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Chapter

Circular RNAs and Its Biological
Functions in Health and Disease
Atiye Seda Yar Saglam, Ebru Alp and Hacer Ilke Onen

Abstract

Circular RNAs (circRNAs) belong to the family of long noncoding RNAs
(lncRNA) that, unlike linear RNAs, are characterized by a covalently closed circular
RNA structure lacking 50 cap and 30 poly-adenylated tails. circRNAs have a role in
epigenetic regulation of downstream targets. circRNAs play a crucial role in regu-
lating gene and protein expressions by acting as a microRNA (miRNA) sponge and
RNA binding protein (RBP) sponge and interact with proteins to affect cell behav-
ior. circRNA expression profiles differ between physiological and pathological
states. Moreover, the expression patterns of circRNAs exhibit differences in a
tissue-specific manner. Although investigations on circRNAs have been exploding
nowadays, yet only a limited number of circRNAs are identified. Furthermore,
further researches are needed to shed light on their functions and targets. There-
fore, circRNAs are becoming vital as potential biomarkers that may be used for the
diagnosis and treatment of diseases. In this chapter, we review the current
advancement of cirRNAs with regard to their biogenesis, biological functions, gene
regulatory mechanisms, and implications in human diseases and summarize the
recent studies on circRNAs as potential diagnostic and prognostic biomarkers based
on existing knowledge.

Keywords: circular RNAs, cardiovascular diseases, neurological disorders,
immune regulation, cancer

1. Introduction

The ENCyclopedia Of DNA Elements (ENCODE) project reported that noncod-
ing RNAs (ncRNAs) unexpectedly consist of more than 70% of the human genome
[1]. After the data released by ENCODE project consortium, numerous studies have
focused on the identification and function of these transcripts [2]. ncRNAs can be a
group based on their different characteristic features [3]. Long noncoding RNAs
(lncRNAs) are subclass of ncRNAs that have been recently proved to have a role in
physiological and pathological processes [4]. lncRNAs are >200 nucleotides long,
divergent class of RNA transcripts that coordinate expression of protein-coding
genes. Yet, they have a lack of ability to encode proteins [5]. Circular RNAs
(circRNAs) are a special subtype of lncRNAs [6]. circRNAs are characterized by a
single-stranded covalently closed loop structure with neither a 50 cap nor a 30 poly
(A) tail [7]. Due to their circular structure, circRNAs are more stable than the linear
mRNA counterpart and not susceptible to RNA exonuclease cleavage [6, 7]. The
presence of circRNA was first demonstrated in the cytoplasm of eukaryotic cells in
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1979 [8]. It was thought that circRNAs were a by-product formed during splicing
mechanism in the first year [9]. Numerous circRNAs have been predicted with the
technical developments in high-throughput RNA sequencing (RNA-seq) and meth-
odological innovations in bioinformatics. The presence and function of the
predicted circRNAs in different tissues and cell lines are widely studied nowadays.
After the determination of their role in the control of gene expression, circRNAs
have gained great attention by researchers in this field. In this chapter, we will focus
on circRNAs and their biological functions in health and disease.

2. Biogenesis of circRNAs

According to the gene structure they contain, circRNAs can be divided into three
groups: exonic circRNA (ecircRNA), circRNAs from introns (ciRNAs), and exon-
intron circRNA (elciRNA) [10]. To date, many studies have shown that circRNAs
mainly emerged during pre-mRNA splicing process of protein coding genes. Unlike
canonical mRNA splicing mechanism, down-stream donor splice site is covalently
joined with an upstream acceptor splice sites during circRNA formation. This splic-
ing mechanism is called “back-splicing” [7]. The back-splicing mechanism is
depicted in Figure 1. circRNAs can also be formed through the hybridization of
complementary inverted sequences (such as human Alu repeats) in introns [10]. If
Alu sequences are located in different introns of the same gene, this leads to

Figure 1.
Schematic illustration of the circRNA formation by back splicing mechanism. Unlike canonical mRNA splicing
mechanism, the 30 splice donor site of exon 1 binds to the 50 splice acceptor site of exon 4 during circRNA
formation. The back-splicing results in a circRNA including exon 2 and 3 and linear mRNA with skipped exon
2 and 3. ss, splice site.
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generate circRNAs, which contains multiple exons [7]. Exon circularization is
facilitated by cis-acting inverted repeat sequences as well as by trans-acting
RNA-binding proteins (RBPs), which interact with unique sequences in introns
[11, 12]. ecircRNA or elciRNA formation is promoted by either cis-acting elements
or trans-acting factors as in Figure 2A. ecircRNAs can also be formed from
elciRNAs by removal of intronic sequences [13]. Apart from the other circRNAs,
ecircRNAs are transported into cytoplasm [14]. In human cells, the existence of
ciRNAs is demonstrated by Zhang et al. [15]. ciRNAs are generated through a
lariat-derived mechanism relying on mainly a consensus motif containing a 7-nt
GU-rich element adjacent to the 50 splice site and an 11-nt C-rich element adjacent
to the branchpoint site. After cleavage of 30 end, stable ciRNA is produced [15].
The predicted biogenesis of ciRNA is shown Figure 2B.

3. Gene regulation and biologic functions of circRNAs

The expression patterns of circRNAs are specific to the cell type or phase of
development [16]. Although the all-biological functions of circRNAs are not
entirely defined, some are well studied in the literature. Biological functions of
circRNAs include micro RNA (miRNA) sponge, regulation of gene expression and
properties of mRNA binding, scaffolding, and cellular translocation.

3.1 circRNAs can act as miRNA sponges

As a major component of gene regulators, competing/competetive endogenous
RNA (ceRNA) contains a micro RNA response element (MRE-competitively binds
miRNA) and can affect the regulatory functions of miRNAs [17]. Growing evidence
has indicated that circRNAs can act as ceRNA or miRNA sponge molecules. Because

Figure 2.
Possible model for the formation of structurally different circRNA. (AI) Intron-driven circularization:
circRNAs may form by hybridization of the introns with inverted repeats or Alu sequence. (AII) RBP-driven
circularization: RBPs bind to specific sequence in introns that bring the exons close together and trigger the
circularization. At the end of these two ways, elciRNAs or ecircRNAs are generated. Only ecircRNAs can be
transported to cytoplasm. (B) Formation of ciRNA. The ciRNAs are generated from intron lariat by splicing
reaction. Purple arrow represents 7-nt GU-rich element. Yellow arrow represents 11-nt C-rich element near to
the branchpoint site.
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of containing plenty of MRE, circRNAs can competitively bind to miRNAs (gener-
ally several copies of miRNA) and adsorb them like a sponge [18]. As a result,
miRNAs can no longer act on their target mRNA [19]. Therefore, circRNAs can
regulate the gene expression and also give rise to decreasing of the functional
miRNA [17, 18]. Compared to other ceRNAs, circRNA binds more effectively to
miRNAs. Therefore, they are also called “super sponge” [20]. The most character-
istic miRNA sponge “antisense to the cerebellar degeneration related protein 1
transcript” (CDR1as)/ciRS-7 includes approximately 70 conserved binding sites for
miRNA-7 (miR-7) and forms a complex with Argonaute (AGO) proteins [21].
CDR1as-miR-7 complex co-localizes in the cytoplasm and supresses degradation of
miR-7-target mRNAs [17]. Interestingly, circRNA has been reported that it is also
displayed to be abundant in exosomes in serum [16]. Therefore, Li et al. suggested
that sorting of circRNAs to exosomes was regulated by altering levels of associated
miRNA in producer cells [16, 22]. In addition, researchers have found that CDR1as
including exosomes inhibit miR-7-induced growth in recipient cells [22]. Testes-
specific circRNA/circSry [the circular transcript of sex determining region Y (Sry)
gene] can also serve as a sponge for miRNA-138 [23]. It contains 16 MREs of
miRNA-138 and regulates the expression of miR-138-target genes, functioning sim-
ilar to CDR1as [17]. Additionaly, many other circRNAs have been identified as
miRNA sponges such as hsa_circ_001569, heart-related circRNA (HRCR), itchy E3
ubiquitin protein ligase circRNA (circITCH), forkhead box O3 circRNA (circ-
foxo3), homeodomain interacting protein kinase 3 circRNA (circHIPK3), mito-
chondrial tRNA translation optimization 1 circRNA (circMTO1), zinc finger protein
609 circRNA (cirZNF609), and baculoviral IAP repeat containing 6 circRNA
(circBIRC6) [24]. Among them, cirITCH regulates the expression of ITCH by acting
as a sponge for miR-214, miR-17, and miR-7 [22].

