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Chapter

Algorithms for LQR via Static
Output Feedback for
Discrete-Time LTI Systems
Yossi Peretz

Abstract

Randomized and deterministic algorithms for the problem of LQR optimal
control via static-output-feedback (SOF) for discrete-time systems are suggested in
this chapter. The randomized algorithm is based on a recently introduced random-
ized optimization method named the Ray-Shooting Method that efficiently solves
the global minimization problem of continuous functions over compact non-convex
unconnected regions. The randomized algorithm presented here has a proof of
convergence in probability to the global optimum. The suggested deterministic
algorithm is based on the gradient method and thus can be proved to converge to
local optimum only. A comparison between the algorithms is provided as well as
the performance of the hybrid algorithm.

Keywords: control systems, optimal control, discrete-time systems,
state-space models, NP-hard control problems, randomized algorithms,
deterministic algorithms

1. Introduction

The application of static-output-feedbacks (SOFs) for linear-quadratic
regulators (LQR) is very attractive, since they are cheap and reliable and their
implementation is simple and direct, because their components has direct physical
interpretation in terms of sensors amplification rates and actuator activation power.
Moreover, the long-term memory of dynamic feedbacks is useless for systems
subject to random disturbances, to fast dynamic loadings or to random bursts and
impulses, and the application of state feedbacks is not always possible due to
unavailability of full-state measurements (see, e.g., [1]). Also, the use of SOF
avoids the need to reconstruct the state by Kalman filter or by any other state
reconstructor.

On the other hand, in practical applications, the entries of the needed SOFs are
bounded, and since the problem of SOFs with interval constrained entries is NP-
hard (see [2, 3]), one cannot expect the existence of a deterministic efficient (i.e.,
polynomial-time) algorithm to solve the problem. Randomized algorithms are thus
natural solutions to the problem. The probabilistic and randomized methods for the
constrained SOF problem and robust stabilization via SOFs (among other hard
problems) are discussed in [4–7]. For a survey of the SOF problem see [8], and for a
recent survey of the robust SOF problem see [9].
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The Ray-Shooting Method was recently introduced in [10], where it was used
to derive the Ray-Shooting (RS) randomized algorithm for the minimal-gain
SOF problem, with regional pole assignment, where the region can be non-convex
and unconnected. The Ray-Shooting Method was successfully applied recently
also to the following hard complexity control problems for continuous-time
systems:

• Structured and structured-sparse SOFs (see [11])

• LQR via SOF for continuous-time LTI systems (see [12])

• LQR optimal, H∞-optimal, and H2-optimal proportional-integral-differential
(PID) controllers (see [13])

• Robust control via SOF (see [14])

The contribution of the research presented in the current chapter is as follows:

1.The randomized algorithm presented here (which we call the RS algorithm) is
based on the Ray-Shooting Method (see [10]), which opposed to smooth
optimization methods, and has the potential of finding a global optimum of
continuous functions over compact non-convex and unconnected regions.

2.The RS algorithm has a proof of convergence in probability and explicit
complexity.

3.Experience with the algorithm shows good quality of controllers (in terms of
reduction of the LQR functional value with relatively small controller norms),
high percent of success, and good run-time, for real-life systems. Thus, the
suggested practical algorithm efficiently solves the problem of LQR via SOF
for discrete-time systems.

4.The RS algorithm does not need to solve any Riccati or quadratic matrix
equations (QMES) and thus can be applied to large systems.

5.The RS algorithm is one of the few, dealing with the problem of LQR via SOF
for discrete-time systems.

6.A deterministic algorithm for the problem that generalizes the algorithm of
Moerder and Calise [15], for discrete-time systems, is given (we call it the MC
algorithm). The MC algorithm has a proof of convergence to a local optimum
only, and it needs other algorithms for computing initial stabilizing SOF.

7.A comparison between the RS and the MC algorithms, as well as the
performance of the hybrid algorithm, for real-life systems, is provided.

The reminder of the chapter is organized as follows:
In Section 2 we formulate the problem and give some useful lemmas (without a

proof). In Section 3, we introduce the randomized algorithm for the problem of
LQR via SOF for discrete-time LTI systems. Section 4 is devoted to the
deterministic algorithm for the problem. In Section 5, we give the results of the
algorithms for some real-life systems. Finally, in Section 6 we conclude with
some remarks.
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2. Preliminaries

Let a discrete-time system be given by

xkþ1 ¼ Axk þ Buk, k ¼ 0, 1,…

yk ¼ Cxk

�

(1)

where A∈
p�p,B∈

p�q, C∈
r�p, and x0 ∈

p. Let the LQR cost functional be
defined by

J x0, uð Þ≔
X

∞

k¼0

xTkQxk þ uTkRuk
� �

, (2)

where Q >0 and R >0. Let uk ¼ �Kyk be the SOF, and let Acℓ Kð Þ≔A� BKC
denote the closed-loop matrix. Let  denote the open unit disk, let 0< α< 1, and let
α denote the set of all z∈ with zj j< 1� α (where zj j is the absolute value of z).
For a square matrix Z, we denote by σ Zð Þ its spectrum. For any rectangular matrix

Z, we denote by Zþ its Moore-Penrose pseudo-inverse. By Zk kF ¼ trace ZTZ
� �

1
2 we

denote the Frobenius norm of Z, and by Zk k ¼ max σ ZTZ
� �� �� �

1
2 we denote the

spectral norm of Z. By LZ and RZ, we denote the (left and right) orthogonal pro-
jections I � ZþZ and I � ZZþ on the spaces Ker Zð Þ and Ker Zþð Þ, respectively. For
a topological space X and a subset U ⊂X , we denote by int Uð Þ the interior of U,

i.e., the largest open set included in U. By U we denote the closure of U, i.e., the

smallest closed set containing U, and by ∂U ¼ U � int Uð Þ we denote the boundary
of U. Let Sq�r denote the set of all matrices K ∈

q�r such that σ Acℓð Þ⊂ (i.e., stable
in the discrete-time sense), and let Sq�r denote the set of all matrices K ∈

q�r such
that σ Acℓð Þ⊂α. If the last is nonempty, we say that Acℓ is α-stable and we call α the
degree of stability. Let K ∈Sq�rα be given. Substitution of the SOF uk ¼ �Kyk ¼
�KCxk into (2) yields:

J x0,Kð Þ ¼
X

∞

k¼0

xTk Q þ CTKTRKC
� �

xk: (3)

Since Q þ CTKTRKC >0 and Acℓ Kð Þ is stable, it follows that the Stein equation

P� Acℓ Kð ÞTPAcℓ Kð Þ ¼ Q þ CTKTRKC (4)

has a unique solution P >0, given by

P Kð Þ ¼ mat Ip ⊗ Ip � Acℓ Kð ÞT ⊗Acℓ Kð ÞT
� ��1

� vec Q þ CTKTRKC
� �

� �

: (5)

Substitution of (4) into (3) and using xk ¼ Acℓ Kð Þkx0 with the fact that Acℓ Kð Þ is
stable leads to

J x0,Kð Þ ¼
X

∞

k¼0

xTk P� Acℓ Kð ÞTPAcℓ Kð Þ
� �

xk

¼
X

∞

k¼0

xT0Acℓ Kð ÞTk P� Acℓ Kð ÞTPAcℓ Kð Þ
� �

Acℓ Kð Þkx0

¼ xT0P Kð Þx0 ¼ P Kð Þ
1
2x0

	

	

	

	

	

	

2
:
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Thus, when x0 is known, we search for K ∈Sq�rα that minimizes the functional

J x0,Kð Þ ¼ xT0P Kð Þx0: (6)

Let

σmax Kð Þ≔ max σ P Kð Þð Þð Þ: (7)

Now, since J x0,Kð Þ

x0k k2
≤ σmax Kð Þ for any x0 6¼ 0, with equality in the worst case,

therefore

s upx0 6¼0
J x0,Kð Þ

x0k k
2

 !

