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Chapter

Application of Artificial Neural
Networks for Accurate Prediction
of Thermal and Rheological
Properties of Nanofluids
Behzad Vaferi

Abstract

Nanofluids have recently been considered as one of the most popular working
fluid in heat transfer and fluid mechanics. Accurate estimation of thermophysical
properties of nanofluids is required for the investigation of their heat transfer
performance. Thermal conductivity coefficient, convective heat transfer coeffi-
cient, and viscosity are some the most important thermophysical properties that
directly influence on the application of nanofluids. The aim of the present chapter is
to develop and validate artificial neural networks (ANNs) to estimate these
thermophysical properties with acceptable accuracy. Some simple and easy mea-
surable parameters including type of nanoparticle and base fluid, temperature and
pressure, size and concentration of nanoparticles, etc. are used as independent
variables of the ANN approaches. The predictive performance of the developed
ANN approaches is validated with both experimental data and available empirical
correlations. Various statistical indices including mean square errors (MSE), root
mean square errors (RMSE), average absolute relative deviation percent (AARD%),
and regression coefficient (R2) are used for numerical evaluation of accuracy of the
developed ANN models. Results confirm that the developed ANN models can be
regarded as a practical tool for studying the behavior of those industrial applica-
tions, which have nanofluids as operating fluid.

Keywords: artificial neural networks, solid-liquid suspension, nanofluids,
thermal property, rheological property

1. Introduction

Increasing price of fuels as well as hardening the environmental regulations/laws
enforces the industrial processes to increase the efficiency of their consumed
energy. Therefore, concentrations are focused on the technologies that improve the
performance of heat transfer equipment. This improvement is often achieved by
either enhancing the thermophysical characteristics of the traditional operating
fluids or modifying the structure of heat exchangers [1–3]. Unfortunately, conven-
tional heat transfer fluids (e.g. water, engine oil, and ethylene glycol) suffer from
inherently low thermal properties and poor heat transfer characteristics [4, 5].
Conducting research for modifying poor thermophysical properties of the
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traditional fluids confirmed that adding solid particles to the base fluids can
improve their heat transfer properties [6]. Since a solid metal has a larger thermal
conductivity than a pure fluid, adding some of metallic solid particles in base fluids
may improve their thermal behavior [7, 8]. Although, thermal conductivity of solid
particle is typically an order-of-magnitude higher than the base fluid, adding micro-
sized solid particles is not practically possible. The micro-sized solid particles that
often simply settled down are responsible for some major problems including clog-
ging the small passages, high pressure drop, and components erosion by abrasive
action [9–12]. For solving these problems, most of the new studies have concen-
trated on synthesizing materials of nano-sized scale [9, 12]. Rapid progress of
nanotechnology has motivated researchers to disperse various nanoscale particles
(1–100 nm) in the operating fluids to form the new class of heat transfer fluid
namely nanofluids [13–18]. The term of nanofluids was firstly proposed by Choi for
addressing the homogeneous suspensions of nanoscale particles in base fluid [19].
Large relative surface area, higher heat conduction, excellent stability, and minimal
clogging are the main advantages of nano-sized materials respect to micro-sized
ones. It is possible to improve the thermophysical properties of the conventional
fluids, and enhance their heat transfer ability by adding small amount of nano-sized
solid particles [20]. It has been claimed that nanofluids are the best choice for the
next generation of heat transfer fluids [5, 11].

Nanofluids have found high popularity due to their excellent ability in enhance-
ment of heat transfer performances of various thermal systems during the recent
years [16, 21, 22]. In spite of such potential benefits, nanofluid technology is still
limited for commercial use as there are no proven standardized techniques for
accurate prediction of important heat transfer characteristics of nanofluids [23, 24].
Availability of some accurate correlations/models for estimation of heat transfer
characteristics of nanofluids is necessary during design, optimization, and control
of those heat transfer devices that use these operating fluids. Therefore, in this
chapter, great deals of efforts are made to correlate some thermophysical properties
of nanofluids by artificial neural networks. In the next section, the procedure of
working of artificial neural networks and four different types of ANN are briefly
explained.

2. Artificial neural networks

Simulation of working procedures of the biological nervous system of the human
brain is the basic idea for designing artificial neural networks [25]. Artificial neural
network, as its name clearly implies is composed of some well-organized processing
elements, namely neurons. Indeed, various types of these smart networks are con-
stituted of a common processing unit namely artificial neuron or perceptron. The
neuron has two regulating parameters that are often known as weight (w) and bias
(b). The perceptrons receive their entry information from either other neurons or
external source (x), and produces an output signal using Eq. (1).

out ¼ f
X

k

r¼1

wr xr þ b

 !

(1)

where out denotes the perceptron’s output, and f is the activation function. ANN
models often require different number of neurons in their layers for solving specific

problems. Artificial neural networks can extract a function g �ð Þ : RInd ! RDep by
training on a dataset, where Ind and Dep indicate the number of dimensions for
independent and dependent variables, respectively. Providing the ANN with a
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databank of independent variables X ¼ Ind1 Ind2⋯Indn½ �T and their related depen-
dent variable(s), their parameters can be tuned by a proper backpropagation train-
ing algorithm. In this way, it is possible to simulate the behavior of even the most
complicated nonlinear systems with an acceptable accuracy often smaller than
AARD = 10% [26, 27]. Activation functions are responsible for providing the artifi-
cial neural networks with nonlinear behavior. Different types of ANN paradigm
have found high popularity as a technique for parameter estimation, pattern detec-
tion, data clustering, text processing, fault discovery, and so on [28].

2.1 Types of ANN model

In this chapter, four different types of artificial neural networks include multi-
layer perceptron (MLP), cascade feedforward (CFF), radial basis function (RBF),
and generalized regression (GR) neural networks that are used as artificial intelli-
gent techniques for characterization of thermophysical properties of nanofluids.
These types of ANN model are briefly illustrated in the following four subsections.