Apart from common phenomenon, in some cases, the binding of circRNAs
to miRNAs may not always lead to inhibition of miRNAs. Linearization and
AGO2-mediated cleavage of CDR1as can occur when CDR1as interacts with miR-
671. Thus, bound miR-7 is released from CDR1as [25]. On the other hand, in spite
of the role of circRNA in gene regulation as a classical sponge effect, some recent
studies have revealed that the number of circRNAs with miRNA sponge property
is limited. Besides inhibition effect, it has been regarded that the interaction
between circRNAs and miRNA is also related to sorting, storage and localization
of miRNA [18].

3.2 circRNAs regulate gene expression and interact with protein

In addition to their miRNA sponge function, circRNAs can also act as sponges
for other components as RBPs. There are many proteins known as RBP such as AGO
protein, RNA quaking, muscleblind (MBL) protein, RNA polymerase II (Pol II),
eukaryotic initiation factor 4A-III [26]. RBPs bind specific sequences to their target
genes and control all stages of mRNA lifecycle including splicing, nuclear export,
stability and subcellular localisation [27]. A number of circRNAs contain a large
amount of binding sites for a single or multiple RNA-binding proteins. For example,
circRNA protein sponge derived from the MBL locus includes binding sites of mbl
protein. Thus, mbl is prevented from binding to other targets. In a parallel study,
circular RNA of polyadenylate-binding nuclear protein 1 (circPABPN1) derived
from PABPN1 gene binds to HuR (enhance PABPN1 translation) and prohibits its
binding to PABPN1 mRNA [28].

circRNAs also inhibits parental gene transcription in target genes via invading
RNA binding sites. Strongly binding of circRNA, derived from sepallata3 (SEP3)
gene, to its cognate DNA locus blocks the binding of its linear isoform to the
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cognate DNA. The formation of R-loop (RNA:DNA hybrid) gives rise to termina-
tion of SEP3 gene transcription [13]. Moreover, circRNAs can be paired with
DNA to generate DNA-RNA triple helixes. Therefore, this pairing may affect DNA
replication [29].

Some ciRNAs (e.g., ci-ankrd52, ci-sirt7) and eIciRNAs (e.g., circEIF3J,
circPAIP2) regulate the transcription of their parental genes. eIciRNAs can
regulate parental gene transcription in a cis-acting manner [18, 23, 24]. Recent
studies have been indicated that nuclear elciRNAs (localized to the promoter of
their parental genes) interact with U1 small nuclear ribonucleoproteins (snRNPs)
and RNA pol II and promote the transcription initiation of their parental genes
[28, 30]. For example, eukaryotic translation initiation factor 3J circRNA
(circEIF3J) and poly(A)-binding protein-interacting protein 2 circRNA (circPAIP2)
have been suggested to have cis-regulatory effects on parental genes and promote
transcription of EIF3J and PAIP2. This cis-regulatory effect occurs by binding of its
circRNAs to Pol II, U1 snRNP, and their parental gene promoters [18, 25]. When
transcription is initiated, the production of eIciRNA can be increased so that this
phenomenon generates a positive feedback loop. [23]. Moreover, they have a
function as positive regulators through their interactions with the elongating Pol II
complex [24, 25, 31]. In addition, exonic circular antisense noncoding RNA in the
INK4 (a family of cyclin-dependent kinase inhibitors) locus (circANRIL/cANRIL)
reduces ANRIL that inhibits transcription of INK4/ARF gene by binding to the
Polycomb Gene (PcG) complex. Thus, cANRIL regulates the transcription of
INK4/ARF [32].

3.3 Cellular translocation properties

Some circRNAs may affect nuclear translocation of other proteins to nucleus and
regulation of gene transcription. For example, CircAmotl1 may increase nuclear
translocation of signal transducer and activator of transcription 3 (STAT3) to regu-
late the expression of mitosis-related genes [24].

Another capability of circRNAs is to ensure that cellular proteins remain in their
natural cellular position. It has been reported that circAmotl1 can enhance stability
of c-myc by maintaining its nuclear retention and increase its binding affinity to
several promoters. Therefore, it upregulates c-myc targets such as hypoxia induc-
ible factor-1 alpha (HIF-1α), cell division cycle 25A (Cdc25a), ETS Like-1 (ELK-1)
[24]. In another example, cytoplasmic circ-foxo3 interacts with differentiation-1
(ID-1), HIF-1α, focal adhesion kinase (FAK), the transcription factor E2 (E2F1) and
prevents their translocation from cytoplasm to other location [13].

3.4 Scaffolding properties

circRNAs also serve as scaffolding in the assembly of protein complexes [13]. It
has been reported that circ-foxo3 acts as an adaptor to bridge between cyclin-
dependent kinase 2 (CDK2) and CDK inhibitor p21 (cyclin-dependent kinase
inhibitor 1A). This interaction (circ-foxo3/CDK2/p21) inhibits cell-cycle progres-
sion within G1 to S-phase transition [18, 24]. However, downregulation of circ-
foxo3 leads to the release of CDK2 from p21 and CDK2 phosphorylates cyclin E and
cyclin A for cell cycle progression. On the other hand, the circ-foxo3 connects the
murine double minute 2 (MDM2) to tumor protein p53 (p53), and induces the
degradation of p53 by ubiquitination. However, circ-foxo3 weakly interacts with
foxo3 and suppresses foxo3 from MDM2-mediated polyubiquitination and
proteasome degradation [30].
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3.5 mRNA binding properties

Most circRNAs are capable of interaction with mRNAs. It has been reported
that they can be able to regulate the stability of mRNAs as well. In addition to its
miRNA sponge function, CDR1as is also proposed to form a duplex structure with
CDR1 mRNA and stabilizes it. Similarly, stabilization of mature intercellular
adhesion molecule 1 mRNAs in macrophages was found to be facilitated by RasGEF
domain family member 1B circRNA (circRasGEF1B) [18].

3.6 The effect of circRNA as a translator

Recent studies have shown that some circRNAs can be entered to translational
process in spite of considering noncoding RNA [33, 34]. A limited number of
studies have indicated the potential protein coding properties of circRNAs until
now but the translational efficiency might be low [33]. circRNA containing internal
ribosomal entry site (IRES) and open reading frame can be translated into protein
or polypeptide. In eukaryotes, IRES is an alternative way of initiating translation,
independent of 50 cap structure and 30 poly (A) tail recognition [19]. It has been
demonstrated that the 40S subunit of the eukaryotic ribosome can interact with
circRNA-containing IRES and then begin translation in in vivo and in vitro experi-
ments. It has been shown that zinc finger protein 609 circRNA (circZNF609) can
be translated into a novel ZNF609 protein isoform and potential function during
myogenesis. Another study indicated that novel proteins have been translated from
F-box and WD repeat domain containing 7 circRNA (circFBXW7) and SNF2 his-
tone linker PHD ring helicase circRNA (circSHPRH) in glioblastoma cell lines. A
new isoform protein encoded by circFBXW7 with open reading frame was found to
inhibit glioma cell growth [18, 34].

