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Chapter

Applications of the Abelian Vortex
Model to Cosmic Strings and the
Universe Evolution
Mikael Souto Maior de Sousa and Anderson Alves de Lima

Abstract

Due to the wide range of applications and effects of the Abelian vortex model
of Nielsen and Olesen in the many areas of physics, ranging from condensed matter
to astrophysical effects, some work in the literature is necessary to approach this
topic in a succinct form that the undergraduate student in both physics and related
areas has the possibility to know and understand. The mechanisms associated with
this vortex model indicate him as a strong candidate for the source for the
topological defects proposed by Vilenkin.

Keywords: cosmic string, curved space-time, relativity, field theory

1. Introduction

According to the Big Bang theory, the universe is expanding and cooling.
During its expansion, the spontaneous breaks of fundamental symmetries led the
universe to undergo a series of phase transitions. In high-energy physics models, the
formation of topological defects, caused by transitions, such as domain walls,
monopoles, and cosmic strings, among others, is predicted to occur according to the
reference [1, 2].

The cosmic string is among the most studied types of topological defects,
although recent observations of cosmic background radiation have discarded it as
the primary source for primordial density perturbations. Such a defect still serves as
one of the contributions of this disturbance. This type of defect also serves as a
possible source for explaining a considerable number of astrophysical effects, such
as: bursts of gamma rays, where the energy scale of the string in which the symme-
try is broken, on an energy scale of the order of 1014 GeV, explains the rate,
duration, and fluency of gamma ray bursts [3]; high-frequency gravitational wave
emissions, which have as a consequence of these emissions the stochastic set of
gravitational waves generated by a cosmological network of non-Gaussian loops
[4]; and the generation of high-energy cosmic rays [5]. The cosmic rays of high-
energy particles may have originated during the process of collapse and/or annihi-
lation of topological defects associated with the great unification theories.

In condensed matter physics, it is well known that superconductors almost
completely exclude any external magnetic field if it is less than a critical value
(Meissner effect) [6]. However, for type 2 superconducting, which are formed by
materials in which the transition to the superconducting state is gradual, in the
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presence of an intermediate state, if the external field is increased to a certain value
greater than the critical value, such field. This superconductor passes through a
magnetic flux tube form. These phenomena are called magnetic flux vortices which,
in turn, are quantized.

The possibility of the theoretical existence of such vortices was first demon-
strated by Abrikosov [7]. He showed that these naturally occur as solutions to the
Ginsburg-Landau theory of superconductivity in the presence of an external mag-
netic field. Following this theory, the existence of such objects was verified exper-
imentally, and many of their properties were rigorously investigated in [6]. Some
years later, Nielsen and Olesen [8] showed, starting from the relativistic field theory
model with spontaneous break of symmetry, more specifically of the Abelian Higgs
model interacting with a field of gauge, that this system presents solutions with
cylindrical symmetry carrying a magnetic flux. These configurations correspond to
vortex solutions.

The analysis of the influence of this system on space-time geometry was
performed by Garfinkle [9] and Laguna [10]. In their works, the authors coupled
the energy-momentum tensor, associated to the Nielsen-Olesen model, with the
Einstein field equations. In this sense, they have shown that the vortex has an
internal structure characterized by the nonzero magnetic flux that runs along it, the
extent of which is determined by the energy scale at which the symmetry is broken.
Two scale lengths appear naturally, one related to the extent of the magnetic flux
which, in turn, is proportional to the inverse of the vector field mass, mv, east field,
which acquires mass due to the Higgs mechanism; and the other associated with the
inverse of the scalar field mass, ms, the latter, as a measure of the point where the
scalar field decreases to its vacuum value. Moreover, the authors also analyzed the
geometry of space-time and verified that asymptotically the surface perpendicular
to the vortex corresponds to Minkowski’s space-time minus a slice, resulting in a
space with an angular deficit.

A special vortex solution satisfying the Bogomolny-Prasad-Sommerfield (BPS)
boundary [11, 12] shows the masses of the scalar field and of the same caliber field,
that is, ms = mv. For this case, Linet [13] was able to find an exact solution for the
metric tensor, which is determined in terms of the energy density of the cosmic
string. In this limit, the surface perpendicular to the line of the solution of vortex
has a conical structure and, the space-time surrounding, corresponds to the
space-time of an idealized cosmic string.