2.1.1 Multilayer perceptron neural networks

The MLP is the most well-known feedforward approach that often has one or
more hidden layers between dependent and independent variables. This type of
ANN methodologies is used in the supervised learning process for the adjustment of
its parameters. The term feedforward implies that the entry signals can only move
inside the neural network from input layer toward an output layer. The backward
flow for signal is not allowed in the MLP neural networks. The multi-layer
perceptron constitutes of several layers of nodes including one input layer, one or
more hidden layer(s), and one output layer. This type of ANN models has found
high-reputation because of its excellent performances for handling of both regres-
sion and classification problems [25–27].

2.1.2 Cascade feedforward neural networks

By conducting some modifications on the topology of the multi-layer perceptron
networks, Fahlman and Lebiere designed a new class of ANN namely cascade
feedforward neural network [29]. They do their modification by providing the CFF
neural networks with synaptic connections for neuron of each layer with neurons of
all subsequent layers [30]. It has been claimed that convergence rate of learning
process of the CFB model is better than other ANN topologies [31].

2.1.3 Radial basis function neural networks

RBF neural network has been structured as a two-layer feedforward neural
network model [32]. In the hidden and output layer of the RBF approach, Gaussian
and linear transfer functions are always used, respectively [32]. The radial basis
neural network that originally developed by Broomhead and Lowe in 1988, is a
powerful tool for interpolation among data in multi-dimensional problems [33, 34].

2.1.4 Generalized regression neural networks

The GR neural network that was firstly developed in 1991 by Specht is often
viewed as a special reformation of the RBF model [35]. The main benefit of the GR
paradigm is that its parameters can be easily adjusted during training stage.
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Parameters of the general regression neural network can be simply tuned by only
one-pass training with the sufficient number of experimental data.

2.2 Training of artificial neural networks

The training process is a well-established procedure that tries to adjust parame-
ters of the ANN model, i.e., biases and connection weights. During the learning
process, the ANN model is provided with a sufficient number of experimental data
containing both independent and dependent variables of the considered phenom-
ena. Thereafter, an appropriate training algorithm is employed to adjust the param-
eters of ANN model in such a way that it could predict the actual targets with
acceptable accuracy. The training stage begins with random values for the weights
and biases of ANNmodel. Thereafter, the numerical signals of independent variable
(s) are fed to the artificial network and are made to flow through it until they reach
the output layer. Finally, the output layer is responsible for producing the output
signal(s). A training algorithm is then applied to minimize the difference between
the actual and calculated values for dependent variable(s) by regulating the param-
eters of the ANN model. This adjustment continues as far as the deviation between
calculated and actual target values reaches the predefined tolerance. As soon as the
training stage is completed, the weights and biases are adjusted and they are kept
unchanged. In this stage, it is possible to employ the trained ANN approach for
estimating the dependent variable(s) from new independent datasets.

2.3 Performance analyses of artificial neural networks

Several statistical accuracy indices including MSE, RMSE, AARD%, and R2

have been applied to investigate accuracy of various ANN models. Values of
MSE, RMSE, AARD%, and R2 are mathematically calculated by Eq. (2) to Eq. (5),
respectively.

MSE ¼
X

N

i¼1

D exp : ið Þ �Dcal: ið Þ
� �

N

2

(2)

RMSE ¼
XN

i¼1

D exp : ið Þ �Dcal: ið Þ
� �

N

2( )0:5

(3)

AARD% ¼
100

N

X

N

i¼1

D exp : ið Þ �Dcal: ið Þ

D exp : ið Þ

�

�

�

�

�

�

�

�

� �

(4)

R2 ¼

PN
i¼1 D exp : ið Þ � ΔD
� �2

�
PN

i¼1 D exp : ið Þ � ΔDcal: ið Þ
� �2

PN
i¼1 D exp : ið Þ � ΔD
� �2 (5)

where D and N represent dependent variable and number of experimental data,

respectively. D
exp
i is the experimental dependent variable, Dcal

i presents the value of

ith predicted dependent variable by ANN model, and ΔD is the average value of the
experimental data points for dependent variable.

3. Characterization of properties of nanofluids by ANN approaches

In this section, different types on ANN are used for systematic estimation of
thermophysical properties of nanofluids. The focus is concentrated on two thermal
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and a rheological property of nanofluids. Thermal conductivity coefficient, convec-
tive heat transfer coefficient, and viscosity of nanofluids tried to be modeled by
ANN approaches. For each parameter, experimental data and procedure of devel-
oping ANN model are collected, and evaluation of performance of the developed
model is presented.

3.1 Thermal conductivity coefficient

Thermal conductivity of homogeneous dispersion of solid particles in liquids has
its own importance for dozen of decades [36]. Since the uniform suspensions of
nano-sized solid particles in liquids have better thermal characteristics than their
associated base liquids, they may be considered as operating fluids for heat transfer
systems [7, 9, 37–41]. Maxwell [36] and Hamilton and Crosser [42] proposed some
basic correlations for the calculation of thermal conductivity of the homogeneous
suspensions from their particle dosage, thermal conductivity of base fluids as well as
particles. Moreover, effects of shape and size of nanoparticle, chemistry of base
fluids, temperature, and pH on the level of enhancement of thermal conductivity of
pure base fluids have been deeply investigated [39, 43, 44]. Some researchers
observed that thermal conductivity of nanofluids is dramatically increased by
increasing temperature [39, 43–46]. Brownian motion of nanoparticles is often
considered as a key mechanism to explain enhancement of thermal conductivity of
uniform dispersion of nano-sized materials in different base fluids [39, 44]. It is a
widely accepted theory that Brownian motion has a direct relation with the fluid
temperature and it increases by increasing temperature. Indeed, particle motions
increase by temperature and it results in increasing the thermal conductivity of
nanofluid [39]. Enhancement of thermal conductivity of nanofluids by increasing
the suspension temperature has been reported by different groups of researchers
[45–48]. Increasing concentration of nanoparticles in base liquids that increase the
possibility of collisions between fluid molecules and solid particles can also improve
the thermal conductivity of nanofluids. Influence of shape and size of nanoparticle
on thermal conductivity of nanofluids was comprehensively studied by different
groups of researchers [7, 9, 37, 45, 48]. It is worthy to be noted that the thermal
conductivity of nanofluid was reported, which may be lower than the base liquids
under some specific circumstances [45, 48].