A recent study reported that N6-methyladenosine (m6A), a most common base
modification of RNA, can promote the protein translation of circRNA in human
cells, even if one m6A motif can initiate circRNA translation [18, 19, 29]. m6A-
driven circRNA translation is prevalent, and several endogenous circRNAs have
the potential for translation and regulatory role in a cell against enviromental
factors [29].

3.7 The effect of circRNAs on splicing

Recent studies have shown that there is a competition between backsplicing and
linear splicing. Thus, the biogenesis of circRNAs leads to loss of protein-coding
mRNA levels and inhibits parental gene expression [13]. On the other hand, the
level of circRNA is negatively correlated to the splicing efficiency of certain genes
due to the competition between linear splicing and circRNA biogenesis [30].

4. circRNAs in cardiovascular diseases

Cardiovascular disease (CVD) is one of the most important health problems. It
causes most of the deaths worldwide [35]. According to recent studies, a number of
circRNAs may play a significant role during development of CVD or pathological
conditions such as cardiac hypertrophy, coronary artery disease, atherosclerotic
vascular disease, cardiomyopathy, cardiac fibrosis, heart failure (HF), ischemia,
and myocardial infarction (MI) [36–38]. However, in development of heart disease,
the regulatory mechanisms and functional importance of several circRNAs are not
clear [38]. circRNAs are also concentrated in body fluids such as seminal fluid,

6

Gene Expression and Phenotypic Traits



circRNA Possible target CVD Biological function or

description

Ref

circANRIL (ex 5–7) PES-1 AS and CAD Impairs pre-rRNA maturation

and ribosome biogenesis and

increases nucleolar stress and

apoptosis

[32, 47]

circANRIL (ex 4–6) ASVD Neighboring gene regulation

such as INK4a

[32]

Hsa_circ_0003575 miR-199-3p, mir-

9-5p, mir-377-3p, and

miR-141-3p

AS Regulates endothelial cell

proliferation and angiogenesis

acting as a miRNA sponge

[48]

Hsa_circ_0010729 mir-186 AS and CHD Regulates vascular endothelial

cell proliferation and apoptosis

via targeting miR-186 and HIF-

1α axis

[49]

circACTA2 miR-548f-5p AS and CHD Maintains contractile

phenotype of VSMC

Mediates NRG-1-ICD

regulation of α-SMA expression

in HASMCs

[50]

circWDR77 mir-124 AS Regulates VSMC proliferation

and migration via targeting

miR-124 and FGF2

Inhibits the expression of

SM22a and STIM1 by acting as

a miRNA sponge

[51]

circ-SATB2 mir-939 AS Inhibits the expression of

SM22a and STIM1 by acting as

a miRNA sponge

Regulates cell phenotypic

differentiation, proliferation,

apoptosis, and migration in

VSMC

[52]

circR-284 miR-221 AS and carotid

plaque rupture

Reduces the proliferation of

VSMCs by circR-284/mir-221/

p27Kipi axis

Upregulated circR-284:miR-221

ratio in the early stage of

carotid plaque rupture

[53, 54]

hsa_circ_0124644 CAD Potential biomarker of

coronary artery disease

[55]

hsa_-circ_0001879 CAD Significant upregulated

expression levels in CAD

patients

[56]

hsa_circ_0004104 Dysregulation of

atherosclerosis-related genes by

overexpression of

hsa_circ_0004104

[56]

CDR1as miR-7a MI Upregulates the expression of

PARP and SP1 acting as a

miRNA sponge and promotes

apoptosis

[57]

MICRA Acute MI, HF,

and LVD

Potential biomarker of left

ventricular dysfunction in the

patients with acute MI

[58, 59]

MFACR miR-652-3p MI Upregulates apoptosis and

mitochondrial fission

[60]

7

Circular RNAs and Its Biological Functions in Health and Disease
DOI: http://dx.doi.org/10.5772/intechopen.88764



circRNA Possible target CVD Biological function or

description

Ref

HRCR mir-223 HF and cardiac

hypertrophy

Increases the expression of

ARC by acting as a miRNA

sponge. Suppresses cardiac

hypertrophy

[61]

circ-081881 mir-548 Acute MI Positively regulates PPARγ

acting as a miRNA sponge

[62]

circRNA-010567 miR-141 MI May mediate fibrosis-

associated protein resection

[63]

circNCX1 miR-133a-3p Ischemic

myocardial

injury

Promotes cardiomyocyte

apoptosis by acting as a miRNA

sponge and increased in

response to ROS

[64]

circAmotl1 AKT and PDK Cardiac repair

and

cardiomyopathy

Facilitates the nuclear

translocation of AKT and PDK1

Improves survival and

decreases apoptosis

[45]

circTTN DCM Dysregulated in disease model [65, 66]

circRyr2 Cardiomyopathy [65]

circZNF609 miR-615-5p and miR-

150-5p

Hypertension

and CAD

Inhibits cell proliferation,

migration, and tube formation

and promotes cell apoptosis

Acts as a miRNA sponge and

leads to upregulation of MEF2A

expression

[67]

Hsa-circ-0005870 hsa-miR-619-5p, hsa-

miR-5095, hsa-miR-

1273 g-3p, and hsa-

miR-5096

Hypertension Downregulated in hypertension

patients

[68]

rno_circRNA_016002 Hypertension Upregulated in hypertensive

rat strains compared to

normotensive rats

[69]

hsa_circ_0014243 hsa-miR-10a-5p EH Crucial role in the genesis and

development of EH and

presents a certain diagnostic

capability for EH

[70]

hsa_circ_0037911 miR-637 EH Upregulated in hypertension

patients

[65, 71]

hsa_circ_0126991 EH May serve as a stable biomarker

for early diagnosis of EH

[72]

circ-foxo3 ID-1, E2F1, FAK, and

HIF-1α

Cardiac

senescence

Interacts with ID-1, E2F1, FAK,

and HIF-1α and induces cellular

senescence in aging hearts

[46]

CVD, cardiovascular disease; AS, atherosclerosis; ASVD, atherosclerotic vascular disease; CHD, coronary heart disease;
CAD, coronary artery disease; MI, myocardial infarction; HF, heart failure; LVD, left ventricular dysfunction; EH, essential
hypertension; DCM, dilated cardiomyopathy; VSMC, vascular smooth muscle cell; ROS, reactive oxygen species; ANRIL,
antisense noncoding RNA in the INK4 locus; PES1, pescadillo homologue 1; ACTA2, actin alpha 2; WDR77, WD repeat
domain 77; STIM1, stromal interaction molecule 1; SATB2, special AT-rich sequence-binding protein 2; CDR1, cerebellar
degeneration-related protein 1; MICRA, myocardial infarction associated circRNA; MFCAR, mitochondrial fission and
apoptosis-related circRNA; HRCR, heart-related circRNA; ARC, apoptosis repressor with CARD domain; NCX1, sodium/
calcium exchanger 1; AMOTL1, angiomotin like 1; AKT, protein kinase B; PDK, phosphoinositide-dependent protein kinase;
TTN, titin; RYR2, ryanodine receptor 2; Foxo3, forkhead box O3; ID1, inhibitor of DNA binding 1; E2F1, E2F transcription
Factor 1; FAK, focal adhesion kinase; HIF-1α, hypoxia inducible factor-1; FGF2, fibroblast growth factor2; PARP, poly
ADP-ribose polymerase; and MEF2A, myocyte enhancer factor 2A.

Table 1.
Summary of identified circRNA in the cardiovascular disease.
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saliva, and blood. Thus, their potential usage as clinical biomarkers may be possible
in the future [39].