At great distances, the space-time generated by a cosmic string has, in its origin
and in the orthogonal plane to the disposition of this object, a conical topology with
a planar angle deficit proportional to the linear density of mass of this cosmic string.
In quantum field theory, the nontrivial topology of this object induces non-vanish
vacuum expected values for physical observables. These vacuum polarization
effects can be interpreted as a modification in the quantum levels of the lower
energy state of a theory. In quantum field theory, induced by a conic structure, they
were the targets of many works published. For example, we can observe several
published works, taking into account the case for scalar fields [14–19] and fermionic
fields [20–22] interacting with vector fields. Another induced physical observable,
due to the presence of this defect, is the current and charge density, which will
serve as the source for Maxwell’s equations. Such an object considering fermionic
fields is seen in [23–26].

2. The general relativity and the space-time

The general relativity theory is a geometric theory of gravitation published by
Albert Einstein in 1915 and the current description of gravitation in modern physics.
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It is a set of hypotheses that generalizes Newton’s special relativity and the universal
gravitation law providing a unified description of gravity as a geometric property
of the space-time. In particular, the “curvature of space-time” is directly related to
the energy and moment of any matter and radiation present. The relation is speci-
fied by Einstein’s field equations, a system of partial differential equations.

All geometric information about the space-time would be contained in this
mathematical object called, formally, metric tensor, gμν. In other words, the distri-

bution of matter and energy tells how the geometry of space-time [27] must be. The
equation proposed by Einstein for the theory of General Relativity is given by the
expression below

Rμν �
1

2
gμνR ¼ 8πTμν: (1)

Here, Rμν is the Ricci tensor that is obtained from the Riemann tensor, R ¼ gμνRμν

is the scalar of curvature, and Tμν is the energy-momentum tensor. In order to
introduce the idea of the metric structure of the space-time, we will briefly review
the necessary basic concepts, such as inertial frame and interval of events [27].

Let us suppose that an inertial frame S is described in Cartesian coordinates (t, x,
y, z). In this frame, we have the line element ds being infinitesimal and having its
own time interval (event) given by

ds2 ¼ dt2 � dx2 � dy2 � dz2: (2)

But if we consider a non-inertial reference system, S0, for example, the line
element will not be given, in general, by the sum of the squares of the coordinate
differentials. In this case, for a better understanding, let us consider an event in a
rotating frame, around the z axis, whose angular frequency of rotation is ω. Let
(t0, x0, y0, z0) be the coordinates of this new S0 referential. The relation between both
reference frames may be illustrated by Figure 1.

The general coordinate transformations between the both reference frames S
and S0 are given as follow,

x ¼ x0 cos ωtð Þ � y0sen ωtð Þ (3)

Figure 1.
The relation between S and S0 reference frame with angular velocity ω around the z = z

0 axis.
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y ¼ x0sen ωtð Þ þ y0 cos ωtð Þ (4)

z ¼ z0: (5)

In this way, taking into account the derivative of the Eqs. (3)–(5) and putting
them in the Eq. (2), the line element will take the form expressed by

ds2 ¼ 1� ω2 x
02 þ y

02
� �h i

dt2 þ 2ωdt y0dx0 � x0dy0ð Þ � d r
! 02: (6)

We see, therefore, that the line element is not only the sum or difference of the
squares of the differential coordinates.

Looking to the Eq. (2), we identify that ds2 ¼ ημνdx
μdxν, where we have the

metric signature given by ημν ¼ 1;�1;�1;�1ð Þ being the four-vector position

xμ ¼ t;� r
!

� �

. On the other hand, looking into Eq. (6), when non-inertial coordi-

nate systems are used, the line element will include terms that are products of the
different coordinate differentials. So, we can write the line element as follows

ds2 ¼ gμν xð Þdxμdxν: (7)

Now, gμν xð Þ represents a set of ten functions of the space and time coordinates

and it is symmetric, i.e., gμν xð Þ ¼ gνμ xð Þ. The system described by Eq. (7) is called

“curved system” and corresponds to an accelerated reference system. The functions
gμν xð Þ contain all the geometric properties of the space-time. For the case where we

deal with inertial frames, we just have gμν xð Þ ¼ ημν.