¼ s upx0 6¼0
P Kð Þ

1
2x0

	

	

	

	

	

	

2

x0k k
2

0

B

@

1

C

A
¼ P Kð Þ

1
2

	

	

	

	

	

	

2
¼ P Kð Þk k ¼ σmax Kð Þ:

Thus, when x0 is unknown, we search for K ∈Sq�rα , such that σmax Kð Þ ¼ P Kð Þk k
is minimal. Note that if λ is an eigenvalue of Acℓ Kð Þ and v is a corresponding

eigenvector, then (4) yields 1� λj j2 ¼
v ∗ QþCTKTRKCð Þv

v ∗ P Kð Þv ≥
v ∗Qv

v ∗ P Kð Þv >0. Therefore,

λj j2 ≤ 1� v ∗Qv
v ∗ P Kð Þv < 1, and thus, minimizing σmax Kð Þ results in eigenvalues that are

getting closer to the boundary of . Since α, the degree of stability, is important
to get satisfactory decay rate of the state to 0, and for disturbance rejection, we
allow the user of the algorithms to determine α. Note that too high value of α might
result in nonexistence of any SOF for the system or in complicating the search for
a starting SOF. Higher values of α result in higher values of the optimal value of
the LQR functional, i.e., higher energy consumption for decaying the disturbance
x0 to 0.

The functionals J x0,Kð Þ and σmax Kð Þ are generally not convex since their
domain of definition Sq�rα (and therefore Sq�rα ) is generally non-convex. Necessary
conditions for optimality for continuous-time systems were given as three QMEs in
[15–18]. Necessary and sufficient conditions for optimality for continuous-time
systems, based on linear matrix inequalities (LMI), were given in [19–21].
However, algorithms based on these formulations are generally not guaranteed to
converge, seemingly because of the non-convexity of the coupled matrix equations
or inequalities, and when they converge, it is to a local optimum only.

In the sequel, we will use the following lemmas, given here without proofs.
Lemma 2.1. We have:

1.The equation AX ¼ B has solutions if and only if AAþB ¼ B or equivalently, if
and only if RAB ¼ 0. In this case, the set of all solutions is given by

X ¼ AþBþ LAZ,

where Z is arbitrary.

2.The equation XA ¼ B has solutions if and only if BAþA ¼ B or equivalently, if
and only if BLA ¼ 0. In this case, the set of all solutions is given by

X ¼ BAþ þ ZRA,

where Z is arbitrary.
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Lemma 2.2. We have:

1.Let A,B,X be matrices with sizes p� q, r� p, q� r, respectively. Then

∂

∂X
trace AXBð Þ ¼ ATBT

:

2.Let A,B,C,X be matrices with sizes p� q, r� r, q� p, r� q, respectively.
Then

∂

∂X
trace AXTBXC

� �

¼ BTXATCT þ BXCA:

3. The randomized Ray-Shooting Method-based algorithm

The Ray-Shooting Method works as follows, for general function minimization:
let f xð Þ≥0 be a continuous function defined over some compact set X ⊂

n. Let
ϵ >0 be given and assume that we want to compute x ∗ ∈X such that y

∗
≔ f x ∗ð Þ ¼

min x∈Xf xð Þ up to ϵ, i.e., to find x, yð Þ in the set S ϵð Þ ¼ x, yð Þ x∈X, f x ∗ð Þjf

≤ y ¼ f xð Þ≤ f x ∗ð Þ þ ϵ:g. Let x0 ∈X be given, let y0 ≔ f x0ð Þ and let S 0ð Þ ¼

x, yð Þ x∈X, f xð Þ≤ y≤ y0






� �

denote the search space, which is a subset of the epi-

graph of f . Let D 0ð Þ ¼ x, yð Þ x∈X , 0≤ y≤ y0






� �

denote the cylinder enclosed

between X and the level y0. Let L
0ð Þ ¼ x, yð Þ x∈X , y ¼ 0jf or x∈ ∂X , 0≤ y≤ y0:g.

Let z0 ≔ x0, y0
� �

and note that z0 ∈S
0ð Þ. Then, we choose w0 in L 0ð Þ randomly,

according to some distribution, and we define the ray as z tð Þ≔ 1� tð Þz0þ

tw0, 0≤ t≤ 1. We scan the ray and choose the largest 0≤ t0 ≤ 1 such that 1� t0ð Þz0 þ

t0w0 ∈S
0ð Þ (actually, we scan the ray from t ¼ 1 in equal-spaced points and take the

first t for which this happens). We define z1 ≔ 1� t0ð Þz0 þ t0w0 and update sets

S 0ð Þ, D 0ð Þ, and L 0ð Þ by replacing y0 with y1, where x1, y1
� �

¼ z1. Let S
1ð Þ, D 1ð Þ, and

L 1ð Þ denote the updated sets. We continue the process similarly from z1 ∈S
1ð Þ, and

we define a sequence zn ∈S
nð Þ, n ¼ 0, 1,…. Note that S ϵð Þ⊂S nþ1ð Þ

⊂S nð Þ for any
n ¼ 0, 1,…, unless we have zn ∈S ϵð Þ for some n (in which the process is ceased).
One can show that the sequence znf g

∞

n¼0 converges (in probability) to a point in
S εð Þ. Note that shooting rays from the points of local minimum have positive
probability to hit S εð Þ (under the following mild assumption), because any global
minimum is visible from any local minimum. Moreover, for a given level of
certainty, we hit S εð Þ in a finite number of iterations (see Remark 3.1 below).
Practically, we may stop the algorithm if no improvement is detected within a
window of 20% of the allowed number of iterations. The function need not be
smooth or even continuous. It only needs to be well defined and measurable over
the compact domain X , and S εð Þ should have non-negligible measure (i.e., should
have some positive volume). Obviously, global minimum points belong to the

boundary of the search space S 0ð Þ, and actually such points are where the distance

between the compact sets X � 0f g and S 0ð Þ in 
nþ1 is accepted. This is essential

for the efficiency of the Ray-Shooting Method, although we raised the search space
dimension from n to nþ 1.
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In order to apply the Ray-Shooting Method for the LQR via SOF problem, we

need the following definitions: assume that K 0ð Þ
∈ int Sαð Þ was found by the RS

algorithm (see [10]) or by any other method (see [22–24]). Let h >0 and let U 0ð Þ be
a unit vector (actually a matrix, but we consider here the space of matrices as a

normed vector space) with respect to the Frobenius norm, i.e., U 0ð Þ
	

	

	

	

F
¼ 1. Let

L 0ð Þ ¼ K 0ð Þ þ h � U 0ð Þ and let L be the hyperplane defined by L 0ð Þ þ V, where

〈V,U 0ð Þ〉F ¼ 0. Here L is the tangent space at L 0ð Þ to the closed ball  K 0ð Þ, h
� �

centered at K 0ð Þ with radius h, with respect to the Frobenius norm on 
q�r. Let

r∞ >0 and let R∞ denote the set of all F∈L, such that F � L 0ð Þ
	

	

	

	