Some heart specific RNA-splicing regulators are also important players for heart
development. One of the RNA-splicing regulators is RBM20 that is required for
splicing of cardiac-related genes such as titin [38]. Its mutation leads to exon
retention in the region of I-band and results in larger titin isoforms [30]. According
to RNA-seq researches in tissues from dilated cardiomyopathy (DCM) and hyper-
trophic cardiomyopathy, 80 different circRNAs are derived from the titin gene
(TTN) [30, 40].

circANRIL is generated as an antisense transcript from the INK4A/ARF gene
locus by alternative splicing [36]. SNPs localized within chromosome 9p21 are likely
to affect the INK4/ARF locus. These SNPs can regulate ANRIL splicing and may
lead to circANRIL production [39]. Interestingly, there is an association between
9p21 SNPs and the susceptibility to atherosclerosis [41]. circANRIL is also impli-
cated in the pathogenesis of atherosclerosis [42]. In another study, Burd et al.
suggested that 9p21 SNPs affect the coordination of ANRIL expression and splicing
via interaction of different PcG complexes. Furthermore, PcG complexes are
targeted to the INK4/ARF locus and that leads to inhibition of INK4/ARF tran-
scription. Moreover, they also indicated that their study is the first to provide
evidence for relationship between circRNA and atherosclerotic vascular disease
(ASVD) [32].

circANRIL also disrupts exonuclease-mediated pre-rRNA processing and ribo-
some biogenesis by binding to pescadillo homologue 1 (PES1). This leads to nuclear
stress and p53 activation in cells [38, 39]. Therefore, it supresses cell proliferation
and inhibits apoptosis in vascular smooth muscle cells and macrophages.
Consequenly, circANRIL acts as a protective factor against atherosclerosis [41, 43].
On the other hand, it has been indicated that a novel circular RNA product of
ANRIL, cANRIL (exon4-6) also regulates the expression of INK4/ARF [32].

In addition, circRNA serves as a protein scaffold such as circAmotl1 in cardiac
dysfunction [35, 43]. circAmotl1 facilitates phosphorylation of protein kinase B
(AKT) and nuclear translocation of pAKT by forming ternary complexes with AKT
and phosphoinositide-dependent protein kinase (PDK) [43–45]. Zeng et al. have
suggested that pAKT translocation may be responsible for protection of heart cells
from cardiomyopathy caused by doxorubicin [45].

circ-foxo3 is another circRNA described to may have a role in the cardiovascular
diseases. Stress-related proteins (HIF-1α and FAK) and senescence-related proteins
[inhibitor of DNA-binding protein (ID1) and E2F1] are arrested in cytoplasm by
circ-foxo3. Therefore, circ-foxo3 prevents translocation of these proteins into the
nucleus. As a consequence, this mechanism promotes cardiac senecence through
ectopic expression of circ-foxo3 [41, 46]. Besides these functions, circRNAs are
reported to also show their effects as miRNA sponge in cardiovascular diseases.
circRNAs and their function in cardiovascular diseases are indicated in Table 1.

Although there is limited number of studies until today, CVD-related studies for
circRNA are in progress. Therefore, it is still required the identification of circRNA
as candidate biomarkers for CVDs. Moreover, biologic functions of circRNA in
vascular endothelial cell and heart tissue should be validated in further studies.

5. circRNAs in neurological disorders

Recent studies have shown that circRNAs are plentifully expressed in normal
neuronal cells [73–75]. They may be found abundantly in neuronal cells for several
reasons: (i) brain contains more host genes of circRNA such as neuronal genes,
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which play roles in neurogenesis, neuronal development, and neuronal differentia-
tion [11, 74], (ii) the expression levels of circRNAs are higher in brain than other
tissues [75, 76], (iii) due to the slow division rates of neurons, circRNAs may
accumulate more in the brain than other tissues [77], (iv) neuronal genes contain
long introns (>10 kb) with inverted repeat sequences, thereby simplifying forma-
tion of circRNAs [10], and (v) circRNAs due to the absence of 50 and 30 ends result
in greater stability than linear RNAs, leading to a relatively longer half-life [78]. The
half-life of circRNAs is approximately 20 h, compared with corresponding linear
isoforms (no more than 8 h) [79].

The latest studies have shown that circRNAs could attenuate cell senescence and
cell survival and may be involved in the regulation of aging and age-related neuro-
logical diseases [80–82]. Thus, circRNAs are expected to be new potential bio-
markers and target for aging and age-related neurological diseases (Table 2). These
studies have suggested that circRNAs may play an important role in pathological
mammalian brain function, which is implicated in disorders in central nervous
system (CNS) including Alzheimer’s disease (AD), Parkinson’s disease (PD), neu-
ropsychiatric disorders, prion disease, and inflammatory neuropathy.

CDR1as, a circRNA, is highly plentiful and specifically expressed in the mam-
malian brain [85]. Some studies have indicated that ciRS-7 contains multiple anti-
miR-7 sequences. This suggests that ciRS-7 may function as a sponge to sequester
the normal functions of miR-7 [57, 95–97]. ciRS-7 can regulate the stability of

CircRNA Target Neurological

disease

Possible mechanisms Ref

ciRS-7 miR-7 AD ciRS-7 is reduced in AD, and miR-7 can

downregulate AD relevant targets, such as

ubiquitin conjugating enzyme UBE2A,

which play an essential role in the clearance

of amyloid peptides

[83, 84]

circSry miR-138 AD mir-138 participate in learning and

memory ability and is increased in AD, and

it promotes tau phosphorylation by

targeting the RARA/GCK-3β pathway

[85–87]

ciRS-7 miR-7 PD miR-7 may downregulate α-synuclein

expression, promotes the degradation of α-

synuclein mRNA levels, and protects cells

against oxidative stress

[88]

ciRS-7 miR-7

miR-671

Neuropsychiatric

disorders

miRNA deregulation and affects brain

function

[78, 89,

90]

ciRS-7 miR-7 Prion disease Prion protein PrPc can upregulate

expression of ciRS-7

[91, 92]

hsa-

circRNA

2149

— Inflammatory

neuropathy

Hsa-circRNA 2149 has been detected in

CD19+ leukocytes

[53]

circSry miR-138 Inflammatory

neuropathy

miR-138 can balance the ratio of Th1 and

Th2 via suppressing the function of RTF3

[93, 94]

circRNA100783 CircRNA100783 may be involved in

chronic CD28-associated CD8 (+) T cell

aging

AD, Alzheimer’s disease; PD, Parkinson disease; UBE2A, ubiquitin conjugating enzyme E2 A; RARA/GCK-3β,
retinoic acid receptor alpha/glycogen synthase kinase-3β; and RTF3, runt-related transcription factor 3.

Table 2.

Functional mechanism of cirRNAs in neurological disease.
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mRNA targets in the brain by binding to miR-7 [78, 85]. Besides, ciRS-7 can interact
with multiple protein subunits, thus acting as “scaffolding” for RBPs [7, 98].
Thereby, it facilitates the interaction by potentially increasing the stability of the
circRNA transcripts. Due to its multiple functions in brain, researchers have
suggested that ciRS-7 can be a potential biomarker for neurodegenerative disorders
including AD and PD [83].

5.1 circRNA in Alzheimer’s disease

Alzheimer’s disease is a chronic neurological disease. Lukiw et al. showed that
the expression level of ciRS-7 is decreased in hippocampal CA1 region in sporadic
AD [83]. Functional deficiency of ciRS-7 can lead to upregulation of miR-7 in AD
brain and may cause the downregulation of several AD-relevant mRNA targets,
including the ubiquitin conjugating enzyme E2A (UBE2A) [83, 84, 99, 100]. This
autophagic protein, UBE2A, is a central effector in the ubiquitination cycle. UBE2A
is crucial for clearing amyloid peptides via phagocytosis and contributes to
amyloidogenesis [99]. In contrast to the previous studies, Shi et al. have shown that
ciRS-7 promotes the degradation of amyloid precursor protein (APP) and beta-
secretase 1 (BACE1) in an nuclear factor kappa beta (NF-κB)-dependent manner
[101]. Hence, future studies are needed to reveal ciRS-7 function/functions and its
exact role in AD pathology.