Einstein showed that accelerated referential are equivalent to gravitational fields
so that gravitational effects will be described by the metric tensor, gμν xð Þ. In this

case, the gravitation can be understood as a deviation in the metric of the space-
time plane. Moreover, this metric is not fixed arbitrarily but will depend on the local
distribution of matter.

In fact, this equivalence is verified only locally. In a non-inertial system, given a
metric gμν xð Þ, we can always reduce it globally to the Galileo form, Eq. (2), by

means of a suitable coordinate transformation. On the other hand, a gravitational
field cannot be eliminated globally by a coordinate transformation, and the metric
can only be reduced to the flat form (Minkowski) only in a very small finite region
of the space, i.e., locally. When such a situation occurs, the space-time is called
pseudo-Riemannian space-time.

3. Cosmic strings

It is believed that fluctuations that gave rise to the large-scale structures of the
Universe must have a primordial origin, that is, they are associated with the first
moments after the Big Bang. The existing theories for structure formation in the
Universe fall into two categories.

One of them based on amplification of quantum fluctuations in a scalar field
during inflation. The other one based on a phase transition with symmetry breaking
in the primordial universe that gives rise to the formation of topological defects.

Seen from the moment of creation, the Universe goes through phase successions.
The transitions between the first of these phases occur when the Universe is dom-
inated by a quantum gravitation whose exact contours are unknown but during
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which the interactions are thought to be unified and characterized by a high degree
of symmetry. These transitions imply symmetry breaks and can have important
implications including the formation of topological defects such as the formation of
cosmic strings or initiation of a period of exponential inflation.

A cosmic string is an object that can be obtained from an infinitely concentrated
distribution of matter, with linear density of mass μ [2]. In the case of a certain
distribution being located on the z-axis, the energy-momentum tensor, in cylindri-
cal coordinates, is given by

Tβ
ν ¼ μ diag 1;0;0; 1ð Þδ 2ð Þ r

!
� �

: (8)

Here, δ 2ð Þ r
!
� �

is a two-dimensional Dirac delta function. Geometrically, a topo-

logical defect can be characterized by a space-time whose metric associated with
this defect has the corresponding Riemann-Christoffel tensor null at all points,
except for the defect, i.e., the space-time has conical singularity. In other words, it
may be characterized by a bending tensor, which is proportional to a delta function
supported on the defect.

We want that the Eq. (8) generates a geometry with cylindrical symmetry. For
that, our goal is to find a solution to Einstein’s equations describing the gravitational
field of an ideal cosmic string with linear mass density μ along the z-axis. In this
sense, the string will have no dependence over time, so it is a temporal invariant.
We will also admit a symmetry of the string in relation to the azimuth angle, and
finally that it remains invariant by boosts. Thus, the most general line element, in
cylindrical coordinates, which exhibits such symmetry and maintains invariance by
boosts transformations along the z-axis, is given by

ds2 ¼ A2 rð Þdt2 � dr2 � B2 rð Þdϕ2 � A2 rð Þdz2: (9)

Using Eq. (1), taking into account the metric tensor given in Eq. (9), we can
calculate the Christoffel symbols and obtain a set of non-linear differential equa-
tions given by

Rt
t ¼ Rz

z ¼
A

0 0
rð Þ

A rð Þ þ A0 rð ÞB0 rð Þ
A rð ÞB rð Þ � A0 rð Þ

A rð Þ

� �2

, (10)

Rr
r ¼ 2

A
0 0
rð Þ

A rð Þ þ B0 rð Þ
B rð Þ , (11)

Rr
r ¼

B00 rð Þ
B rð Þ þ 2

A0 rð ÞB0 rð Þ
A rð ÞB rð Þ : (12)

Solving these equations, we get the following solutions

A0 rð Þ ¼ d

dr
A rð Þ ¼ 0;

B00 rð Þ
B rð Þ ¼ 1

B rð Þ
d2

dr2
B rð Þ ¼ �8πμ: (13)