3.1.1 Experimental data

Available correlations in the literatures approve that the thermal conductivity
ratio (TCR) of alumina-water nanofluid has relationship with nanoparticle size,
concentration of nanoparticle in base liquids, and temperature of suspension
[39, 45–58]. Therefore, these parameters are considered as independent variables
for the estimation of TCR of alumina water-based nanofluid using MLP network. As
reported in Table 1, 280 experimental datasets for TCR of alumina-water
nanofluids are collected from various literatures [39, 45–58]. The collected experi-
mental data covers the fluid temperature ranging from 1 to 133.8°C, alumina nano-
particle size of 8–283 nm, volume fraction from 0.0013 to 0.16, and TCR values
ranging from 0.99 to 1.2902.

There exists a well-known role of thumb that states the multi-layer perceptron
neural networks with a single hidden layer can precisely learn a behavior of any
multi-variable function with a desired tolerance [22]. Therefore, in this section, a
MLP network is structured with only one hidden layer to predict thermal conduc-
tivity ratio of the alumina-water nanofluid. Number of hidden neurons has been
selected using trial and error procedure on minimizing both MSE and AARD%, and
maximizing R2 values for training as well as testing datasets. Table 2 reports
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numerical values for the observed MSE and AARD% between calculated TCRs and
their associated experimental data. It should be mentioned that the only difference
between these MLP models is the number of hidden neurons. For reducing the
effect of random selection of weights and biases on the final results, all of the MLP
models are trained and tested 10 different times, and only the best obtained results
for each topology is reported in Table 2. Indeed, in this section, we checked 200
MLP paradigms to find the best one.

3.1.2 Development of ANN model

It can be simply understood from Table 2 that predictive performance of the
MLP for the training subset is improved by increasing the number of hidden
neurons. The AARD% for MLP model having 1–20 hidden neurons continuously
decreases from 4.24 to 0.91%. But, performance of the MLP approach for estima-
tion of the testing dataset only improves up to 14 hidden neurons, and thereafter no
impressive progress is observed. It can be concluded that increasing the hidden
neurons more than 14 only enlarges the MLP networks and has no positive effect on
improving the accuracy [59]. Therefore, by considering the reported results in
Table 2, a MLP approach with single hidden layer having 14 neurons (the bold row)
is selected as the best structure for estimation of thermal conductivity ration of
alumina-water nanofluid. This optimal MLP model is capable to estimate the testing
dataset by MSE and AARD% of 6.3 � 10�4 and 1.75%, respectively.

This optimal MLP paradigm provides excellent R2 values between the predicted
and the actual values of TCR for both training and testing dataset. The calculated
values of R2 for the MLP models with 1–20 hidden neurons are depicted in Figure 1.

Temperature

range (°C)

Nanoparticle

volume fraction

Nanoparticle

diameter (nm)

Thermal

conductivity ratio

N* References

21–51 0.01–0.04 38.4 1.02–1.242 12 [39]

21–71 0.01–0.04 11–150 1.01–1.2902 34 [45]

27.5–34.7 0.02–0.1 36 1.077–1.1513 22 [46]

21–60 0.01 80–150 1.033–1.106 10 [47]

10–50 0.0013–0.0052 20–100 1.004–1.147 36 [48]

20–40 0.031–0.09 36 1.157–1.259 30 [49]

1–40 0.01–0.04 30 0.99–1.219 15 [50]

10–60 0.05 40 1.096–1.128 6 [51]

10–50 0.03–0.16 20 1.06–1.214 12 [52]

15–60 0.01–0.08 120 1.025–1.257 30 [53]

20–60 0.03–0.13 30–80 1.041–1.257 24 [54]

23.5–27.4 0.0186–0.04 8–283 1.0214–1.185 21 [55]

24–133.8 0.01–0.04 12 0.99–1.228 24 [56]

35.5 0.0033–0.03 36 1.015–1.096 5 [57]

20 0.005–0.06 43 1.063–1.28 4 [58]

*Number of experimental data.

Table 1.
Physical and operating conditions of various experimental datasets.
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The values of observed AARD% and MSE by MLP models with different
numbers of hidden neurons for the overall dataset (training + test) are shown in
Figure 2.

To simulate behavior of a given system by the MLP neural network, a relatively
huge amount of experimental data is required. Figure 3 depicts variation of
observed mean square errors (between MLP predictions and actual data of TCR of
alumina-water nanofluids) as function of the number of epoch. As mentioned
earlier, the procedure of adjustment of weights and biases of the MLP model is done
by an optimization technique namely training algorithm. It is obvious that the
optimization technique tries to minimize the observed MSE by an iteration proce-
dure. In Figure 3, the term of epoch shows the number of interactions that the
training algorithm has tried to tune the MLP parameter using the given procedure
in Section 2.2. It can be seen from Figure 1 that by increasing the number of
iterations (i.e. epoch), weights and biases of the MLP model converge to their
optimized values, and therefore, the observed MSE continuously decreases. After
800 iterations, the training algorithm enforces the MSE to converge 3.3 � 10�4.
Since this level of MSE between predicted and actual values of TCR is relatively
small value, it can be said that the training was successful.

Number of hidden neuron* AARD% MSE

Training Testing Training Testing

1 4.24 4.42 0.004542 0.004210

2 3.86 3.48 0.003877 0.003723

3 3.48 4.06 0.003397 0.004666

4 3.04 3.51 0.002563 0.003569

5 2.94 2.97 0.002171 0.001974

6 2.41 3.06 0.001696 0.002183

7 1.81 2.97 0.000736 0.002246

8 2.39 3.22 0.001295 0.002848

9 1.75 2.79 0.000681 0.003002

10 1.66 1.83 0.000687 0.001031

11 1.78 1.92 0.000781 0.000741

12 1.37 2.43 0.000429 0.001689

13 1.14 2.64 0.000345 0.002499

14 1.23 1.75 0.000330 0.000630

15 1.11 1.94 0.000303 0.001152

16 1.02 2.14 0.000273 0.00139

17 1.14 2.76 0.000343 0.002737

18 1.07 2.67 0.000354 0.003447

19 1.28 2.45 0.000484 0.002184

20 0.91 2.16 0.000201 0.001754

*The best obtained results among 10 various trained network per each topology.
The bold values indicate the best obtained results for the considered AI models.