F
≤ r∞. Let

R∞ ϵð Þ ¼ R∞ þ  0, ϵð Þ, where  0, ϵð Þ denotes the closed ball centered at 0 with

radius ϵ (0< ϵ≤ 1
2). Let D

0ð Þ ¼ chull K 0ð Þ,R∞ ϵð Þ
� �

denote the convex hull of the

vertex K 0ð Þ with the basis R∞ ϵð Þ. Let S 0ð Þ
α ¼ Sα ∩D

0ð Þ and note that S 0ð Þ
α is

compact (but generally not convex). We wish to minimize the continuous
function σmax Kð Þ (or the continuous function J x0,Kð Þ, when x0 is known) over the

compact set Sα ∩ K 0ð Þ, h
� �

. Let K ∗ denote a point in Sα ∩ K 0ð Þ, h
� �

where the

minimum of σmax Kð Þ is accepted. Obviously, K ∗ ∈D
0ð Þ, for some direction U 0ð Þ

from K 0ð Þ.
The Ray-Shooting Algorithm 1 for the LQR via SOF problem, works as follows:

we start with a point K 0ð Þ
∈ int Sαð Þ, found by the RS algorithm (see [10]). Assum-

ing that K ∗ ∈D
0ð Þ, the inner loop ( j ¼ 1,…, n) uses the Ray-Shooting Method in

order to find an approximation of the global minimum of the function σmax Kð Þ over

S 0ð Þ
α —the portion of Sα bounded in the cone D 0ð Þ. The proof of convergence in

probability of the inner loop and its complexity (under the above-mentioned
assumption) can be found in [10] (see also [11]). In the inner loop, we choose a

search direction by choosing a point F inR∞ ϵð Þ—the base of the cone D 0ð Þ. Next, in

the most inner loop (k ¼ 0,…, s), we scan the ray K tð Þ≔ 1� tð ÞK 0ð Þ þ tF and record
the best controller on it. Repeating this sufficiently many times, we reach K ∗ (or an

ϵ neighborhood of it) with high probability, under the assumption that K ∗ ∈D
0ð Þ

(see Remark 3.1).
The reasoning of the Ray-Shooting Method is that sampling the whole

search space will lead to the probabilistic method that is doomed to the “curse of
dimensionality,” which the method tries to avoid. This is achieved by slicing the
search space into covering cones (m is the number of cones allowed), because any
point in the cone is visible from its vertex. At each cone we shoot rays (n is the
number of rays per cone) from its node toward its basis, where each ray is
sampled from its head toward its tail, while updating the best point found so far.
Note that the global minimum of σmax Kð Þ over any compact subset of Sα is
achieved on the boundary of the related portion of the epigraph of σmax Kð Þ.
Therefore, we can break the most inner loop; in the first moment, we find an
improvement in σmax Kð Þ. This bypasses the need to sample the whole search
space (although we raise by 1 the search space dimension) and explains the
efficiency of the Ray-Shooting Method in finding global optimum. Another
advantage of the Ray-Shooting Method which is specific to the problem of
LQR via SOF is that the search is concentrated to the parameter space (the
qr-dimension space where the K rests) and not to the certificate space (the

p2-dimension space where the Lyapunov matrices P rests). Thus, the method
avoids the need to solve any Riccati, LMI, and BMI equations, which might make
crucial difference for large-scale systems (i.e., where p2 > > qr).

6

Control Theory in Engineering



Algorithm 1. The Ray-Shooting Algorithm for LQR via SOF for discrete-time
systems.

Require: An algorithm for deciding α-stability, an algorithm for computing σmax Kð Þ
and algorithms for general linear algebra operations.

Input: 0< ϵ≤ 1
2 , 0< α< 1, h >0, r∞ >0, integers: m, n, s >0, controllable pairs

A,Bð Þ and AT,CT
� �

, matrices Q >0,R >0 and K 0ð Þ
∈ int Sαð Þ.

Output: K ∈Sα close as possible to K ∗ .

1. compute P K 0ð Þ
� �

as in (5)

2. P bestð Þ  P K 0ð Þ
� �

3. σ
bestð Þ
max  max σ P bestð Þ

� �� �

4. υ 1
5. for i ¼ 1 to m do

6. choose U 0ð Þ such that U 0ð Þ
	

	

	

	

F
¼ 1, uniformly at random

7. L 0ð Þ  K 0ð Þ þ h � U 0ð Þ

8. for j ¼ 1 to n do
9. choose F∈R∞ ϵð Þ, uniformly at random
10. for k ¼ 0 downto s do

11. t k
s

12. K tð Þ  1� tð ÞK 0ð Þ þ tF
13. if K tð Þ∈Sα then
14. compute P K tð Þð Þ as in (5)
15. σmax K tð Þð Þ  max σ P K tð Þð Þð Þð Þ

16. if σmax K tð Þð Þ< σ
bestð Þ
max

� �

then

17. K bestð Þ  K tð Þ

18. P bestð Þ  P K tð Þð Þ

19. σ
bestð Þ
max  σmax K tð Þð Þ

20. end if
21. end if
22. end for
23. end for

24. if i > υ � ⌈ e
ffiffiffiffiffiffiffiffiffiffiffi

2π qr
p

⌉ then

25. K 0ð Þ  K bestð Þ

26. υ υþ 1
27. end for
28. end for

29. return K bestð Þ,P bestð Þ, σ bestð Þ
max

Remark 3.1. In [12] it is shown that by takingm ¼ ⌈e �
ffiffiffiffiffiffiffiffiffiffi

2πqr
p

⌉ iterations in the

outer loop, we have K ∗ ∈D 0ð Þ, for some direction U 0ð Þ, almost surely. Let S 0ð Þ
α ϵð Þ

denote the set K ∈S 0ð Þ
α σmax Kð Þ≤ σmax K ∗ð Þ þ ϵj

n o

. Then, the total number of

arithmetic operations of the RS algorithm that guarantees a probability of at least

1� β to hit S 0ð Þ
α ϵð Þ is given byO ln βð Þj jh

ϵ

r∞
rϵ

� �q0r0
max q, rð Þ3 þ p6
� �� �

, for systems with

q≤ q0, r≤ r0 for fixed q0, r0, where rϵ is the radius of the basis of a cone with height ϵ

that has the same volume as of S 0ð Þ
α ϵð Þ; see [10–12]. This is a polynomial-time

algorithm by restricting the input and by regarding r∞
rϵ

� �

as the size of the problem.
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4. The deterministic algorithm

The deterministic algorithm we introduce here as Algorithm 2 (which we call the
MC algorithm) generalizes the algorithm of Daniel D. Moerder and Anthony A.
Calise (see [15]) to the case of discrete-time systems. To the best of our knowledge,
this is the best algorithm for LQR via SOF published so far, in terms of rate of
convergence (to local minimum).

Here, we wish to minimize the LQR functional

J x0,Pð Þ ¼ xT0Px0, (8)

under the constraints

Y K,Pð Þ≔Q þ CTKTRKC� Pþ Acℓ Kð ÞTPAcℓ Kð Þ ¼ 0,P >0: (9)

Since YT ¼ Y, there exist orthogonal matrix U such that Ŷ ¼ UTYU is diagonal.
Now, minimizing (8) under the constraints (9) is equivalent to minimizing

L K,P, Sð Þ ¼ trace xT0Px0
� �

þ
X

p

i¼1

Ŝi,iŶ i,i,

under the constraint P >0, where Ŝi,i are the Lagrange multipliers. We have

L K,P, Sð Þ¼ trace xT0Px0
� �

þ
X

p

i¼1

Ŝi,iŶ i,i

¼ trace xT0Px0
� �

þ trace ŜŶ
� �

¼ trace xT0Px0
� �

þ trace ŜUTYU
� �

¼ trace xT0Px0
� �

þ trace UŜUTY
� �

¼ trace xT0Px0
� �

þ trace SYð Þ

where S ¼ UŜUT. Note that ST ¼ S. Let the Lagrangian be defined by

L K,P, Sð Þ ¼ trace xT0Px0
� �

þ trace SY K,Pð Þð Þ, (10)

for any K any P >0 and any S such that ST ¼ S. The necessary conditions for

optimality are ∂L
∂K ¼ 0, ∂L

∂P ¼ 0, and ∂L
∂S ¼ YT ¼ Y ¼ 0.