The above solution provides the following line element [2, 14]

ds2 ¼ dt2 � dr2 � 1� 4μð Þdϕ2 � dz2: (14)

Redefining the angular coordinate in Eq. (14), where we use the substitution
ϕ0 ¼ ϕ=q with q�1 ¼ 1� 4μð Þ, we have
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ds2 ¼ dt2 � dr2 � dϕ02 � dz2, (15)

where the angular coordinate varies in the range 0; 2πq

� �

, so that space-time is

now locally flat except for r ¼ 0, which means except under the defect. This line
element, from a global point of view, corresponds to Minkowski’s space-time minus
one piece subtended by the angle 8πμ. The quantity μ has great importance in string
theory since it characterizes the intensity of the gravitational interaction and its
value obtained from the Great Unification Theories is comprised in the order of
10�6 [28, 29]. Then, space-time generated by a cosmic string has the shape of a cone
in the perpendicular plane to the string. Being flat itself, it satisfies Einstein’s

equations in every region where Tβ
ν ¼ 0.

The effect of the string is therefore to introduce a deficit in the azimuthal angle
given by Δϕ ¼ 8πμ, generating in the surface (t, z) = constants, a conical geometry
instead of a flat geometry, which will be pointed in the limit of the string internal
structure going to zero. In this case, the corresponding space-time is conic and best
described in cylindrical coordinates due to the symmetry of the problem. The
geometry described above has many interesting features, such as:

• Absence of Newtonian gravitational potential although this does not imply the
absence of gravitational effects, that is, a particle placed in the presence of a
cosmic string will not be attracted to it, whatever the order of magnitude of the
mass density of the string, which is quite different from that predicted by
Newton’s gravitational string of matter; in other words, the cosmic strings have
zero gravitational potential [30].

• It can act as a gravitational lens as shown in Figure 2, that is, due to the conic
nature of space-time around the cosmic string, double images of objects located
behind the string can be formed in relation to an observer [2].

• Gravitational analog of the Aharonov-Bohm effect, due to the movement of test
particles in space-time of cosmic strings through the study of geodesics [31].

• Electrostatic self-interaction [13] that arises due to the gravitational field
inducing a curvature in space-time, and this curvature causes distortions in the
field lines of the electrostatic potential generated by a charged particle, causing
this particle to undergo a finite force upon itself.

Figure 2.
Representation of the light way coming from the infinity and “curving” due to the presence of a cosmic string.
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4. The Higgs mechanism

Most of the symmetries observed in nature are not exact. For example, Isospin is
not an exact symmetry of nature, because the proton and the neutron do not have
the same mass. One way to study symmetry breaks in field theory with symmetry
breaking is to introduce the Lagrangian terms with small coefficients that explicitly
perform the break. In this section, we will be interested in a symmetry breaking
which the Lagrangian is symmetric under the action of a group of transformations
but the state of less energy is not.

To understand how spontaneous symmetry breaking appears in many Abelian
field theories, we will start considering the simple case, that is, the Lagrangian for a
complex scalar field given by

L ¼ ∂νφ∂
νφ ∗ � V φj jð Þ, (16)

where V φj jð Þ ¼ μ2φφ ∗ þ λ φ ∗φð Þ2, being λ the self-coupling constant. To this
theory, making the transformation over the scalar field is as follows

φ ! φ0 ¼ φ eiqα and φ ∗ ! φ0 ∗ ¼ φ ∗ e�iqα: (17)

Here, the parameter α does not depend on the point, and we can see that the
derivative in Eq. (16) goes to

∂νφ ! ∂νφ
0 ¼ ∂νφð Þ eiqα and ∂νφ

∗ ! ∂νφ
0 ∗ ¼ ∂νφ

∗ð Þ e�iqα
^ ¼ U ∂νφð Þ: (18)

Putting Eqs. (17) and (18) into Eq. (14), we see that

L ! L0 ¼ L: (19)

As we may see, these transformations under the fields keep the Lagrangian
unchanged. The transformations over the fields and their derivatives that do not
depend on the point are named global gauge transformation.

On the other hand, let us consider that the parameter α now depends on the

point, it means, α � α xð Þ ! U xð Þ ¼ eiqα xð Þ. These kinds of transformation are called
local gauge transformation.