Table 2.
Evaluation of the best topology of the MLP model.
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3.1.3 ANN model evaluation

A databank with 228 experimental datasets for TCR of water-alumina nanofluids
has been collected from different literatures [39, 45–58]. These datasets have been
used to design and validate the accuracy performances of different MLP networks
as well as to find the best topology of the MLP model. Moreover, 57 experimental

Figure 1.
R2 values of the proposed model for training and testing subsets.

Figure 2.
Overall AARD% and MSE of various ANN models over training and testing subsets.
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TCR data-points, which were not utilized in the training process have been used to
check the predictive accuracy of the proposed MLP paradigm.

In this part, performance of the proposed MLP approach tried to be evaluated by
plotting the predicted values of TCRs as function of their associated experimental
values for both testing and training subsets. Figure 4 confirms an excellent perfor-
mance and remarkable accuracy of the optimal MLP model for the estimation of
experimental values of TCR of water-alumina nanofluids for overall databank. The
most exact prediction (calculated TCRs = experimental data) is shown by a solid
dashed 45° line. A relatively large R2 = 0.971875 that observed for predicting all the
experimental TCRs justifies that there is an excellent agreement between the pred-
ications of MLP model and the actual experimental data.

Figure 3.
Variations of the mean squared errors with epoch during MLP training.

Figure 4.
Predicted thermal conductivity ratio vs. measured ones for the overall dataset.
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Table 3 summarizes an accuracy of the optimal MLP model with the six well-
known empirical correlations for prediction of experimental data reported by Das
et al. [39, 45, 47, 49, 60–62]. This table shows that the proposed MLP model pre-
sents the best overall AARD of 0.866% for the considered experimental data. The
proposed model by Chon et al. [45] provides an AARD = 1.331% that is the best
results among the considered correlations.

Table 4 reports results of estimation of experimental TCR data reported by
Chandrasekar et al. [57] using our smart model as well as various empirical correla-
tions [45, 47, 49, 60–62]. It can be simply seen that our proposed MLP model
predicts the experimental data with the smallest deviation (AARD = 0.117%). The
proposed correlations by Yu and Choi [60] and Xie et al. [61] that provide relatively
similar results (AARD = 0.39%) are the best empirical correlations.

3.2 Convective heat transfer coefficient

It is obvious that a convective heat transfer coefficient (HTC) of nanofluids
depends on concentration of the dispersed nanoparticles, their shape and size, flow
structure, thermal conductivity and heat capacity of both nanoparticles and base
liquid, and viscosity of nanofluid. Generally, addition of nanoparticles to the base
liquid improves its thermal conductivity. Increasing an amount of energy transfer
by the liquid leads to a higher temperature gradient between tube wall and bulk of
nanofluid. It is a reason that is often highlighted for explanation is an increasing rate
of convection heat transfer between nanofluid and tube wall [63].

Volume

fraction

of Al2O3

The considered intelligent approach and empirical correlations

Chonet al.

[45]

Murshedet al.

[47]

Mintsaet al.

[49]

Yu and

Choi [60]

Xieet al.

[61]

Nanet al.

[62]

MLP

model

Actual

TCR [57]

0.003 1.0136 1.0253 1.0058 1.0117 1.0118 1.0097 1.0145 1.015

0.0075 1.0220 1.0594 1.0136 1.0230 1.0231 1.0214 1.0306 1.031

0.010 1.0331 1.0818 1.0175 1.0341 1.0343 1.0292 1.0316 1.032

0.020 1.0545 1.1646 1.0351 1.0672 1.0673 1.0584 1.0750 1.074

0.030 1.0760 1.2523 1.0516 1.1023 1.1025 1.0896 1.0920 1.096

AARD% 0.587 3.406 1.524 0.388 0.386 0.635 0.117 —

Table 4.
Comparisons of the predictive accuracy of different smart and empirical correlations over experimental TCR
measured by Chandrasekar et al. [57] (T = 35.5 °C, Dp = 36 nm).

Volume

fraction

of Al2O3

The considered intelligent approach and empirical correlations

Chonet al.

[45]

Murshedet al.

[47]

Mintsaet al.

[49]

Yu and

Choi [60]

Xieet al.

[61]

Nanet al.

[62]

MLP

model

Actual

TCR [39]

0.01 1.09 1.08 1.02 1.03 1.03 1.03 1.10 1.111

0.02 1.15 1.16 1.04 1.07 1.07 1.06 1.14 1.141

0.03 1.20 1.25 1.05 1.10 1.10 1.09 1.16 1.170

0.04 1.24 1.34 1.07 1.14 1.14 1.12 1.26 1.241

AARD% 1.331 4.818 10.270 6.909 6.909 7.744 0.866 —

Table 3.
Comparison among accuracy of various approaches for the prediction of experimental TCRs measured by Das
et al. [39] (T = 51°C, Dp = 38.4 nm).
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The objective of this part of chapter is to design a smart approach based on
artificial neural networks for accurate estimation of convective HTC of different
nanofluids flowing inside circular tubes. The great deals of effort are made to
predict the HTC of nanofluids from the easily measurable characteristics of a sys-
tem. Correlation matrix analysis approves that size of nanoparticles, their molecular
weight (Mw) and volume concentration fraction (Vf), critical pressure and tem-
perature of the base fluids (Pc and Tc), their acentric factor (ω), Reynolds number
(Re), and the wall condition are the most important factors that influence on the
convective HTC of nanofluids. It should be mentioned that we consider two differ-
ent conditions for tube wall including uniform heat flux and constant temperature.
From practical point of view, these two conditions are often encountered in various
industrial applications.