CircSry can serve as a miRNA sponge in neural cells. CircSry inhibits miR-138
[53, 85], which is a potential molecular regulator of human memory function [102].
CircSry has multiple binding sites for miR-138 and promotes tau phosphorylation
by targeting the “retinoic acid receptor alpha/glycogen synthase kinase-3β” (RARA/
GCK-3β) pathway [86]. Some studies have indicated that miR-138 influences learn-
ing and memory abilities by regulating acyl protein thioesterase 1 [87, 102]. There-
fore, association of circSry and miR-138 in AD should be further investigated.

5.2 circRNA in Parkinson’s disease

Parkinson disease, progressive age-related neurodegenerative disorder, is char-
acterized by the loss of dopaminergic neurons in the substantia nigra pars compacta
[103, 104]. To date, five genes have been determined to cause PD, such as α-
synuclein (SNCA), parkin, dj-1, PTEN-induced kinase 1 (pink1), and leucine-rich
repeat kinase 2 (lrrk2) [105]. SNCA is the key player in the pathogenesis of PD
based on neuropathologic, genetic, and cellular evidence [106]. The over-
expression and aggregation of SNCA, a target gene of miR-7, is considered as a
distinctive marker in PD [107, 108]. miR-7 has been proposed to play a role in PD
by reducing expression of SNCA [88]. ciRS-7 plays a protective role by inhibiting
miR-7 that directly regulates the expression of SNCA [109]. miR-7 alleviates SNCA
expression dose-dependently and induces the degradation of SNCA mRNA levels
[88]. These results suggest that ciRS-7 serves as a miR-7 sponge in vitro. Further-
more, the silencing of ciRS-7 increases miR-7 activity and decreases the expression
of miR-7 target genes [110]. In addition, circSNCA, another circRNA, can sponge
miR-7, thereby regulating expression of SNCA, resulting in decreased autophagy
and increased apoptosis in cells [111]. These findings are in concordance with the
results of a study, which showed that autophagy can prevent PD [112], and that of
the other study, which demonstrated that apoptosis is related to PD [113].

5.3 circRNA and inflammatory neuropathy

circRNAs may participate in inflammatory reactions that induce neuropathy.
Some circRNAs may affect immune responses due to the fact that they contain virus
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miRNA binding sites. For instance, hsa-circRNA 2149 contains 13 unique, head to
tail spanning reads. Researchers discovered hsa-circRNA 2149 in CD19+ leukocytes,
but not CD341 leukocytes or neutrophils. On the other hand, circRNA100783 may
be involved in chronic CD28-related CD8(+) T cell aging and for this reason could
be a novel biomarker for this conditions [93]. Furthermore, circSry, another
circRNA, can repress miR-138 activity, which could balance T helper 1 (Th1) and T
helper 2 (Th2) expressions through suppressing the function of runt-related tran-
scription factor 3 (RUNX3) [94].

5.4 circRNA and prion diseases

Most prion diseases are infectious via transmissible particles composed of prion
protein in scrapie (PrPSc), an isomer of noninfectious cellular prion protein (PrPc).
Studies have discovered that ciRS-7 expression is induced by PrPc overexpression
[91, 92]. ciRS-7 may suppress miR-7 activity and therefore ciRS-7 may be involved
in the prion disease pathogenesis.

5.5 circRNA and neuropsychiatric disorders

Apart from in brain tumors, ciRS-7 may also play a role in neuropsychiatric
disorders. Increased miR-7 levels have been determined in neuropsychiatric disor-
ders, serving as a proof for ciRS-7-mediated deregulation of dendritic spine density
via a miR-7-SHANK3 (SH3 and multiple ankyrin repeat domains 3) axis [89, 90]. In
recent study, Piwecka et al. showed that ciRS-7 knockout mice display behavioural
phenotypes related to neuropsychiatric disorders. Deleting of ciRS-7 locus in mice
leads to synaptic transmission function disorder and unusual neuropsychiatric-like
behavior. [78]. Other than miR-7, ciRS-7 also has a binding site to miR-671, which is
deregulated in all brain regions in ciRS-7 deficient mice; however, the direction of
changes was opposite. It is designated that the binding site on ciRS-7 is completely
complementary to miR-671, and the interaction of these two molecules could lead to
AGO-mediated ciRS-7 slicing and miR-671 deterioration. On the contrary, the
binding sites on ciRS-7 are partial complementaries to miR-7. For this reason, it is
likely that circRNAs can serve as a platform to store and transport certain miRNAs
[78, 89, 90].

Currently, circRNA studies in the CNS are in progress. To date, there is a limited
number of circRNA identified in neurological disorders. Moreover, previous studies
mainly focus on ciRS-7 function. Therefore, it is still needed to identify candidate
circRNAs as a potential biomarker in neurological disease. In addition, their func-
tional properties in neuronal cells should be also validated in further studies.

6. The role of circRNAs in immune regulation

Although many circRNAs are under survey, their roles in autoimmune diseases
remain incomprehensible, and there are insufficient data to determine their exact
role of circRNAs in such diseases [24, 114].

The connection between miRNAs and immunity has been well-studied, which
has led to the hypothesis that circRNAs may contribute to immune regulation by
interacting with miRNAs. In particular, due to their abilities to serve as miRNA and
protein sponges, they can regulate gene expression and encode proteins. Therefore,
circRNAs can participate in the development and progression of different immune
responses and immune diseases [23, 24, 114]. On the basis of the current studies, the
majority of circRNAs defined in autoimmune diseases are ecircRNAs, and a few are
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Disease CircRNA Regulation miRNA

sponge targets

Potential functions Ref

SLE Hsa_circ_102584 ↑ miR-766-3p

miR-762

miR-412-3p

let-7i-3p

miR-431-3P

It may be improved as novel

noninvasive biomarkers for

SLE

[117]

Hsa_circ_400011 ↑ miR-296-3p

miR-146b-3p

miR-181d-3p

miR-504-3p

Hsa_circ_101471 ↑ miR-328-5p

miR-136-5p

miR-665

miR-486-3p

miR-601

Hsa_circ_100226 ↓ miR-30b-3p

miR-138-5p

miR-145-3p

miR-24-3p

miR-620

miR-875-3p

CDR1as/ciRS-7 ↓ — It functions as the miR-7

sponge to increase expression

of PTEN and restricts hyper-

responsiveness of B cells

[100, 118]

RA Hsa_circ_104871 ↑ — It serves as potential

biomarkers for diagnosis and

performs severity or

pathological course of RA

[119]

Hsa_circ_003524 ↑ —

Hsa_circ_101873 ↑ —

Hsa_circ_103047 ↑ —

Hsa_circ_0057980 ↓ miR-181d It functions as the miR-181d

sponge to suppress the

development of RA

[86, 120]

Hsa_circ_0088088 ↓ miR-16 It functions as the miR-16

sponge to suppress the

development of RA

[121–123]

Hsa_circ_0001045 ↑ miR-30a It functions as the miR-30a

sponge to promote the

biogenesis of RA

MS Hsa_circ_0005402 ↓ — It can be improved as MS

biomarkers

[124]

Hsa_circ_0035560 ↓ — It arranges negatively the

biogenesis of MS

GSDMB ecircRNA ↑ miR-1275 It functions as the miR-1275

and miR-149 sponges to

induce MS

[124, 125]

miR-149 Both circRNAs are derived

from the ANXA2

PBC Hsa_circ_402458 ↑ miR-522-3p It may be appropriate for

PBC diagnosis

[121, 126]

miR-943 It functions as the miR-522

and miR-943 sponges to

counter chronic

[127]
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ciRNAs and eIciRNAs [23, 24, 114–116]. The circRNAs identified to date, their
functions, and roles in immunological diseases are shown in Table 3.