Now, using Lemma 2.2, we have

∂L

∂P
¼ 0

⇔x0x
T
0 � ST þ AcℓS

TAT
cℓ ¼ 0

⇔x0x
T
0 � Sþ AcℓSA

T
cℓ ¼ 0

⇔S� AcℓSA
T
cℓ ¼ x0x

T
0

⇔ Ip ⊗ Ip � Acℓ ⊗Acℓ

� �

vec Sð Þ ¼ vec x0x
T
0

� �

⇔S ¼ mat Ip ⊗ Ip � Acℓ ⊗Acℓ

� ��1
vec x0x

T
0

� �

� �

,

where the last passage is affordable because σ Acℓð Þ⊂. Note that the last with
the stability of Acℓ implies that S≥0.

8
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We also have

∂L

∂K
¼

∂

∂K
trace SYð Þ

¼
∂

∂K
trace S Q þ CTKTRKC� Pþ AT � CTKTBT

� �

P A� BKCð Þ
� �� �

¼
∂

∂K
trace SCTKTRKC� SATPBKC� SCTKTBTPAþ SCTKTBTPBKC

� �

¼
∂

∂K
trace SCTKTRKC� SATPBKC� ATPTBKCST þ SCTKTBTPBKC

� �

¼ RTKCSTCT þ RKCSCT � BTPTASTCT � BTPASCT

þBTPTBKCSTCT þ BTPBKCSCT

¼ 2RKCSCT � 2BTPASCT þ 2BTPBKCSCT
:

Therefore,

∂L

∂K
¼ 0

⇔RKCSCT � BTPASCT þ BTPBKCSCT ¼ 0

⇔ Rþ BTPB
� �

KCSCT ¼ BTPASCT

⇔KCSCT ¼ Rþ BTPB
� ��1

BTPASCT
:

Thus, if CSCT is invertible, then

K ¼ Rþ BTPB
� ��1

BTPASCT CSCT
� ��1

: (11)

Otherwise, if

Rþ BTPB
� ��1

BTPASCT � LCSCT ¼ 0,

which is equivalent to

BTPASCT � LCSCT ¼ 0, (12)

then

K ¼ Rþ BTPB
� ��1

BTPASCT CSCT
� �þ

þ Z � RCSCT , (13)

where Z is arbitrary q� r matrix (and we may take Z ¼ 0, unless some other
constraints on K are needed). Note that if condition (12) does not happen, then
∂L
∂K 6¼ 0. We conclude with the following theorem:

Theorem 4.1. Assume that L K,P, Sð Þ given by (10) is minimized locally at some

point K ∗ , P ∗ >0, and S ∗ such that ST
∗
¼ S ∗ . Then

K ∗ ¼ Rþ BTP ∗B
� ��1

BTP ∗AS ∗C
T CS ∗C

T
� �þ

þ Z ∗ � RCSCT , for some q� r matrix Z ∗

P ∗ ¼ mat Ip ⊗ Ip � Acℓ K ∗ð ÞT ⊗Acℓ K ∗ð ÞT
� ��1

� vec Q þ CTKT
∗
RK ∗C

� �

� �

S ∗ ¼ mat Ip ⊗ Ip � Acℓ K ∗ð Þ⊗Acℓ K ∗ð Þ
� ��1

vec x0x
T
0

� �

� �

,

8

>

>

>

>

>

<

>

>

>

>

>

:

(14)

where Acℓ K ∗ð Þ ¼ A� BK ∗C.
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Proof:
Since L K ∗ ,P ∗ , S ∗ð Þ is minimal in some neighborhood of K ∗ ,P ∗ , S ∗ð Þ, it follows

that ∂L
∂K K ∗ ,P ∗ , S ∗ð Þ ¼ 0, ∂L

∂P K ∗ ,P ∗ , S ∗ð Þ ¼ 0, and
∂L
∂S K ∗ ,P ∗ , S ∗ð Þ ¼ YT K ∗ ,P ∗ð Þ ¼ Y K ∗ ,P ∗ð Þ ¼ 0.

The condition ∂L
∂S K ∗ ,P ∗ , S ∗ð Þ ¼ YT K ∗ ,P ∗ð Þ ¼ Y K ∗ ,P ∗ð Þ ¼ 0 is just

P ∗ � Acℓ K ∗ð ÞTP ∗Acℓ K ∗ð Þ ¼ Q þ CTKT
∗
RK ∗C

which with P ∗ >0 and Q >0,R >0 implies that Acℓ K ∗ð Þ ¼ A� BK ∗C is stable.

Now, since σ Acℓ K ∗ð Þð Þ⊂, it follows that Ip ⊗ Ip � Acℓ K ∗ð ÞT ⊗Acℓ K ∗ð ÞT is invert-
ible, and therefore,

P ∗ ¼ mat Ip ⊗ Ip � Acℓ K ∗ð ÞT ⊗Acℓ K ∗ð ÞT
� ��1

� vec Q þ CTKT
∗
RK ∗C

� �

� �

:

Since Ip ⊗ Ip � Acℓ K ∗ð Þ⊗Acℓ K ∗ð Þ is invertible, ∂L
∂P K ∗ ,P ∗ , S ∗ð Þ ¼ 0 implies that

S ∗ ¼ mat Ip ⊗ Ip � Acℓ K ∗ð Þ⊗Acℓ K ∗ð Þ
� ��1

vec x0x
T
0

� �

� �

:

Finally, ∂L
∂P K ∗ ,P ∗ , S ∗ð Þ ¼ 0 implies that K ∗CS ∗C

T ¼ Rþ BTP ∗B
� ��1

BT

P ∗AS ∗C
T, which in view of Lemma 2.1 implies Rþ BTP ∗B

� ��1
BTP ∗AS ∗C

T �

LCS ∗C
T ¼ 0 and

K ∗ ¼ Rþ BTP ∗B
� ��1

BTP ∗AS ∗C
T CS ∗C

T
� �þ

þ Z ∗ � RCS ∗C
T ,

where Z ∗ is some q� r matrix. ■
Note that the equations are coupled tightly, in the sense that P ∗ and S ∗ need K ∗ ,

while K ∗ needs P ∗ and S ∗ . Note also the cubic dependencies (that can be made
quadratic by introducing new variables). These make the related QMEs non-convex
and, therefore, hard to compute.