The major part of the current section is dedicated to find the best ANN type as
well as its topology for the considered task. Indeed, the ANN type with the smallest
size that could provide the most accurate results for estimation of HTC of
nanofluids is considered as the best topology. After evaluating the most accurate
ANN type and its topology, we tried to compare its prediction results with available
empirical correlations in different literatures.

3.2.1 Experimental databank

For the convective HTCs, 346 experimental data which covered the Reynolds
number 600–8.9 � 104 and nanoparticle size of 20–100 nm are collected from
different literatures [64–68]. The considered physical properties and their ranges as
well as minimum-maximum values of convective HTCs of the collected experi-
mental data, which collected from various literatures are presented in Table 5.
These experimental data are used for developing ANN models and validating their
predictive capabilities.

3.2.2 Designing an ANN model

All the experimental datasets have been randomly allocated to two different
subsets namely train and test subsets. These two subsets have different application

Nanofluid Nanoparticle

size (nm)

Heat

flux (W/m2)

Temperature,

Range (K)

Vf,

Range

(%v)

Re h (W/m2 K) N* Reference

Al2O3/Water 45 8842 — 0.25–1.5 600–2200 600–2000 58 [64]

Water — 8842 — — 900–2100 500–800 6 [64]

Al2O3/EG-W 45 218,000 — 2–10 3000–15,000 8000–19,000 57 [65]

SiO2/EG-W 20, 50, 100 218,000 — 4, 2 3000–15,000 6000–19,000 37 [65]

CuO/EG-W 29 218,000 — 4 3000–12,000 8000–18,000 10 [65]

EG-W — 218,000 — — 4000–17,000 5000–16,000 11 [65]

Al2O3/Water 40 — 20–60 0.1–2 3000–18,000 2000–13,000 76 [66]

Water — — 20–60 — 3000–18,000 2000–11,000 17 [66]

Fe3O4/Water 36 12,489 — 0.02–

0.6

3000–22,000 2000–49,000 51 [67]

Water — 12,489 — — 3000–22,000 900–8000 13 [67]

EG-W — 500,000 — — 10,000–89,000 7000–38,000 10 [68]

*Number of experimental data.

Table 5.
Physical and operational conditions of various datasets.
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in the development of ANN model. Indeed, the training datasets have been used for
adjusting weights and biases of the ANN approach as well as selecting its best
structure. On the other hand, the predictive performance of this trained ANN
model is often validated by the testing subsets. Since the testing datasets are not
used during training stage and the ANN model did not see them previously, they
could be considered as a reliable benchmark for evaluation/validation performance
of the model in the unknown situations.

Various ANN types including RBF, MLP, CFB, and GR neural network are
checked and the best one is selected based on its predictive capabilities. The optimal
size of ANN approach (number of hidden neurons) is the smallest network, which
can predict both train and test subsets within an acceptable error.

In this section, an iterative constructive method is used for determination of an
optimal numbers of hidden neurons. Iterative constructive method increases the
number of neurons in hidden layer gradually as long as a testing error be fixed or
begins to rise. Values of observed AARD% for estimation of both testing and overall
experimental data for 20 different MLP models that have 1–20 neurons in their
hidden layer are presented in Figure 5. It can be simply understood from Figure 5
that the testing errors are decreased by increasing the number of hidden neurons up
to 10. Thereafter, no significant reduction in AARD% can be seen. Accordingly, the
single hidden layer MLP approach having 10 hidden neurons is selected as the best
structure for estimation of convective HTC of six different nanofluids and five
considered pure liquids.

Values of the R2 and MSE between experimental convective HTC and those HTC
values predicted by various MLP networks are presented in Figures 6 and 7,
respectively. It can be seen from these figures, the 10 hidden neurons that present
the largest value for R2 as well as the smallest value for MSE over huge experimental
databank can be regarded as the optimum value. It is worthy to be mentioned that
vertical axis of Figure 6 is in logarithmic scale to magnify increasing trend of MSE
after 10 hidden neurons. The observed MSE for estimation of the testing datasets
decreases by increasing the number of hidden neurons up to 10. After that no
notable improvement in expense of enlarging the MLP model can be found. It can

Figure 5.
AARD% of various MLP topologies for testing and overall subsets.
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be said that using more than 10 hidden neurons for the MLP models not only
increase the size of the model but it has no positive effect on reducing the magni-
tude of the errors.

Here, we tried to do some comparisons between predictive performance of the
optimum MLP model with other available feedforward neural networks, i.e., radial
basis, cascade feedforward, and generalized regression neural networks. Table 6
summarizes the result of four smart models for simulation of the behavior of
convective HTC of different pure fluids and nanofluids. It should be mentioned that
all of these four intelligent models, i.e., MLP, RBF, GR, and CFF neural networks

Figure 6.
MSE logarithm of various ANN topologies for testing and overall sets.

Figure 7.
Associated R2 values of ANN topologies for testing and overall sets.
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have single hidden layer with 10 neurons. The multi-layer perceptron, cascade
feedforward, radial basis function, and generalized regression approach shows
AARDs of 2.41, 2.46, 3.01, and 14.59% for prediction of whole experimental
databank, respectively. It is clear that the MLP model presents the smallest error
(AARD% = 2.63) for training subset while the worst results for estimation of this
dataset (AARD% = 12.82) was presented by the GR model. It is widely accepted that
a GR approach in which hidden neurons equals with the number of training data-
points can provide the best accuracy for estimation of any continuous function. The
worst result that is provided by the GR neural network in this study may be
associated with the discontinuity in the experimental data of convective HTC or/
and the number of 10 hidden neurons that is very low than its theoretical threshold.
Comparison among the predictive performances of these four ANN paradigms
reveals that the MLP approach simply outperforms other ANN model for predicting
the experimental values of convective HTC of both pure fluids and nanofluids.
Therefore, a single hidden layer MLP model with 10 neurons that present the best
performance for estimation of the convective HTC is considered as the best neural
network model.