It will be important in future studies to determine biological functions of
circRNAs in immune cells. circRNAs may serve as both potential biomarkers and
immune regulators [23, 24, 114–116]. Hence, it may be helpful to improve our
understanding of the molecular biological basis of autoimmune diseases.

7. circRNAs in cancer

Cancer is one of the most common causes of death in worldwide. As stated
in world cancer report (2014), 10 million people of the world develop all types
of cancer each year. Moreover, over 6 million patients around the world die from
this disease annually [132]. Unfortunately, the number of patients diagnosed
with cancer is increasing and is estimated to increase in future in worldwide
[133, 134]. Even if, a functional improvement in the treatment approach is
established, and new therapeutic strategies are still needed for therapy of cancer.
Therefore, the identification of the altered pathways and gene transcripts has
been the subject of researches recently. miRNAs have a role in gene regulation and
affect various molecular biological processes such as cell growth, development,
differentiation, proliferation, and cell death [135]. As circRNAs interact with
miRNAs and then influence the mRNA expression levels of target genes, the
identification of circRNA-miRNA-mRNA network has become the objective of
cancer researches.

There are numerous investigations on circRNAs and their functions in cancer as
compared with other diseases. To date, most of the studies have focused on miRNA
sponge function of circRNAs. miRNAs have been classified depending on the effect
of miRNAs on downstream target/targets [136]. miRNAs can act as oncogenes or
tumor suppressors during carcinogenesis [137]. Likewise, circRNAs are also named
according to their behaviour during tumorigenesis. While some circRNAs contrib-
ute to tumor progression and metastasis, the others suppress oncogenesis.

Disease CircRNA Regulation miRNA

sponge targets

Potential functions Ref

inflammation and aberrant

TGF-β signalling of PBC

SCID Circ-CDC42BPA ↑ — It disrupts transduction of B

cell signalling to induce

formation of SCID

[128, 129]

Circ-TNFRSF11A ↑ — It attends in the SCID-

mediated alteration of

different signalling pathways

[128, 130]

WAS Circ-ROBO1 ↑ — It activates the pathogenesis

of WAS

[128, 131]

Circ-CDC42BPA ↑ — It disrupts transduction of B

cell signalling to induce

formation of WAS

[128]

MS, multiple sclerosis; PBC, primary biliary cirrhosis; RA, rheumatoid arthritis; SCID, severe combined
immunodeficiency disease; SLE, systemic lupus erythematosus; and WAS, Wiskott-Aldrich syndrome.

Table 3.
circRNAs are associated with immune diseases.
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CircRNA circRNA

expression

status

Target miRNA miRNA

expression

status

Target mRNA/

signaling

pathway

mRNA

expression

status

Main findings of the studies Ref

hsa_circ_0001946 ↓ hsa-miR-7-5p, hsa-miR-671-5p,

hsa-miR-1270, hsa-miR-

3156-5p

↑ NER signaling

pathway

Activated Compared to pairs of adjacent nontumor tissues,

expression of hsa_circ_0001946 is downregulated in 43

NSCLC tissues

There was a decrease in hsa_circ_0001946 expression

on the cisplatin-resistant A549/CDDP cells compared

with the parental A549 cells

[138]

↑ miR-135a-5p ↓ SIRT1 ↑ Compared to pairs of adjacent nontumor tissues,

expression of circ_0001946 is upregulated in 72 lung

adenocarcinoma tissues

The circ_0001946 expression is upregulated in the four

lung adenocarcinoma cell lines compared with the

nonmalignant human lung epithelial cell line

The increase in circ_0001946 expression in tumor

samples is an independent prognostic factor for the

patients with lung adenocarcinoma as well as advanced

TNM stages

[139]

circAGFG1 ↑ miR-203 ↓ ZNF281 ↑ Compared to pairs of adjacent nontumor tissues,

expression of circAGFG1 is upregulated in 20 NSCLC

tissues

circAGFG1 enhances ZNF281-mediated migration and

proliferation of NSCLC

[140]

hsa_circRNA_102984

(circPTPRA)

↓ miR-96-5p ↑ RASSF8/

e-cadherin

↑ Compared to pairs of adjacent nontumor tissues,

expression of hsa_circRNA_102984 (circPTPRA) is

downregulated in 34 NSCLC tissues

circPTPRA acts as a miR-96-5p sponge, and it leads to

upregulation of RASSF8 levels in both in vitro and H23

xenograft model

[141]

circ_0020123 ↑ miR-488e3p ↓ ADAM9 ↑ Compared to pairs of adjacent nontumor tissues,

expression of circ_0020123 is upregulated in 55 NSCLC

tissues

[142]

15 C
ircu

la
r
R
N
A
s
a
n
d
Its

B
iologica

l
F
u
n
ction

s
in

H
ea
lth

a
n
d
D
isea

se
D
O
I:h

ttp
://d

x
.d
oi.org/10

.5772
/in

tech
op
en
.88764



CircRNA circRNA

expression

status

Target miRNA miRNA

expression

status

Target mRNA/

signaling

pathway

mRNA

expression

status

Main findings of the studies Ref

The circ_0020123 expression is upregulated in the four

NSCLC cell lines compared with the nonmalignant

human bronchial epithelial cells

The increase in circ_0020123 expression in tumor

samples has been correlated with short overall survival

rate in NSCLC patients

↑ miR-144 ↓ ZEB1

EZH2

↑ Compared to pairs of adjacent nontumor tissues,

expression of hsa_circ_0020123 is upregulated in

80 NSCLC tissues

Upregulation of hsa_circ_0020123 expression in tumor

samples has been correlated with short overall survival

in NSCLC patients

The hsa_circ_0020123 expression is upregulated in the

six lung cancer cell lines

[143]

circVANGL1 ↑ miR-195 ↓ Bcl2 ↑ Compared to pairs of adjacent nontumor tissues,

expression of circVANGL1 is upregulated in 95 NSCLC

tissues

The circVANGL1 expression is upregulated in the five

NSCLC cell lines compared with the nonmalignant

human bronchial epithelial cells

Upregulation of circVANGL1 expression leads to higher

stage, bigger tumor size, and shorter overall survival in

NSCLC patients

[144]

hsa_circRNA_102231

(hsa_circ_0046263)

(named as circP4HB)

↑ miR-133a-5p ↓ Vimentin ↑ Compared to pairs of adjacent nontumor tissues,

expression of circP4HB is upregulated in 80 NSCLC

tissues

Upregulation of circP4HB expression leads to higher

metastatic capacity and shorter survival in NSCLC

patients

[145]
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CircRNA circRNA

expression

status

Target miRNA miRNA

expression

status

Target mRNA/

signaling

pathway

mRNA

expression

status

Main findings of the studies Ref

circ_0026134 ↑ miR-1256 ↓ TCTN1 and

GAGE1

↑ Compared to pairs of adjacent nontumor tissues,

expression of Circ_0026134 is upregulated in 30

NSCLC tissues

The Circ_0026134 expression is upregulated in the

four NSCLC cell lines compared with the nonmalignant

human bronchial epithelial cells

[146]

miR-1287 ↓

Circ-FOXM1

(hsa_circ_0025033)