This way the transformation over the derivatives, Eq. (18), becomes

∂νφ ! ∂νφ
0 ¼ ∂ν φ eiqα xð Þ

� �

¼ ∂νφð Þeiqα xð Þ þ iq ∂να xð Þð Þφ: (20)

As we can see, the field derivative does not transform as the field itself. The
second term that appears in Eq. (20) turns the Lagrangian as not invariant by these
transformations over the fields. This way, to turn this theory unchanged by trans-
formations where the parameter now depends on the point, we have to add new
fields called “compensating fields,” Aν xð Þ. Doing this we also have to redefine the
derivative concept, and this way, we have

∂ν ! Dν ¼ ∂ν þ iqAν xð Þ: (21)

In Eq. (21), we have the covariant derivative. Now, under transformations over
the fields, the fields derivative will transform itself like the own fields, which means

Dνφ ! Dνφð Þ0 ¼ U xð ÞDνφ: (22)
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Hence, the total Lagrangian will change by the addiction of the dynamic of these
“compensating fields” and its dynamic is given by the term L Aνð Þ where we have
only Aν interacting among itself, this way we get

L ¼ L φ;φ ∗ ;Dνφ; Dνφð Þ ∗ð Þ þ L Aνð Þ, (23)

where

L φ;φ ∗ ;Dνφ; Dνφð Þ ∗ð Þ ¼ Dνφ Dνφð Þ ∗ � V φj jð Þ (24)

L Aνð Þ ¼ � 1

4
FμνFμν: (25)

Note that Fμν ¼ ∂μAν � ∂νAμ is the Maxwell electromagnetic tensor, and the
“compensating field” is the four-vector potential of the electromagnetism, and this
way, the parameter q is the electron charge. In Eq. (23), we have a U(1) invariant
theory that couples photons with the charged matter. This theory is the known
quantum electrodynamics theory.

In general, the Higgs-Kibble mechanism is a process that generates mass for the
gauge fields in this theory. Taking into account Eq. (23) with the parameters λ>0
and μ2 <0, this theory presents the spontaneous symmetry breaking. In this case,
there exist a “ring” of degenerated vacuum states given by the minimal potential.
This “ring” of degenerated vacuum values is parameterized as

φ0 ¼
ffiffiffiffiffiffiffi

μ2j j
2λ

r

eiΛ: (26)

The study around a vacuum value state can be done by taking the scalar field

φ ¼ 1
ffiffiffi

2
p vþ η xð Þ þ iξ xð Þ½ �: (27)

Being v ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

μ2j j=λ
p

, substituting Eq. (27) in Eq. (23), we have

L ¼ � 1

4
FμνFμν �

q2v2

2
AνA

ν þ 1

2
∂νηð Þ2 þ 1

2
∂νξð Þ2 � λv2η2 � qvAνξ: (28)

The term AνA
ν that appears in Eq. (28) shows that the gauge field now acquires

mass. Besides that we also can see in Eq. (28) that a massive scalar field, η, with
mass m2

η ¼ 2λv2 and a Goldstone scalar field appear. However, the Goldstone scalar

field does not present physical relevance and may be reabsorbed through a gauge
field redefinition. Taking the gauge field redefinition given by

Bν ¼ Aν � q∂νξ, (29)

we may rewrite Eq. (28) as

L ¼ � 1

4
FμνFμν �

q2v2

2
BνB

ν þ 1

2
∂νηð Þ2 � λv2η2, (30)

where

Fμν ¼ ∂μBν � ∂νBμ ¼ ∂μAν � ∂νAμ: (31)

The Bν field presents mass mB ¼ qv, non-vanishing.
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4.1 Topological defects

Topological defects are stable configurations of matter formed during phase
transitions in the primordial universe. As already mentioned, during the early
phases of the Universe, the material components are in physical states characterized
by high degrees of symmetry and it is thought that the interactions will be unified.
The cooling of the Universe, due to expansion, promotes the conditions for some of
these symmetries to break, it is said, spontaneously.