Figure 8 depicts change of the MSE for training dataset for the best MLP model.
It is obvious that the MSE reaches relatively small value of 1.6 � 10�5 after 1000
iterations. Consequently, it can be claimed that the learning procedure of the MLP
model was successful and this trained model can be used for more analyses.

3.2.3 Evaluation of the performance of developed MLP model

Figure 9 illustrates the plot of training (square symbols) and testing groups
(spheres symbols) for experimental data of convective HTC as function of
predicted values by the best MLP model. The most exact predictions, i.e., (pre-
dictions = experimental) is depicted by the dashed 45° line. The relatively slight
deviations from the dashed line justify that MLP predictions are properly mapped
on their associated experimental data.

ANN model Accuracy indices

MSE AARD (%) R
2

Multi-layer perceptron neural network Train subset 0.000016 2.63 0.999692

Test subset 0.000019 2.36 0.999512

Whole databank 0.000017 2.41 0.999664

Cascade feedforward neural network Train subset 0.002319 2.67 0.999774

Test subset 0.013574 2.41 0.999156

Whole databank 0.004628 2.46 0.999596

Radial basis function neural network Train subset 0.002413 3.54 0.999767

Test subset 0.023266 2.88 0.998812

Whole databank 0.006692 3.01 0.999439

Generalized regression neural network Train subset 3.194334 12.82 0.639363

Test subset 6.687986 15.05 0.386423

Whole databank 3.911239 14.59 0.579964

Table 6.
Comparison of performances of different ANN models.
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Our developed MLP model with optimum configuration shows regression coef-
ficient of 0.999692 for the prediction of training dataset of convective HTCs. It also
presented the MSE and AARD of 1.6 � 10�5 and 2.63% for training group, respec-
tively. Moreover, it can predict the testing dataset with impressing R2 = 0.999512,
AARD = 2.365%, and MSE = 1.9 � 10�5.

Figure 8.
MSE variation versus epoch for optimal MLP model predicting heat transfer coefficient, solid line represents
goal while dashed line is training.

Figure 9.
Schematic presentation of the proposed optimal MLP network capability in estimating the experimental heat
transfer coefficient over training + testing datasets.
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The effect of particle volumetric concentration on the convective heat transfer
coefficient of Al2O3 nanofluid flowing through a circular tube is investigated in
Figure 10. It is obvious that the convective HTC increases by increasing the nano-
particle concentration in base fluid. Moreover, the level of this increase for higher
Reynolds number (higher velocity) is more substantial. This behavior may be
explained by more turbulence movement of nanoparticles in higher Reynolds num-
ber. High concentration of nanoparticles in base fluids is a factor that is responsible
for increasing the interface between fluid and particles and enhancement of heat
transfer rate.

Result of another analysis that is performed to investigate an effect of type of
nanoparticles including Al2O3, CuO, and SiO2 on HTC of water-based nanofluids is
shown in Figure 11. It can be simply understood that the convective HTC of water-
based nanofluids is remarkably higher than the pure water. Chaotic movement of
nanoparticles as well as higher thermal conductivity of nanofluids may be respon-
sible for higher heat transfer rate of nanofluids than the pure base fluids. A signif-
icant difference between convective HTC of the considered nanoparticles can also
be seen in Figure 11. A possible reason for this difference may be the difference in
thermophysical properties of nanoparticles. Since the metallic particles (CuO and
Al2O3) have higher density, higher thermal conductivity in comparison with non-
metallic particles (SiO2), a higher heat transfer coefficients are provided in the
presence of metallic particles.

3.3 Viscosity

Viscosity is one of the most important properties of fluids/nanofluids that
directly influences on their heat transfer applications and flow behavior. Accurate
and reliable estimation of viscosity is required for calculation of convection HTC,
Prandtl, and Reynolds numbers, amount of pressure drop, and theoretical power of
pump.

Figure 10.
Effect of particle volumetric concentration on the convective heat transfer coefficient, closed circles represent
experimental data and solid lines are the results of MLP model.
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3.3.1 Experimental databank

Both empirical correlations [57, 69–77] and published literature data [24, 78–88]
approved that the dynamic viscosity of nanofluids is essentially dependent on
chemistry of base liquid, characteristics of nanoparticle, and ranges of operating
conditions. Considering the corresponding state theory, the base fluids are tried to
be introduced based on their critical temperature, critical pressure, and acentric
factor [89]. Numerical values of these fundamental parameters for different base
liquids are reported in Table 7. It is worthy to be noted that critical temperature,
critical pressure, and acentric factor for mixtures of water-ethylene glycol are
obtained using the Kay’s mixing rule [90].

Temperature is likely the most important operating condition that could change
the viscosity of both pure fluids and nanofluids. For incorporation, the effect of

Figure 11.
Effect of particle type on the heat transfer coefficient, closed circles represent experimental data and solid lines
are the results of MLP model.

Liquid Pc (MPa) Tc (K) Acentric factor

Water 22.06 647.1 0.343

Propylene Glycol (PG) 6.04 626 1.102

EG/water (60/40) 17.71 669.1 0.387

EG/Water (45/55) 19.31 661 0.371

EG/Water (40/60) 19.73 658.9 0.366

Ethylene glycol (EG) 7.71 719.7 0.487

Table 7.
Acentric factor and critical properties of the pure base liquids.
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nanoparticles, their diameter, and volumetric concentration (Vp) in liquid are also
regarded as independent factors. A brief description of experimental databank
including independent and dependent variable(s), their associated ranges, and
number of collected datasets from different literatures are presented in Table 8
[24, 78–85].

Table 8 states that our experimental databank for viscosity of different base
fluids - alumina nanoparticle has 674 data-points. The databank includes seven
different base liquids in temperature range of 273–345 K. These base liquids
may have up to 9.4 volume percent of alumina nanoparticle with diameter of 8 to
50 nm. The dynamic viscosity of the considered nanofluids varies from 0.43 to
81.51 mPa.