↑ miR-1304-5p ↓ PPDPF and

MACC1

↑ Compared to pairs of adjacent nontumor tissues,

expression of Circ-FOXM1 is upregulated in 80 NSCLC

tissues

The Circ-FOXM1 expression is upregulated in the four

NSCLC cell lines compared with the nonmalignant

human bronchial epithelial cells

The increase in circ-FOXM1 expression in tumor

samples was correlated with short overall survival rate

in NSCLC patients

[147]

circ_0003645 ↑ miR-1179 ↓ TMEM14A ↑ Compared to pairs of adjacent nontumor tissues,

expression of circ_0003645 is upregulated in 59 NSCLC

tissues

The circ_0003645 expression is upregulated in the four

NSCLC cell lines compared with the nonmalignant

human bronchial epithelial cells

The increase in circ_0003645 expression in tumor

samples is an independent prognostic factor for the

patients with NSCLC as well as advanced TNM stages

[148]

hsa_circ_0002360 ↑ hsa-mir-3620-5p ↓ PHF19 ↑ Compared to pairs of adjacent nontumor tissues,

expression of hsa_circ_0002360 is upregulated in 18

lung adenocarcinoma tissues

[149]

circRNA 100146 ↑ miR-361-3p

miR-615-5p

↓ SF3B3 ↑ Compared to pairs of adjacent nontumor tissues,

expression of circRNA 100146 is upregulated in 40

NSCLC tissues

[150]
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CircRNA circRNA

expression

status

Target miRNA miRNA

expression

status

Target mRNA/

signaling

pathway

mRNA

expression

status

Main findings of the studies Ref

circFGFR3 ↑ miR-22-3p ↓ Gal-1 ↑ Compared to pairs of adjacent nontumor tissues,

expression of circFGFR3 is upregulated in 63 NSCLC

tissues

The increase in circFGFR3 expression in tumor samples

is correlated with the poor prognosis of NSCLC patients

[151]

Akt and Erk 1/2

signaling

pathway

Activated

hsa_circ_0006427 ↓ miR-6783-3p ↑ DKK1

Wnt/b-catenin

signaling

pathway

↑

Inactivated

Compared to pairs of adjacent nontumor tissues,

expression of circ_0006427 is downregulated in 94 lung

adenocarcinoma

The circ_0006427 expression is downregulated in the

four lung adenocarcinoma cell lines compared with the

nonmalignant human lung epithelial cell line

The decrease in circFGFR3 expression in tumor samples

is correlated with the poor prognosis of lung

adenocarcinoma patients

[152]

hsa_circ_0008305

circPTK2

↓ miR-429 miR-200b-3p ↑ TIF1γ ↓ circPTK2 has an important role in regulating TGF-β-

induced EMT and tumor metastasis

[153]

hsa_circ_100395 ↓ miR-1228 ↑ TCF21 Compared to pairs of adjacent nontumor tissues,

expression of hsa_circ_100395 is downregulated in 69

NSCLC

The hsa_circ_100395 expression is downregulated in

the six lung cancer cell lines compared with the the

nonmalignant human bronchial epithelial cells

Downregulation of hsa_circ_100395 expression in

tumor samples is correlated with TNM stage and

lymphoid node metastases

[154]

circ-BANP ↑ miR-503 ↓ LARP1 ↑ Compared to pairs of adjacent nontumor tissues,

expression of circ-BANP is upregulated in 59 NSCLC

The circ-BANP expression is upregulated in the four

lung cancer cell lines compared with the nonmalignant

human bronchial epithelial cells

[155]

18 G
en
e
E
x
p
ression

a
n
d
P
h
en
otyp

ic
T
ra
its



CircRNA circRNA

expression

status

Target miRNA miRNA

expression

status

Target mRNA/

signaling

pathway

mRNA

expression

status

Main findings of the studies Ref

Upregulation of circ-BANP expression in tumor

samples predicted lower Survival rate

hsa_circRNA_103595

circMAN2B2

↑ miR-1275 ↓ FOXK1 ↑ Compared to pairs of adjacent nontumor tissues,

expression of circMAN2B2 is upregulated in 41 NSCLC

The circMAN2B2 expression is upregulated in the four

lung cancer cell lines compared with the nonmalignant

human lung epithelial cells

[156]

circ_0016760 ↑ miR-1287 ↓ GAGE1 ↑ Compared to pairs of adjacent nontumor tissues,

expression of circ_0016760 is upregulated in 83 NSCLC

The circ_0016760 expression is upregulated in the four

lung cancer cell lines compared with the nonmalignant

human bronchial epithelial cells

Upregulation of circ_0016760 expression in tumor

samples predicted short overall survival in NSCLC

patients

[157]

NER, nucleotide excision repair; NSCLC, nonsmall cell lung cancer; CDDP, cisplatin; SIRT1, sirtuin 1; AGFG1, ArfGAP with FG repeats 1; ZNF281, zinc finger protein 281; PTPRA, protein tyrosine
phosphatase receptor type A; RASSF8, ras association domain family member 8; ADAM9, ADAM metallopeptidase domain 9; ZEB1, zinc finger E-box binding homeobox 1; EZH2, enhancer of zeste 2
polycomb repressive complex 2 subunit; VANGL1, VANGL planar cell polarity protein 1; BCL2, B-cell CLL/lymphoma 2; P4H1, prolyl 4-hydroxylase subunit beta; TCTN1, tectonic family member 1;
GAGE1, G antigen 1; FOXM1, forkhead box M1; PPDPF, pancreatic progenitor cell differentiation and proliferation factor; MACC1, metastasis-associated in colon cancer 1; TMEM14A, transmembrane
protein 14A; PHF19, PHD finger protein 19; SF3B3, splicing factor 3b subunit 3; FGFR3, fibroblast growth factor receptor 3; DKK, Dickkopf WNT signaling pathway inhibitor 1; PTK2, protein tyrosine
kinase 2; TIF1γ, transcription intermediary factor 1-gamma; TGF-β, tumor growth factor beta; EMT, epithelial-mesenchymal transition; TCF21, transcription factor 21; BANP, BANP BTG3 associated
nuclear protein; LARP1, La ribonucleoprotein domain family member 1; MAN2B2, mannosidase alpha class 2B member 2; FOXK1, forkhead box K1; and GAGE, G antigen 1.

Table 4.
The expression profile of circRNA-miRNA-mRNA network in lung cancer tissues.
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CircRNA circRNA

expression

status

Target

miRNA

miRNA

expression

status

Target mRNA/

signaling pathway

mRNA

expression

status

Main findings of the studies Ref

circ_0006528 ↑ miR-7-5p ↓ Raf1 ↑ Compared to adjacent nontumor tissues, expression of

circ_0006528 is upregulated in BCa tissues

The increase in circ_0006528 expression in tumor samples has

been correlated with advanced TNM stage and poor prognosis

[158]

MAPK/ERK

signaling pathway

Activated

circKIF4a

(hsa_circ_0007255)

↑ miR-375 ↓ KIF4A ↑ Compared to pairs of adjacent nontumor tissues, expression of

circKIF4A is upregulated in 57 TNBC tissues

circKIF4A expression increased in the five TNBC cell lines

compared with the four NTNBC and nonmalignant breast

epithelial cell line

The increase in circKIF4A expression in tumor samples has been

correlated with worse outcome of TNBC patients

[159]

hsa_circ_0004771 ↑ miR-653 ↓ ZEB2 ↑ Compared to pairs of adjacent nontumor tissues, expression of hsa

circ 0004771 is upregulated in BCa tissues

hsa circ 0004771 expression increased in the five BCa cell lines

compared with nonmalignant breast epithelial cell line

The increase in hsa circ 0004771 expression in tumor samples has

been correlated poorer survival prognosis

[160]

circTADA2A-E6 ↓ miR-203a-

3p

↑ SOCS3 ↓ Compared to adjacent nontumor tissues, expression of Hsa

circTADA2A-E6 is downregulated in TNBC tissues

The decline in Hsa circTADA2A-E6 expression in tumor samples

was associated with poor patient survival for TNBC

[161]

circAGFG1 ↑ miR-195-5p ↓ CCNE1 ↑ Compared to adjacent nontumor tissues, expression of circAGFG1