This happens in much the same way as a pencil which, standing vertically and
only resting on its sharp beak, drops down on a flat, oriented surface in any
direction. The symmetry of rotation that exists around the axis of the pencil van-
ishes and, furthermore, the point where the tip was supported separates all possible
positions from the topped pencil and is said to be a topological defect. (A classic
example of a break in symmetry is the ferromagnetic transitions in Landau theory.)
According to the types of symmetries that are broken, various types of topological
defects may form, including walls, cosmic strings, monopoles, and textures. The
type of defect formed is determined by the symmetry properties of the material and
the nature of the phase transition.

To describe the idealized cosmic strings, i.e., static cosmic strings with infinite
matter distribution along the z-axis and whose internal structure may be negligible,
we will use the Nielsen and Olesen model. In this sense, by coupling the energy-
momentum tensor associated with this theory to the Einstein field equations of
general relativity, we study the influence of this model on space-time geometry. In
fact, Laguna [10] and Garfinkle [9] did this, and in their works, they had shown
that the space-time generated by the Nielsen-Olesen model was equivalent to space-
time generated by a cosmic string. Thus, for a better understanding of the nature of
a cosmic string, it is necessary to understand a little about models in field theory
with spontaneous break of symmetry, as with the model proposed by Nielsen
and Olesen.

Domain walls are two-dimensional objects that form when a discrete symmetry
is broken during a phase transition. A network of walls effectively divides the
Universe into several “cells.” This type of defect has some very peculiar properties,
one being that the gravitational field of a wall is repulsive rather than attractive.
These objects may be represented as follow in Figure 3.

Cosmic strings are one-dimensional objects that form when an axial or cylindri-
cal symmetry is broken. They are very thin and can extend along the visible
Universe. These objects may be represented as follow in Figure 4.

Figure 3.
Domain walls associated with models where there is more than a minimum.
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Monopoles have dimension zero, that is, are punctual, and form when a spher-
ical symmetry is broken. In field theory with non-abelian gauge symmetriy broken
may appear defects like magnetic monopole. These objects may be represented as
follow in Figure 5.

Whenever there is the possibility that cosmic strings or other topological
defects form in a cosmological phase transition, they actually form. This circum-
stance had been first pointed out by Kibble, and therefore, in a cosmological con-
text, the process of the formation of defects became to be known as the “Kibble
mechanism” [1].

One fact regarding the universe inflation period is that the causal effects in the
early universe can only propagate at the speed of light c. This means that in the
instant t, regions of the Universe separated more than a distance d = ct cannot know
anything about each other. In a phase transition with symmetry breaking, different
regions of the Universe will fall into different minimum potentials. This way, we

Figure 4.
Cosmic strings associated with models in which a set of minimums is not connected.

Figure 5.
Representation of a magnetic monopole defect. They are expected to be supermassive and have a magnetic
charge.
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actually think that topological defects are precisely the “boundaries” between these
regions corresponding to different minimum potentials and their formation is thus
an inevitable consequence of the phase transition.

4.2 Vortex model in field theory

The model proposed by Nielsen and Olesen for Abelian vortices, in the context
of general relativity, generates a geometric structure similar to that of a cosmic
string. In this sense, this object is a strong candidate to describe mathematically the
cosmic strings; that is, they are strong candidates for the sources for this type of
defect. However, Nielsen and Olesen, starting from a relativistic theory of fields, in
1973, have shown that it is possible to obtain solutions of vortices [8] starting from
the Lagrangian density of the Abelian Higgs model, which is expressed by

L ¼ � 1

4
FβνFβν þDνφ Dνφð Þ ∗ � μ2φφ ∗ � λ φφ ∗ð Þ2: (32)

Note that Dν ¼ ∂ν þ ieAν is the covariant derivative, Fβν ¼ ∂βAν � ∂νAβ is the

electromagnetism Maxwell’s tensor, and λ φφ ∗ð Þ2 is the auto-interaction term; when
this term is put, this theory starts to present a infinity degenerated vacuum, i.e., the
theory has infinite states of lower energy, which satisfies the condition

φj j2 ¼ m2= 2λð Þ. This way, for a particular choice vacuum configuration φ ¼
ffiffiffiffiffi

m2

2λ

q

,

the local gauge symmetry is broken.
It is known that the action for this theory is written as

S ¼
Z

d4x L φ;φ ∗ ;Dνφ; Dνφð Þ ∗ ;Aμ;A
∗

μ

� �

: (33)

In Eq. (17) using the Hamilton’s principle, we get the following equations of
motion. For φ xð Þ, we get

∂L

∂φ
� ∂μ

∂L

∂ ∂μφ
� �

 !