Remark 4.1. When x0 is unknown, it is customary to assume that x0 is uniformly
distributed on the unit sphere, which implies that E x0x

T
0

� �

¼ Ip, where E •½ � is the

expectation operator. Thus, changing the problem to that of minimizing E J x0,Pð Þ½ �
amounts to replacing S ∗ with

E S ∗½ � ¼ mat Ip ⊗ Ip � Acℓ K ∗ð Þ⊗Acℓ K ∗ð Þ
� ��1

vec Ip
� �

� �

>0:

Therefore, there is change in Algorithm 2.
Remark 4.2. The convergence of Algorithm 2 to local minimum can be proved

similarly to the proof appearing in [15], under the assumptions that Sq�rα is

nonempty and that Q
1
2,A

� �

is detectable (here, we do not need this condition

because of the assumption that Q >0). The convergence can actually be proved for

the more general problem that adds Kk k2F ¼ trace KTK
� �

to the LQR functional, thus

minimizing also the Frobenius norm of K. In this context, note that by adding

Kk k2 ¼ max σ KTK
� �� �

to the LQR functional will lose the argument, and there will

be a need to more general proof, because in the proof appearing in [15], the demand

is for C1 smooth function of K, while Kk k2 ¼ σmax KTK
� �

is continuous but not
Lipschitz continuous. The RS algorithm can use any continuous function of K and
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can deal also with sparse SOFs for LQR and with regional pole-placement SOFs
for LQR.

Example 4.1. In the following simple example, we illustrate the notions
appearing in the definition of the RS algorithm, and we demonstrate the operation
of the RS algorithm. Consider the unstable system

xkþ1 ¼
2 1

0 �
1

2

2

4

3

5xk þ
1

1

" #

uk, k ¼ 0, 1,…

yk ¼ xk,

8

>

>

<

>

>

:

where we look for SOF K stabilizing the system while reducing the LQR func-
tional (2) with Q ¼ I,R ¼ 1. Let K ¼ k1 k2½ � then

Acℓ Kð Þ ¼ A� BK ¼
2� k1 1� k2

�k1 �
1

2
� k2

2

4

3

5,

with characteristic polynomial z2 þ z k1 þ k2 �
3
2

� �

þ 3
2 k1 � 2k2 � 1. Applying the Y.

Bistritz stability criterion (see [25]), we have

υ ¼ Var
5

2
k1 � k2 �

3

2
,�

3

2
k1 þ 2k2 þ 2,

1

2
k1 � 3k2 þ

3

2

� �

,

where υ is the number of sign variations in the set. According to the Bistritz
criterion, the system is stable if and only if υ ¼ 0. We conclude that S is the set of all
K such that 5

2 k1 � k2 �
3
2 >0, � 3

2 k1 þ 2k2 þ 2 >0, 1
2 k1 � 3k2 þ 3

2 >0 or
5
2 k1 � k2 �

3
2 <0, � 3

2 k1 þ 2k2 þ 2<0, 1
2 k1 � 3k2 þ 3

2 <0, where the last branch is
empty (which could have make the set non-convex). The set S appears in Figure 1
as the blue region, where the golden star is the analytic global optimal solution
K ∗ ¼ 1:09473459 0:36138828½ � (computed by the related discrete algebraic Riccati
equation).

Algorithm 2 The MC algorithm for LQR via SOF for discrete-time systems.

Require: An algorithm for deciding α-stability, an algorithm for computing σmax Kð Þ
and algorithms for general linear algebra operations.

Input: 0< ϵ≤ 1
2 , 0< α< 1, integers: m, s >0, controllable pairs A,Bð Þ and

AT,CT
� �

, matrices Q >0,R >0 and K 0ð Þ
∈ int Sαð Þ.

Output: K ∈Sα that locally minimizes σmax Kð Þ.
1. j 0;A0  A� BK0C

2. P0  mat Ip ⊗ Ip � AT
0 ⊗AT

0

� ��1
� vec Q þ CTKT

0RK0C
� �

� �

3. S0  mat Ip ⊗ Ip � A0 ⊗A0

� ��1
� vec Ip

� �

� �

;σmax K0ð Þ  max σ P0ð Þð Þ

4. ΔK0  Rþ BTP0B
� ��1

BTP0AS0C
T CS0Cð Þþ � K0

5. flag  0
6. for k ¼ 0 to s do

7. t k
s

8. K tð Þ  1� tð ÞK0 þ tΔK0

9. if K tð Þ∈Sα then
10. A tð Þ  A� BK tð ÞC
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11. P tð Þ  mat Ip ⊗ Ip � A tð ÞT ⊗A tð ÞT
� ��1

� vec Q þ CTK tð ÞTRK tð ÞC
� �

� �

12. S tð Þ  mat Ip ⊗ Ip � A tð Þ⊗A tð Þ
� ��1

� vec Ip
� �

� �

;σmax K tð Þð Þ  

max σ P tð Þð Þð Þ
13. if σmax K tð Þð Þ< σmax K0ð Þ then
14. K1  K tð Þ;A1  A� BK1C;P1  P tð Þ;S1  S tð Þ;σmax K1ð Þ  

σmax K tð Þð Þ
15. flag  1
16. end if
17. end if
18. end for
19. if flag ¼¼ 1 then

20. while σmax K jþ1

� �

� σmax K j

� �









≥ ϵ
� �

and j<mð Þ do

21. ΔK j  Rþ BTP jB
� ��1

BTP jAS jC
T CS jC

T
� �þ

� K j

22. for k ¼ 0 to s do

23. t k
s

24. K tð Þ  1� tð ÞK j þ tΔK j

25. if K tð Þ∈Sα then
21. A tð Þ  A� BK tð ÞC

22. P tð Þ  mat Ip ⊗ Ip � A tð ÞT ⊗A tð ÞT
� ��1

� vec Q þ CTK tð ÞTRK tð ÞC
� �

� �

23. S tð Þ  mat Ip ⊗ Ip � A tð Þ⊗A tð Þ
� ��1

� vec Ip
� �

� �

;σmax K tð Þð Þ  

max σ P tð Þð Þð Þ

29. if σmax K tð Þð Þ< σmax K j

� �

then

30. K jþ1  K tð Þ;A jþ1  A� BK jþ1C;P jþ1  P tð Þ;S jþ1  

S tð Þ;σmax K jþ1

� �

 σmax K tð Þð Þ

31. end if
32. end if
33. end for
34. j jþ 1
35. end while
36. end if

37. return K bestð Þ  K j,P
bestð Þ  P j, σ

bestð Þ
max  σmax K j

� �

In Figure 1, we can see how the RS algorithm works: we fix

α ¼ 10�3, ϵ ¼ 10�16, r∞ ¼ 2, h ¼ 2, and we set m ¼ 1, n ¼ 5, s ¼ 10 for a single iter-
ation, where the single cone is sampled along 5 rays and each ray is sampled 10
times. The sampled points are circled, where red circles indicate infeasible or non-
improving points and the black circles indicate improving points. The green star

point is the initial point K 0ð Þ found by the Ray-Shooting algorithm for minimal-

norm SOF. The bold black circle is the boundary of the closed circle  K 0ð Þ, h
� �

. We

choose U 0ð Þ randomly to define the search direction, and we set L 0ð Þ ¼ K 0ð Þ þ h � U 0ð Þ

to be the point where the direction meets the boundary of the circle. L is the tangent

line at L 0ð Þ to the circle, and R∞ ϵð Þ is the 2r∞ width segment on the line, inflated by

ϵ. The search cone D 0ð Þ ¼ chull K 0ð Þ,R∞ ϵð Þ
� �

is the related black triangle. Here

S 0ð Þ
α ¼ Sα ∩D

0ð Þ is just the portion of the blue region inside the triangle, and we can

see that the assumption that K ∗ ∈D
0ð Þ is in force. For the current problem

⌈ e
ffiffiffiffiffiffiffiffiffiffiffi

2π qr
p

⌉ ¼ 10, and therefore, by making 10 iterations, K ∗ will be inside some

triangle almost surely.
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The algorithm chooses F in the basis of the triangle and defines K tð Þ to be the ray
from K0 to F. The ray is sampled at 10 equally spaced points, and the best feasible
point is recorded.