is upregulated in TNBC tissues

circAGFG1 expression increased in the six TNBC cell lines

compared with nonmalignant breast epithelial cell line

The expression levels of circAGFG1 were reversely correlated with

overall survival of patients with TNBC

[162]

hsa_circ_000479 ↑ miR-4753

miR-6809

↓ BCL11A ↑ Compared to pairs of adjacent nontumor tissues, expression of

circEPSTI1 is upregulated in 10 TNBC tissues

[163]
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CircRNA circRNA

expression

status

Target

miRNA

miRNA

expression

status

Target mRNA/

signaling pathway

mRNA

expression

status

Main findings of the studies Ref

The increase in circEPSTI1 expression in tumor samples was

positively correlated with tumor size, lymph node infiltration and

TNM stage, and associated with poor prognosis

hsa_circ_0008039 ↑ miR-432-5p ↓ E2F3 ↑ Compared to pairs of adjacent nontumor tissues, expression of

hsa_circ_0008039 is upregulated in 38 TNBC tissues

hsa_circ_0008039 expression increased in the six BCa cell lines

compared with nonmalignant breast epithelial cell line

[164]

hsa_circ_0007534 ↑ miR-593 ↓ MUC19 ↑ Compared to pairs of adjacent nontumor tissues, expression of

hsa_circ_0007534 is upregulated in 40 BCa tissues

hsa_circ_0007534 expression increased in the five BCa cell lines

compared with nonmalignant breast epithelial cell line

[165]

circRNA-000911 ↓ miR-449a ↑ Notch1 ↓ Compared to pairs of adjacent nontumor tissues, expression of

circRNA-000911 is downregulated in 35 BCa tissues

hsa_circRNA_000911 expression decreased in the six BCa cell lines

compared with nonmalignant breast epithelial cell line

[166]

NF-κB pathway Activated

hsa_circ_0001846

circ-UBAP2

↑ miRNA-661 ↓ MTA1 ↑ Compared to pairs of adjacent nontumor tissues, expression of

circ-UBAP2 is upregulated in 78 TNBC tissues

circ-UBAP2 expression increased in TNBC cell lines compared

with nonTNBC cell lines

The increase in circ-UBAP2 expression in tumor samples has been

correlated with reduced OS in TNBC patients

[167]

circRNA_0005505

circIRAK3

↑ miR-3607 ↓ FOXC1 ↑ Compared to pairs of adjacent nontumor tissues, expression of

CircIRAK3 is upregulated in 35 BCa tissues

CircIRAK3 expression increased in TNBC cell lines compared with

normal mammary epithelial or ER-positive cell lines

The increase in CircIRAK3 expression in tumor samples has been

correlated worse recurrence-free survival in breast cancer patients

[168]

circ_0005230 ↑ miR-618 ↓ CBX8 ↑ Compared to pairs of adjacent nontumor tissues, expression of

circ_0005230 is upregulated in 76 BCa tissues

[169]
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CircRNA circRNA

expression

status

Target

miRNA

miRNA

expression

status

Target mRNA/

signaling pathway

mRNA

expression

status

Main findings of the studies Ref

circ_0005230 expression increased in six BCa cell lines compared

with nonmalignant mammary epithelial cell lines

The increase in circ_0005230 expression in tumor samples has

been correlated worse overall survival in breast cancer patients

hsa_circ_0007294

circANKS1B

↑ miR-148a-

3p

↓ USF1 ↑ Compared to pairs of adjacent nontumor tissues, expression of

CircANKS1B is upregulated in 23 TNBC tissues

CircANKS1B expression increased in TNBC cell lines compared

with NTNBC cell lines

The increase in CircANKS1B expression in tumor samples has been

correlated worse overall survival in breast cancer patients

[170]

miR-152-3p TGF-β1/Smad

signalling

Activated

hsa_-circ_005239

circGFRA1

↑ miR-34a ↓ GFRA1 ↑ Compared to pairs of adjacent nontumor tissues, expression of

circGFRA1 is upregulated in 51 TNBC tissues

The increase in circGFRA1 expression in tumor samples has been

correlated short overall survival in TNBC patient

circGFRA1 expression increased in TNBC cell lines compared with

NTNBC cell lines

[171]

KIF4A, kinesin family member 4A; ZEB2, zinc finger E-box binding homeobox 2; CCNE1, cyclin E1; FOXC1, forkhead box C1; TNBC, triple negative breast cancer; NTNBC, nontriple negative breast
cancer; Bca, Breast cancer; TADA2A, transcriptional adaptor 2A; SOCS3, suppressor of cytokine signaling 3; AGFG1, ArfGAP with FG repeats 1; EPSTI1, epithelial stromal interaction 1; BCL11A, B-cell
CLL/lymphoma11A; E2F3, E2F transcription factor 3; MUC19, mucin 19; NOTCH1, notch receptor 1; NF-κB, nuclear factor Kappa beta; UBAP2, ubiquitin associated protein 2; MTA1, metastasis
associated 1; IRAK3, interleukin 1 receptor associated kinase 3; CBX8, chromobox 8; ANKS1B, ankyrin repeat and sterile alpha motif domain containing 1B; USF1, upstream transcription factor 1; GFRA1,
GDNF family receptor alpha 1; and TGF-β1, transforming growth factor beta 1.

Table 5.
The expression profile of circRNA-miRNA-mRNA network in breast cancer tissues.
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Studies on altered expression of circRNAs in (lung and breast cancer) tumor
samples are summarized in Tables 4 and 5. Moreover, in these selected studies, the
circRNA-miRNA-mRNA interaction network is well defined.

By taking all studies together, circRNAs may be candidate surrogate molecular
markers for cancer in different aspects, such as angiogenesis, metastasis, and drug
resistance. Although to date some circRNA-miRNA-mRNA axis is predicted in cancer-
associated pathways, the function and importance of dysregulated circRNAs still need
to be supported in larger numbers of samples and patients, in various cancers.

8. Research databases of circRNA

With the increasing interest in circRNAs, comprehensive circRNA databases are
required for prediction of circRNAs and their targets [172]. To evaluate and sim-
plify the properties and interaction of various circRNAs with other RNAs from
different aspects, numerous databases have been published (circlncRNAnet,
starBase v2. 0, circBase, circRNABase, circ2Traits, nc2Cancer, DeepBase v2. 0,
CircInteractome, TSCD, CIRCpedia, circRNADb, CircNet, CircR2Disease,
circBank, and so on) [173]. Examples of circRNA databases and their usage in
researches are shown.

• starBase v2. 0 determines miRNA-circRNA interactome and includes miRNA,
mRNA, and lncRNA information [174].

• circ2Traits can be provided information about miRNA-circRNA interaction
and its association with particular diseases [109].

• CircInteractome can be used in coupling the circRNA with related RNA-
binding proteins [175].

• TSCD is helpful to describe tissue-specific circRNAs in mouse and human
genomes [176].

• CIRCpedia includes reverse and variable splicing sites of circRNAs from
individuals and mouse samples [177].

• circBank can be a resource to facilitate the research of function and regulation
of circRNAs [178].

9. Conclusion

In summary, circRNAs, a new class of noncoding RNAs, are widely investigated
by researchers due to their role in post transcriptional gene regulation. Recent studies
have indicated their effects on the development of diverse diseases by acting as a
miRNA sponge, RBP sponge, and transcriptional modulator or direct encoding pro-
teins. Although the miRNA sponge function of circRNAs is currently investigated in
the diseases, other mechanisms of circRNAs are still under investigation, and further
studies are needed. After the interpretation of their function in disease pathogenesis,
they may have a potential to become a drug target. Using circRNAs as biomarkers or
therapeutic targets needs to be further investigated due to their complex roles. Based
on these characteristics, circRNAs are likely to guide the development of new diag-
nostic and therapeutic strategies as well as prevention of diseases.
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