3.3.2 ANN model development

Similar to two previous modelings, the best structure of MLP model is selected
through trial and error analyses. The results of this trial and error procedure on the
number of hidden neurons for the MLP network were reported in Table 9. Differ-
ent MLP models having 1 to 15 hidden neurons were developed, trained, tested, and
their performances were evaluated. The smallest number of hidden neurons that
provides an acceptable accuracy is often selected as an optimum structure.

Table 9 clearly shows that performance of the MLP model got better by
increasing the number of hidden neuron up to 14. After that, a relatively worse
result is obtained for testing subset even by spending higher computational time
and effort. Thus, a two-layer MLP approach constituting of 14 hidden neurons (the
bold rows) was selected as the best topology for prediction of dynamic viscosity of
dispersion of alumina nanoparticles in different base fluids. It is obvious that this
MLP model predicted whole of the experimental data-points with R2 of 0.99947,
MSE of 0.1442, AARD of 4.13%, and RMSE of 0.3797.

It is common to compare the predictive performance of various types of ANN
and find the best one in terms of some statistical indices. Table 10 summarizes the

Liquid Dp

(nm)

Vp (%) Temperature

(K)

Viscosity

(mPa.s)

No. of

data

Reference

Water 47 1–9.4 294–343 0.43–4.91 81 [80]

Water 13 1.34–2.78 293–345 0.63–2.49 14 [81]

Water 30 0.01–0.3 294–312 0.66–1.00 114 [82]

Water 33 1–2 293–313 0.65–1.09 10 [83]

Ethylene glycol (EG) 8–43 0.5–6.6 283–323 7.51–81.51 96 [78]

Ethylene glycol (EG) 10 1–5 298–328 8.14–37.28 21 [79]

Propylene glycol (PG) 27–50 0.5–3 303–333 7.9–38.6 36 [85]

EG/water (20/80) 36 0–1.5 273–333 0.59–4.6 89 [84]

EG/water (40/60) 36 0–1.5 273–333 0.96–13.64 90 [84]

EG/water(45/55) 30 0–2 283–333 1.54–11.08 33 [24]

EG/water(60/40) 36 0–1.5 273–333 1.5–35.35 90 [84]

Overall ranges 8–50 0–9.4 273–345 0.43–81.51 674 [24, 78–85]

Table 8.
Brief description of collected experimental datasets for dynamic viscosity of alumina-based nanofluids.
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obtained results by the best topology of the CFF, MLP, RBF, and least square
support vector machines (LS-SVM) models for training, testing, and overall
datasets in term of AARD%, MSE, R2, and RMSE.

Focusing on reported results in Table 10 clearly confirms that the MLP neural
network provides the best predictive performance for prediction of dynamic vis-
cosity of different Al2O3-based nanofluids. Since, it outperforms other

Number of hidden neurons Database Sensitivity accuracy analyses

AARD% MSE R
2 RMSE

2 Training 24.62 3.4708 0.98488 1.8630

Testing 27.07 6.5978 0.99033 2.5686

Overall 24.99 3.9394 0.98562 1.9848

4 Training 17.02 1.5977 0.99414 1.2640

Testing 17.79 1.5941 0.99402 1.2626

Overall 17.14 1.5972 0.99409 1.2638

6 Training 12.94 0.5584 0.99795 0.7473

Testing 15.09 0.7587 0.99726 0.8710

Overall 13.26 0.5884 0.99783 0.7671

8 Training 8.80 0.3267 0.99876 0.5715

Testing 10.79 1.0471 0.99723 1.0233

Overall 9.10 0.4346 0.99841 0.6593

9 Training 8.20 0.1343 0.99946 0.3665

Testing 9.64 0.2289 0.99961 0.4784

Overall 8.41 0.1485 0.99946 0.3853

10 Training 6.55 0.1183 0.99956 0.3440

Testing 7.81 0.1864 0.99940 0.4318

Overall 6.74 0.1285 0.99953 0.3585

11 Training 6.53 0.1263 0.99956 0.3554

Testing 8.19 1.7631 0.99352 1.3278

Overall 6.78 0.3716 0.99866 0.6096

Training 5.63 0.0906 0.99968 0.3011

12 Testing 6.04 0.2209 0.99891 0.4700

Overall 5.69 0.1102 0.99959 0.3319

13 Training 4.38 0.0859 0.99969 0.2931

Testing 6.30 0.3259 0.99869 0.5709

Overall 4.67 0.1219 0.99955 0.3491

14 Training 4.11 0.1025 0.99962 0.3202

Testing 4.22 0.3804 0.99867 0.6167

Overall 4.13 0.1442 0.99947 0.3797

15 Training 4.72 0.0799 0.99971 0.2827

Testing 5.91 0.3091 0.99861 0.5560

Overall 4.90 0.1143 0.99958 0.3381

The bold values indicate the best obtained results for the considered AI models.

Table 9.
Trial and error procedure for finding the best structure for MLPNN model.
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considered AI approaches; it therefore can be regarded as the best AI approach for
considered task.

3.3.3 Evaluation the ANN model performances

Plot of estimated viscosity for different nanofluids by the optimum MLP net-
work with respect to their associated experimental data for training and testing
datasets are depicted in Figure 12. Aggregation of the symbols for training as well as
testing subsets around the 45° solid line approves that the developed MLP model is a

AI model Dataset AARD% MSE R
2 RMSE

MLP Training stage 4.11 0.1025 0.99962 0.3202

Testing stage 4.22 0.3804 0.99867 0.6167

Overall data 4.13 0.1442 0.99947 0.3797

CFF Training stage 4.13 0.0989 0.99965 0.3144

Testing stage 4.74 0.1850 0.99911 0.4302

Overall data 4.22 0.1118 0.99959 0.3343

LS-SVM Training stage 6.33 0.0791 0.99971 0.2812

Testing stage 10.27 2.5489 0.99073 1.5965

Overall data 6.92 0.4492 0.99834 0.6702

RBF Training stage 57.91 5.599 0.9759 2.366

Testing stage 50.58 14.425 0.9753 3.798

Overall data 56.81 6.922 0.9745 2.631

The bold values indicate the best obtained results for the considered AI models.