In Figure 2, we can see that 5 iterations suffice to include K ∗ in some triangle
and to find improving points very close to K ∗ . In Figure 3, we can see that when we

allow 20 iterations, after 10 iterations, the center K 0ð Þ is switched to the best point
found so far (see lines 24� 26 in Algorithm 1). This is done in order to raise the
probability to hit K ∗ or its ϵ-neighborhood, and as we can see, the final best point
(green star) is very close to K ∗ (Figure 4).

The results of the algorithm for 1, 5 and 20 iterations are the following. Note that
σmax K ∗ð Þ ¼ 5:9551, and note the “huge variations” the function σmax Kð Þ has.

For m ¼ 1 we had

K 0ð Þ ¼ 0:58739333 � 0:15823016½ �, σ 0ð Þ
max ¼ 25:7307,

RS : K bestð Þ ¼ 1:17786349 0:35034398½ �, σ bestð Þ
max ¼ 6:1391,

MC : K bestð Þ ¼ 0:58739333 � 0:15823016½ �, σ bestð Þ
max ¼ 25:7307,

RS þMC : K bestð Þ ¼ 1:05244278 0:31681948½ �, σ bestð Þ
max ¼ 6:0001:

Figure 2.
Single iteration of the RS algorithm.

Figure 1.
The stability region S.
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Note that in this case, the MC algorithm makes no improvement, while the RS
and RS + MC have very close values to the global optimal value, with slightly better
value for the RS + MC, over the RS algorithm.

For m ¼ 5 we had

K 0ð Þ ¼ 0:60478870 � 0:06023828½ �, σ 0ð Þ
max ¼ 36:4583,

RS : K bestð Þ ¼ 1:04166520 0:40826562½ �, σ bestð Þ
max ¼ 6:1655,

MC : K bestð Þ ¼ 0:60478870 � 0:06023828½ �, σ bestð Þ
max ¼ 36:4583,

RS þMC : K bestð Þ ¼ 1:04166520 0:40826562½ �, σ bestð Þ
max ¼ 6:16557843:

For m ¼ 20 we had

Figure 3.
Five iterations of the RS algorithm.

Figure 4.
Twenty iterations of the RS algorithm.
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K 0ð Þ ¼ 0:51029365 � 0:22521376½ �, σ 0ð Þ
max ¼ 3198:8196,

RS : K bestð Þ ¼ 1:11453066 0:33955607½ �, σ bestð Þ
max ¼ 5:9893,

MC : K bestð Þ ¼ 0:51029365 � 0:22521376½ �, σ bestð Þ
max ¼ 3198:8196,

RSþMC : K bestð Þ ¼ 1:11453066 0:33955607½ �, σ bestð Þ
max ¼ 5:9893:

In Figure 5, the initial condition response of the open-loop system is given. One
can see the unstable mode related to the unstable eigenvalue 2. In Figures 6–8, the

Figure 5.
The initial condition response of the open-loop system.

Figure 6.
The initial condition response of the closed-loop system with the SOF computed by the RS algorithm (blue)
compared with the global optimal response (red).
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initial condition responses of the closed-loop systems with the SOFs for m ¼ 20,

with x0 ¼ 3 1½ �T and sampling time Ts ¼ 0:01, are given. One can see that the
responses of the closed-loop systems with the SOFs computed by RS and RS + MC
are very close to the global optimal response, while the response of the closed-loop
system with the SOF computed by the MC algorithm (actually with the initial SOF),
although stable, is unacceptable.

Figure 8.
The initial condition response of the closed-loop system with the SOF computed by the RS + MC algorithm
(blue) compared with the global optimal response (red).

Figure 7.
The initial condition response of the closed-loop system with the SOF computed by the MC algorithm (blue)
compared with the global optimal response (red).
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5. Experiments

In the following experiments, we applied Algorithms 1 and 2, for systems taken
from the libraries [26–28]. The systems given in these libraries are real-life
continuous-time systems. In order to get related discrete-time systems, we sampled
the systems using the Tustin method with sampling rate Ts ¼ 0:01 sec½ �. We took
only the systems for which the RS algorithm succeeded in finding SOFs for the
continuous-time systems (see [10], Table 8, p. 231). In order to initialize the MC
Algorithm, we also used the RS algorithm to find a starting α-stabilizing SOF. In all

the experiments, we used m ¼ 2⌈ e
ffiffiffiffiffiffiffiffiffiffiffi

2π qr
p

⌉, n ¼ 100, s ¼ 100; h ¼ 100, r∞ ¼ 100,

ϵ ¼ 10�16, for the RS algorithm; and m ¼ 200⌈ e
ffiffiffiffiffiffiffiffiffiffiffi

2π qr
p

⌉, s ¼ 100, for the MC

Algorithm, in order to get the same number of total iterations and the same number
s ¼ 100 of iterations for the local search. We took Q ¼ Ip,R ¼ Iq in all the cases.

The stability margin column of Table 1 relates to 0< α< 1 for which the absolute
value of any eigenvalue of the closed loop is less than 1� α. The values of α in
Table 1 relates to the largest 0< α< 1 for which the RS algorithm succeeded in

finding a starting SOF K 0ð Þ. As we saw above, it is worth searching for a starting

point K 0ð Þ that maximizes 0< α< 1. This can be achieved efficiently by running a
binary search on the 0< α< 1 and using the RS algorithm as an oracle. Note that the
RS CPU time appearing in the fourth column of Table 1 relates to running the RS
algorithm for known optimal value of 0< α< 1. The RS algorithm is sufficiently fast
also for this purpose, but other algorithms such as the HIFOO (see [24]) and

System Size

p, q, r
� �

Stab:

Mgn:

RS

CPU

time

sec½ �

σ
0ð Þ
max

for

A,B,Cð Þ

σmax F ∗ð Þ

for

A,Bð Þ

AC1 5, 3, 3ð Þ 0:01 2:6226 1:0701 � 104 1:3073 � 103

AC5 4, 2, 2ð Þ 0:001 1:5468 1:5888 � 109 8:4264 � 107

AC6 7, 2, 4ð Þ 0:001 0:7094 3:1767 � 103 5:9783 � 102

AC11 5, 2, 4ð Þ 0:01 1:0575 1:2968 � 104 5:8777 � 102

HE1 4, 2, 1ð Þ 0:001 0:0872 1:5040 � 103 3:0013 � 102

HE3 8, 4, 6ð Þ 0:001 2:6845 5:4064 � 106 6:1185 � 104

HE4 8, 4, 6ð Þ 0:001 2:5633 4:1660 � 106 2:2992 � 104

ROC1 9, 2, 2ð Þ 10�5 0:5279 1:5906 � 107 1:1207 � 105

ROC4 9, 2, 2ð Þ 10�5 0:4677 1:2273 � 106 8:5460 � 104

DIS4 8, 4, 6ð Þ 0:01 2:5074 4:5133 � 103 1:7556 � 102

DIS5 4, 2, 2ð Þ 0:001 1:2187 2:8686 � 108 9:0756 � 106

TF1 7, 2, 4ð Þ 10�4 0:8011 7:9884 � 105 5:8134 � 103

NN5 7, 1, 2ð Þ 10�4 0:4138 5:4066 � 106 2:8789 � 105

NN13 6, 2, 2ð Þ 0:01 0:4876 7:8402 � 102 63:5366

NN16 8, 4, 4ð Þ 10�4 3:5530 1:9688 � 103 2:3327 � 102

NN17 3, 2, 1ð Þ 0:001 0:0925 3:2733 � 104 3:1358 � 102

Table 1.
General information of the systems and initial values.
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HINFSTRUCT (see [29]) can be applied in order to get a starting SOF. The advan-
tage of the use of the RS is of finding starting SOF with relatively small norm.