¼ 0: (34)

For Aμ, we have

∂L

∂Aμ � ∂
α ∂L

∂ ∂
αAμð Þ

� �

¼ 0: (35)

Now using Eq. (16) into Eqs. (18) and (35), we have the following system of
differential equations

∂
νFβν ¼ jβ ¼ � ie

2
φ ∗

∂βφ� φ∂βφ
∗

� �

� e2Aβφφ
∗ (36)

DνD
νφ ¼ λφ φφ ∗ �m2

λ

� �

: (37)

For a vortex in the z-direction, the components associated with the vector
potential, in the Cartesian coordinate system, are Aμ ¼ 0;Ax;Ay;0

� �

. For this con-
figuration, the component of the tensor Fβν that interests us is F12, because from it
we can calculate the flux that passes through the plane x; yð Þ. Parametrizing the
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Higgs field by φ ¼ φj j exp iχð Þ, the flux, Φ, passing through an area bounded by a
closed curve C, is given by

Φ ¼
Z

dxdyF12 ¼
I

C
dxiAi ¼ � 1

q

I

C
dxi∂iχ: (38)

Here, we use, in Eq. (38), the fact that the line integral is carried out on the
closed curve C, very far from the magnetic flux and that jμ ¼ 0. The equations of

motion presented in Eqs. (36) and (37) are coupled differential equations in first
order that are hard to find solutions. However, the standard procedure to solve
these equations, at least numerically, is to assume the following cylindrical ansatz,
with symmetry along the z-axis for the fields [8]

Aμ ¼ 0;0;A rð Þθ̂;0
� �

and φ r; θð Þ ¼ f rð Þeinθ: (39)

This procedure reduces Eqs. (36) and (37) to

� 1

r

d

dr
r
d

dr
f rð Þ

� �

þ n

r
� qA rð Þ

� �2
þ λ f 2 rð Þ �m2

λ

� �	 


¼ 0, (40)

� d

dr

1

r

d

dr
A rð Þ

� �

þ q2A rð Þ � nq

r

� �

f rð Þ ¼ 0: (41)

There exist no analytical solutions to these equations. On the other hand, we can
find many vortex properties by general and numerical considerations under both
equations. From the general point of view, it is possible to show that these equations
present solutions as asymptotically well-defined. For points closer to its nucleus, we
have f rð Þ≈A rð Þ ! 0. For points pretty distant from the vortex nucleus, it is
observed that the functions f rð Þ and A rð Þ may be approximated in first order to

f rð Þ ! m
ffiffiffi

λ
p and A rð Þ ! n

qr
: (42)

By using computational methods we can solve numerically Eqs. (40) and (41),
and in Figure 6, we can see their behavior.

Figure 6.
H(r) and φ rð Þ represent, respectively, the behavior of the magnetic field and the scalar field.
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From Figure 6, we can see that two mass scale come up, first of them is

ms ¼
ffiffiffi

2
p

m that is related with the mass of the scalar field dislocated; it means

φ0 ¼ φ�m=
ffiffiffi

λ
p

. The second one is related with the photon mass, mv ¼ qm=
ffiffiffi

λ
p

,
remember that the photon acquires mass because of the Higgs mechanism. Note
that two length scales also appear in Figure 6. The first one δ ¼ 1=mv is related
with the range of the electromagnetic field. The second latter, ξ = 1/ms, is related
with the space scale for the Higgs field arrive its own vacuum value.