Table 10.
Comparison among the capabilities of different AI approaches in prediction of viscosity of nanofluids.

Figure 12.
Performance of the best AI model for estimation of viscosity of alumina-based nanofluids.
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Experimental

data

Einstein

[69]

Brinkman

[70]

Frankel and

Acrivos [71]

Nguyen et al.

[72]

Batchelor

[73]

Maiga et al.

[74]

Thomas and

Muthukumar [75]

Rea et al.

[76]

Chandrasekar

et al. [57]

Heyhat et al.

[77]

Ethylene glycol

[78]

24.20 23.98 94.03 27.84 23.90 11.56 23.96 54.46 27.80 34.40

Ethylene glycol

[79]

39.37 39.15 82.83 42.93 39.06 26.59 39.13 38.38 42.90 24.95

Water [80] 33.80 33.17 180.63 39.36 32.97 11.92 33.12 383.73 39.31 168.62

Water [81] 44.63 44.53 165.32 47.17 44.48 37.11 44.52 11.04 47.14 16.15

Water [82] 2.97 2.97 173.55 3.23 2.97 2.45 2.97 1.26 3.23 1.32

Water [83] 7.24 7.18 337.49 8.73 7.16 5.80 7.18 34.77 8.70 29.54

EG/water (20/

80) [84]

10.18 10.16 286.76 11.61 10.15 7.08 10.16 6.66 11.60 5.35

EG/water

(40/60) [84]

27.91 27.91 252.39 28.17 27.91 27.68 27.91 31.24 28.16 30.32

EG/water(45/55)

[24]

35.87 35.84 147.00 36.90 35.83 33.14 35.84 24.17 36.89 25.70

EG/water(60/

40) [84]

38.94 38.93 120.06 39.72 38.92 37.10 38.93 31.12 39.72 32.01

Propylene glycol

[85]

15.90 15.74 273.78 19.51 15.68 7.06 15.73 37.10 19.48 29.47

Overall AARD% 24.20 23.02 180.25 25.14 22.97 16.76 23.01 68.40 25.12 38.80

Table 11.
Provided AARD% for prediction of experimental datasets by different empirical correlations.
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practical tool for accurate estimation of the dynamic viscosity of different Al2O3-
based nanofluids in wide ranges of operating conditions.

In this section, some analyses are performed to compare predictive accuracy of
the proposed AI model with 10 well-known empirical correlations in literature
[57, 69–77]. The obtained AARD% values by the considered empirical correlations
for prediction of dynamic viscosity of nanofluids are reported in Table 11. It is
obvious that the proposed model by Maiga et al. [74] is the most accurate empirical
correlation, while the model developed by Frankel and Acrivos [71] presents the
worst results. The earlier one has an AARD of 16.76%, while the later shows the
AARD of 180.25%.

The obtained values for AARD by various AI models and the best obtained
results by the considered empirical correlations are summarized in Table 12. It can
be easily understood that the best results among 10 empirical correlations only
outperforms the RBF model and predictive performance of other AI models is more
better than the empirical correlations.

4. Conclusions

Nanofluids are new and high-tech class of operating fluids that recently found
high popularity in the field of heat transfer equipment. In spite of both practical and
potential application of nanofluids, three developed no accurate correlations for
estimation of thermophysical properties of nanofluids in wide ranges of conditions.
In this chapter, the focus was concentrated on estimation of conduction heat trans-
fer coefficient, convective HTC, and viscosity of different nanofluids by four dif-
ferent artificial neural networks. MLP, RBF, CFF, and GR are the types of ANN
methodology that are employed for these estimations. The best structures of ANN
models are determined, their predictive performances are compared and the best
one is presented. Some statistical error indices including MSE, RMSE, AARD%, and
R2 are used for evaluation of the accuracy of the ANN models. Results confirm that

Experimental data MLP CFF LS-SVM Correlation* RBF

Ethylene glycol [78] 1.94 1.67 2.28 11.56 7.56

Ethylene glycol [79] 3.61 3.53 2.72 24.95 12.34

Water [80] 2.82 4.58 4.59 11.92 170.58

Water [81] 7.65 5.93 15.68 11.04 100.90

Water [82] 2.59 1.19 8.94 1.26 28.11

Water [83] 29.02 11.26 35.64 5.8 53.48

EG/water (20/80) [84] 5.96 6.30 11.71 5.35 84.15

EG/water (40/60) [84] 4.53 6.12 8.16 27.68 62.74

EG/water (45/55) [24] 5.42 5.43 7.10 24.17 35.03

EG/water (60/40) [84] 4.75 6.63 4.29 31.12 38.29

Propylene glycol [85] 1.56 0.90 0.33 7.06 16.70

Overall AARD% 4.13 4.24 6.92 14.50 56.81

*The best obtained result among all of the considered empirical correlations.

Table 12.
Provided AARD% for prediction of experimental datasets by different methodologies.

22

Deterministic Artificial Intelligence



ANN models capable of accurate estimation of thermophysical properties of
nanofluids and show better performances than the available empirical correlations.

Acronyms and abbreviations

ANN artificial neural network
MSE mean square errors
RMSE root mean square errors
AARD% average absolute relative deviation percent
MLP multilayer perceptron
CFF cascade feedforward
RBF radial basis function
GR generalized regression
TCR thermal conductivity ratio
HTC heat transfer coefficient
EG ethylene glycol
PG propylene glycol
LS-SVM least square support vector machines

Appendices and nomenclature

R2 regression coefficient
w weight
b bias
out perceptron’s output
f activation function
Ind number of dimensions of independent variable
Dep number of dimensions of dependent variable
N number of experimental data
D value of dependent variable
Exp experimental data
Cal calculated values
Dp diameter of nanoparticle
T temperature
Mw molecular weight
Vf volume fraction of nanoparticle
ω acentric factor
Pc critical pressure of base fluids
Tc critical temperature of base fluids
Re Reynolds number
h convective heat transfer coefficient
Vp volume percent of nanoparticle
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