Let σmax Fð Þ denote the functional (7) for the system A,B, Ip
� �

, whereA� BF is

stable, i.e., F∈Sq�p. Let P Fð Þ denote the Lyapunovmatrix (5) for the system A,B, Ip
� �

with F as above. Let σmax Kð Þ denote the functional (7) for the system A,B,Cð Þwith
K ∈Sq�r and related Lyapunov matrix P ¼ P Kð Þ given by (5). Now, ifA� BKC is
stable for some K, thenA� BF is stable for F ¼ KC (but there might exist F such that
A� BF is stable, which cannot be defined as KC for some q� rmatrix K). Therefore,

σmax F ∗ð Þ ¼ min
F∈Sq�p

σmax Fð Þ≤ min
K ∈S

fcurr;q�r
α ∩ K 0ð Þ, hð Þ

σmax Kð Þ ¼ σmax K ∗ð Þ, (15)

where F ∗ is an optimal LQR state-feedback (SF) controller for the system

A,B, Ip
� �

. We conclude that σmax F ∗ð Þ≤ σmax K ∗ð Þ≤ σmax K bestð Þ
� �

. Thus, σmax F ∗ð Þ is

a lower bound for σmax K bestð Þ
� �

and can serve as a good estimator for it, in order to
quantify the convergence of the algorithm to the global minimum (as is evidently seen
from Table 1 in many cases) and in order to stop the algorithm earlier, since σmax F ∗ð Þ
can be calculated in advance. The lower bound appears in the last column of Table 1.

For all the systems, we had A,Bð Þ, AT,CT
� �

controllable, except for ROC1 and
ROC2. All the systems are unstable, except for AC6, AC15, and NN16 which are
stable, but not α-stable, for α given in the stability margin column.

The experiments were executed on:
Computer: LAPTOP-GULIHG OV, ASUSeK COMPUTER, INC.
TUF GAMING FX504GM-FX80GM.
Processor: Intel(R) Core(TM) i7-8750H CPU@2.20GHz.
Platform: MATLAB, Version R2018b Win 64.

5.1 Conclusions from the experiments

Regarding the experimental results in Table 2 and the comparison between the
RS algorithm and the MC algorithm, we conclude:

1.The RS algorithm performs in magnitude better than the MC algorithm for the
systems: AC1, AC11, HE1, HE4, ROC1, ROC4, TF1, and NN5.

2.The MC algorithm performs in magnitude better than the RS algorithm for the
systems AC5 and DIS5.

3.The MC algorithm performs slightly better than the RS algorithm for systems
HE3 and NN16.

Regarding the experimental results in Table 2 and the performance of the
RS + MC algorithm, we conclude:

1.The RS + MC algorithm performs better than each algorithm separately, for
systems AC6, HE4, TF1, NN13, NN16, and NN17.

2.The RS + MC algorithm performs better than the RS algorithm for systems
AC5, HE3, and DIS5.

3.The RS + MC algorithm performs exactly as the RS algorithm for systems AC1,
AC11, DIS4, HE1, ROC1, ROC4, and NN5. This observation assesses the claim
for convergence of the RS algorithm to global optimum.
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4.The RS + MC algorithm performs exactly as the MC algorithm for systems AC5
and DIS5.

Regarding improvements over the starting point, we had:

1.The RS algorithm failed in finding any improvement over σmax K 0ð Þ
� �

for

systems AC5 and DIS5.

2.The MC algorithm failed in finding any improvement over σmax K 0ð Þ
� �

for

systems AC1, AC11, ROC1, and ROC4. This observation assesses the heuristic
that it is better to start with a SOF that brings the poles of the closed loop as
close as possible to the boundary of the disk α.

3.The RS + MC algorithm improved σmax K 0ð Þ
� �

in any case.

Regarding the assessment of convergence to a global minimum, we had the
following results:

1.The RS algorithm and the RS + MC algorithm had very close values of

σmax K bestð Þ
� �

(or exactly the same value) which is very close to the lower
bound, for systems AC1, AC6, HE1, HE3, HE4, ROC1, DIS4, NN5, and NN16.

System σ
bestð Þ
max

for

A,B,Cð Þ

RS

Algo:

σ
bestð Þ
max

for

A,B,Cð Þ

MC

Algo:

σ
bestð Þ
max

for

A,B,Cð Þ

RSþMC

Algo:

RS

Algo:

CPU

time

sec½ �

MC

Algo:

CPU

time

sec½ �

RSþMC

Algo:

CPU

time

sec½ �

AC1 1:9207 � 103 1:0701 � 104 1:9207 � 103 2:9843 0:0468 3:0312

AC5 1:5888 � 109 2:5905 � 108 2:5905 � 108 2:0156 0:4062 2:2500

AC6 6:1449 � 102 6:5913 � 102 6:1389 � 102 5:1250 0:2500 5:1718

AC11 2:4234 � 103 1:2968 � 104 2:4234 � 103 2:9531 0:0468 3:0000

HE1 9:1253 � 102 1:0968 � 103 9:1253 � 102 2:2812 0:0468 2:3437

HE3 8:6808 � 104 7:1816 � 104 8:1737 � 104 13:4843 0:2343 13:7656

HE4 5:2247 � 104 1:1817 � 106 3:1783 � 104 10:9687 0:0468 11:2656

ROC1 6:6239 � 105 1:5906 � 107 6:6239 � 105 7:6250 0:1250 7:7500

ROC4 5:9923 � 105 1:2273 � 106 5:9923 � 105 5:3750 0:0625 5:4218

DIS4 1:7590 � 102 2:0376 � 102 1:7590 � 102 7:2187 0:1250 7:2656

DIS5 2:8686 � 108 3:2079 � 107 3:2079 � 107 1:8593 0:1562 1:9687

TF1 1:9289 � 104 1:1230 � 105 1:9270 � 104 5:0000 0:0625 5:0468

NN5 9:6780 � 105 1:3372 � 106 9:6780 � 105 1:2968 0:1718 1:3593

NN13 2:0521 � 102 2:6553 � 102 1:7953 � 102 2:3281 0:2656 2:4843

NN16 6:4416 � 102 6:0032 � 102 6:0030 � 102 6:4062 0:5468 6:7343

NN17 3:6805 � 103 4:9674 � 103 3:6787 � 103 0:9375 0:2812 1:1718

Table 2.
Experimental results.
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2.The MC algorithm achieved a very close value of σmax K bestð Þ
� �

to the lower
bound, for the systems AC6, HE3, DIS5, NN5, and NN16.

As was expected, the MC algorithm seems to perform better locally, while the RS
algorithm seems to perform better globally. Thus, practically, the best approach is
to apply the RS algorithm in order to find a close neighborhood of a global mini-
mum and then to apply the MC algorithm on the result, for the local optimization,
as is evidently seen from the performance of the RS + MC algorithm.

