Al3Cr-FeCoNiCu HEA coatings show exceptional 
sliding wear resistance and extremely low friction coefficient in comparison with 
AISI 52100 steel. Al3CrFeCoNiCu HEA coating wear resistance is approximately 
four times better than that of bearing steel, showing a promising application as a 
wear-resistant material According to Chen et al. [108], research outputs of several 
literature studies indicate that the addition of Ni to Ti-10V-2Fe-3Al is beneficial to 
the improved mechanical performances of the HEA, making the HEA a good mate-
rial for high-temperature applications. Nickel is the fifth most common element 
on earth’s crust. As a high-profile element with a good property suited for diverse 
applications especially that of the aerospace industry, there is no substitute for Ni 
without reducing performance or increasing cost. The biggest use of nickel is in 
alloying, particularly with chromium and other metals to produce stainless and 
heat-resisting steels constituting 65% production [109]. Another 20% is mostly 
used for highly specialized industrial, aerospace, and military applications. With 
characteristic melting point of 1453°C, Ni has reliable corrosion and oxidation 
properties, and readily forms alloys [110, 111].

Chromium, on the other hand, is generally used in metallurgy to impart corro-
sion resistance, and it also has good strengthening effect of forming stable metal 
carbides at the grain boundaries of its alloying counterpart [112, 113]. Chromium 
has excellent mechanical properties such as high corrosion and wear resistance. 
Therefore, in alloying, it finds a good match with Ni to form Ni-Cr alloys when used 
with Ti-10V-2Fe-3Al for making landing gear, wind turbine, engine components, 
and many other industrial and mechanical components where high wear-resistance 
is needed such as in aerospace applications. The structure of Ni-Cr alloys depends 
on the percentage composition of nickel or chromium, and the temperature. It is 
noteworthy that Ni-Cr alloys will be dominated by the π phase, which tends to be 
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brittle at about 60–75% Ni addition. The crystal structure of the FCC is found in 
the γ phase, and the γ phase shows improved strength and ductility in comparison 
with the σ phase. The FCC crystal structure is commonly found in Ni-rich alloys, 
while the BCC crystal structure tends to be found in Cr-rich alloys. The γ phase 
Ni-Cr alloy can be converted into the ε phase at high pressures, which shows an HCP 
crystal structure. The alloying element helps stabilize the BCC structure of Ti-10V-
2Fe-3Al HEA, increasing the hardness and plastic strain of the alloy. However, there 
are limited publications in the literature on Ti-10V-2Fe-3Al alloy with Ni and Cr 
additions, despite the different manufacturing routes that had been established. 
Moreover, reports investigating the fatigue, corrosion, and oxidation behaviors of 
spark plasma sintered Ti-10V-2Fe-3Al-Ni-Cr HEAs with their potential applications 
are scarce. Therefore, this work proposes to use the spark plasma sintering manu-
facturing technique to synthesize novel Ti-10V-2Fe-3Al-Ni, Ti-10V-2Fe-3Al-Cr, 
Ti-10V-2Fe-3Al-Ni-Cr, and Ti-V-Fe-Al-Ni-Cr high entropy alloys (HEAs) for mak-
ing landing gear. Thereafter, the synthesized alloys will be characterized in terms of 
microstructure, composition, and phase transformation using optical microscopy 
(OM), X-ray diffraction (XRD), and scanning electron microscopy (SEM) with 
energy-dispersive X-ray spectroscopy (EDX), respectively. Also, the mechanical 
and electrochemical properties of the materials will be carried out, and the effects 
of temperature and stress distributions of the high entropy alloy material during the 
SPS process will be modeled.

2. Conclusion

From the open literature above, the authors agreed that the current market 
material (Ti-10V-2Fe-3Al) used in high-temperature applications such as gas 
turbine and turbine engine in the aerospace industry experience several failures 
such as high-temperature oxidation and corrosion, limited hardness, and wear 
resistance. It is confirmed that spark plasma sintering is a potential way to fabricate 
HEAs which possess properties such as improved microhardness, compressive/
tensile strength, tribology, thermal properties, and corrosion resistance properties 
for low and high-temperature applications as generally agreed by all the authors. 
Also, it is generally accepted by the authors that SPS processing parameters play 
a significant role in the mechanical properties of the final developed alloys. The 
authors concluded that HEAs are the potential replacement for nickel-based 
superalloys in high-temperature applications. Furthermore, the authors agreed 
that it is possible to simulate the SPS process by means of finite element modeling. 
However, SPS simulation of thermal distribution and stress distribution analysis 
for the development of HEAs are limited in the open literature. Thus, this paper 
exposes the influence of spark plasma sintering parameters on the mechanical 
properties of the synthesized alloy.
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