In the literature Eqs. (23) and (24) form a system of coupled-equations and this
system do not have exact solutions, but asymptotically we may solve these equa-
tions. The solutions that present finite linear density of energy, follow reference
[32], are given by

f rð Þ ! m
ffiffiffi

λ
p 1� k e�

r
ξ

� �

and A rð Þ ! n

qr
1� k e�

r
δ

� �

, (43)

where k is a constant of proportionality.
On the other hand, Garfinkle [9], in 1985, studied the gravitational effects

associated with the vortices of Nielsen and Olesen. For this purpose, he used the
energy tensor, Tβν, obtained from the Lagrangian of the Abelian Higgs model,
Eq. (16). In the context of the general relativity, he used this tensor as source of the
Einstein equations. In this case, a static metric, with cylindrical symmetry, can be
written as

ds2 ¼ eadt2 � dr2 � ecdϕ2 � ebdz2, (44)

where a, b, and c are functions of the radio r satisfying the relations

a 0ð Þ ¼ b 0ð Þ ¼ 0 and lim
r!0

ec

r2
¼ 1: (45)

Given the metric, Eq. (44), solving the Einstein field equations for the energy-
momentum tensor of Nielsen and Olesen, Garfinkle had found, as in flat space-
time, symmetrically cylindrical static solutions which he represented as vortices.
It also showed that, asymptotically, the space-time around a vortex become the
Minkowski space-time minus a slice corresponding that one shown in Figure 2.
This means that, asymptotically, the vortex can be seen as a cosmic string
containing a magnetic field around it.

5. Conclusions

Throughout this work, we introduced some reasons why cosmic string-like
topological defects have been studied in energy physics and condensed matter. In
fact the quantum effects on the fields of matter are caused due to the non-trivial
topology of these objects giving rise to polarization effects. By understanding the
vacuum as a state of lower energy, the effects of vacuum polarization can be
understood as changes in the scale of this lower energy. Such effects in quantum
field theory are seen by calculating the vacuum expected values, VEV, of certain
observables, such as the induced current density [23] and the energy-momentum
tensor of the matter fields [19] induced. These observables serve as sources for the
Maxwell equations in the case of induced current density and for the Einstein
equations in the case of the energy-momentum tensor. In the latter case, the source
of the Einstein equations no longer consists of the classical energy-momentum
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tensor, Tμν, but rather the energy-momentum quantizer, Tμν

� �

, which will result in

certain fixes in the metric tensor [33].
We have also seen that in an inertial frame, the space-time is described by the

Minkowski metric, Eq. (1), which consists of a singular and diagonal metric. How-
ever, when we move to accelerated frames, the metric becomes point dependent,
consisting of a set of ten space-time coordinate functions, containing all informa-
tion about the geometry of the range. In this way, we can see that accelerated
frames are equivalent to gravitational fields, so that gravitational effects can be
described by the metric tensor, gμν xð Þ. Thus, the gravitation may be understood as a

deviation in the metric of the flat space-time. Moreover, this metric is not fixed
arbitrarily but will depend on the distribution of local matter.

Furthermore, the cosmic string is an object whose density of matter is infinitely
concentrated in a line whose mass density is μ. With this object, which can be
described by the energy-momentum tensor given in Eq. (7), the deformation
caused in the space-time is conical and the metric described by this density of
matter is given by Eq. (15), which consists of a Minkowskian metric with cylindrical
symmetry, less than a slice equal to 8πμ, which corresponds to the planar angle
deficit orthogonal to the axis of symmetry of the cosmic string.

Finally, we have seen that such idealized objects can be described through the
Abelian vortices models proposed by Nielsen and Olesen. They showed that by the
abelian Higgs model, Eq. (32), assuming a cylindrical ansatz, Eq. (39), It is possible
the obtaining a set of two coupled second order differential equation, as it was
showed in Eqs. (40) and (41), although they do not have a closed analytic form, but
that may be obtained numerical and asymptotic solutions, Eq. (27). In this way, it is
observed that two length scales appear naturally from this theory. One associated
with the inverse of the mass of the scalar field, ξ � 1=ms, and the other one related
to the inverse of the mass of the vector field, δ � 1=mv, which acquires mass due to
the mechanism of Higgs. Also in the scope of the Abelian vortices, Linet [13] and
Garfinkle [9], starting from the energy-momentum tensor associated to the Nielsen
and Olesen model as the source of the Einstein field equations, they obtained a
metric associated to this model, and they found a metric described by a cosmic
string. The internal structure of this object is delimited by the scale of energy in
which the Higgs field decays to its vacuum value.
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