5.2 Some specific results

Example 5.1. For the HE4 system with

A ¼ A1A2½ �, where

A1 ¼

0:99999985 0:00000014 0:00001538 0:00988556

�0:00000082 0:99999927 0:00944714 �0:00015179

�0:00016276 �0:00014358 0:89058607 �0:02380208

�0:00002661 0:00002887 0:00410983 0:98016538

�0:00002930 �0:00000576 �0:01923117 �0:00428369

�0:32100350 �0:00003189 �0:00471073 0:02122199

0:00098904 0:32051910 �0:02076100 �0:00474084

�0:01910442 0:01711196 0:00004146 �0:00066123

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

,

A2 ¼

0:00053188 0:00000088 0:00000089 �0:00000005

0:00059005 0:00000508 �0:00000451 0:00000034

�0:00060285 0:00100715 �0:00089937 0:00006730

�0:00000054 0:00016706 0:00018078 �0:00001158

0:99268256 0:00018120 �0:00003706 0:00002045

�0:00008474 0:99978709 �0:00020742 0:00015757

0:00841925 0:00020153 0:99963047 0:00000293

�0:00000005 0:00013964 �0:00000914 0:99709909

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

,

B ¼

�0:00000097 0:00002352 �0:00000082 �0:00000055

0:00000679 0:00000357 �0:00013147 �0:00000146

0:00117865 0:00072316 �0:02601681 �0:00016953

�0:00035692 0:00470509 0:00008442 �0:00000015

0:00302236 0:00013040 �0:00468257 �0:00205817

0:00286635 �0:00539604 �0:00009665 0:00000026

�0:00018970 0:00014386 �0:00517989 0:00234114

�0:04813606 �0:00000574 �0:00000060 �0:00000001

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

,
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C ¼ C1C2½ �, where

C1 ¼

�0:00000185 0:00001067 �0:00071398 0:00083459

0:99999992 0:00000007 0:00000769 0:00494278

�0:00000041 0:99999963 0:00472357 �0:00007589

�0:00001393 �0:00000365 �0:00972548 �0:05509146

�0:00008138 �0:00007179 0:94529303 �0:01190104

�0:00001330 0:00001443 0:00205491 0:99008269

2

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

5

,

C2 ¼

0:00022183 0:05942943 0:05327854 �0:99534942

0:00026594 0:00000044 0:00000044 �0:00000002

0:00029502 0:00000254 �0:00000225 0:00000017

0:99634129 0:00008613 �0:00002336 0:00001053

�0:00030142 0:00050357 �0:00044968 0:00003365

�0:00000027 0:00008353 0:00009039 �0:00000579

2

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

5

,

with

σ Að Þ ¼

0:638773652186517, 0:847768449750652

1:002501752901569, 0:960047795833900

0:990353602254223

8

>

<

>

:

9

>

=

>

;

,

we had the following results:
by the RS algorithm for minimal-gain SOF (see [10])

K 0ð Þ ¼ K
0ð Þ
1 K

0ð Þ
2

h i

, where

K
0ð Þ
1 ¼

�0:05281866 0:30558099 �0:04123125

�0:74370605 �0:07272045 0:16180699

�0:34989799 �0:70937255 �0:03438071

0:36682921 �0:55329174 �0:42930790

2

6

6

6

6

6

4

3

7

7

7

7

7

5

,

K
0ð Þ
2 ¼

�0:07894070 �0:83106320 0:63513665

�0:57049060 0:02944824 0:03985277

0:01822942 �0:40097959 �0:32739026

�0:32035712 0:23550532 0:55239497

2

6

6

6

6

6

4

3

7

7

7

7

7

5

,

σ A� BK 0ð ÞC
� �

¼

0:88529956, 0:98303140,

0:99890558� 0:00709027i,

0:99895917 � 0:00548801i,

0:99648905, 0:99228590

8

>

>

>

>

>

<

>

>

>

>

>

:

9

>

>

>

>

>

=

>

>

>

>

>

;

,

σ
0ð Þ
max ¼ 4:1660 � 106, K 0ð Þ

	

	

	

	 ¼ 1:1052,
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<
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>

>

>

:

by the RS Algorithm1
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K bestð Þ ¼ K
bestð Þ
1 K

bestð Þ
2

h i

, where

K
bestð Þ
1 ¼

2:60115550 0:71670943 1:38518242

�1:21472623 7:41955425 �2:28748737

0:08032866 �1:01678491 �3:50944968

0:88639191 �0:92895747 0:77107501

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

,

K
bestð Þ
2 ¼

�0:43606038 �0:52797919 �1:91992615

�0:37181168 �0:49434738 �1:97765275

�0:43167652 2:40298411 �0:14274690

�1:34628983 �2:73288946 �0:19682963

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

,

σ A� BK bestð ÞC
� �

¼

0:86726666, 0:98939915,

0:99600356� 0:01886288i,

0:99670041� 0:00199237i,

0:97791267 � 0:01292326i,

8
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>

:
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>
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>

>

=

>

>

>

>

>

>

>

>

>

;

,

σ
bestð Þ
max ¼ 5:2247 � 104, K bestð Þ

	

	

	

	 ¼ 8:1964,

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

by the MC Algorithm 2

K bestð Þ ¼ K
bestð Þ
1 K

bestð Þ
2

h i

, where

K
bestð Þ
1 ¼

0:16219293 0:22685502 �1:41842788

0:10558055 0:04299252 �1:12924145

�0:01638169 �0:08184317 �0:14133958

�0:03859594 0:07947463 0:12534983

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

,

K
bestð Þ
2 ¼

�0:23992446 �0:17536269 �0:44875450

�0:14481130 �0:18150136 �0:27764220

�0:04123859 0:04014410 0:05631322

�0:06158264 0:05048672 0:16208075

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

,

σ A� BK bestð ÞC
� �

¼

0:53091472, 0:95364142,

0:98741833, 0:99897830,

0:99717581� 0:00564301i,

0:95033459� 0:08956374i,
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>
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>

>

>

>

>

>

>

>

>

;

,

σ
bestð Þ
max ¼ 1:1817 � 106, K bestð Þ

	

	

	

	 ¼ 195:3621,
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:

and by RS + MC Algorithms 1 and 2:
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K bestð Þ ¼ K
bestð Þ
1 K

bestð Þ
2

h i

, where

K
bestð Þ
1 ¼

0:16101573 0:52768736 �1:99112247

�1:8453102 11:28218548 �3:45382160

0:45368113 �0:97316671 �6:96467764

0:57106266 �0:53606197 �0:45209883

2
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6

6

6

6

4

3

7

7

7

7

7

7

5

,

K
bestð Þ
2 ¼

�0:67588625 �0:18705486 �0:28941025

�0:69074912 �0:26655181 0:20004806

�0:83280356 3:20877857 �0:31860927

�3:09450298 �0:73194640 �0:07799223
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7

7

5

,

σ A� BK bestð ÞC
� �

¼

0:98195937 � 0:03551664i,

0:99264852� 0:01953917i,

0:99354901� 0:00357529i,

0:99828371, 0:98490431
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;

σ
bestð Þ
max ¼ 3:1783 � 104, K bestð Þ

	

	

	

	 ¼ 12:1029:
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:

6. Concluding remarks

The Ray-Shooting Method is a powerful tool, since it practically solves the
problem of LQR via SOF, for real-life discrete-time LTI systems. The proposed
hybrid algorithm RS + MC has good performance in terms of run-time, in terms of
the quality of controllers (by reducing the starting point LQR functional value and
by reducing the controller norm) and in terms of the success rate in finding a
starting point feasible with respect to the needed α-stability. The RS + MC algorithm
has a proof of convergence in probability to a global minimum (as is evidently seen
from the experiments). This enlarges the practicality and scope of the Ray-Shooting
Method in solving hard complexity control problems, and we expect to receive
more results in this direction.
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