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Chapter

New Matrix Series Formulae for
Matrix Exponentials and for the
Solution of Linear Systems of
Algebraic Equations
Ioan R. Ciric

Abstract

The solution of certain differential equations is expressed using a special type of
matrix series and is directly related to the solution of general systems of algebraic
equations. Efficient formulae for matrix exponentials are derived in terms of rap-
idly convergent series of the same type. They are essential for two new solution
methods, especially beneficial for large linear systems, namely an iterative method
and a method based on an exact matrix product formula. The computational com-
plexity of these two methods is analysed, and for both of them, the number of
matrix exponential-vector multiplications required for an imposed accuracy can be
predetermined in terms of the system condition. The total number of arithmetic
operations involved is roughly proportional to n2, where n is the matrix dimension.
The common feature of all the series in the results presented is that starting with a
first term that is already well-conditioned, each subsequent term is computed by
multiplication with an even better conditioned matrix, tending quickly to the iden-
tity matrix. This contributes substantially to the stability of the numerical compu-
tation. A very efficient method based on the numerical integration of a special kind
of differential equations, applicable to even ill-conditioned systems, is also
presented.

Keywords: matrix equations, matrix exponentials, numerical solutions

1. Introduction

New matrix series expressions were recently derived by the author [1] for the
solution of simple first order differential equations associated with general systems
of linear algebraic equations. These differential equations describe the orthogonal
trajectories of a family of hypersurfaces that represent a quadratic functional
related to the linear algebraic system. The solution of the latter can be obtained by
minimizing the functional along an orthogonal trajectory instead of applying vari-
ous techniques based on minimization along conjugate gradient directions or based
on minimized iterations [2]. Since the solutions of the differential equations con-
sidered are simply related to the solutions of the corresponding algebraic systems
through matrix exponentials, there is the possibility to develop efficient solution
methods if only the matrix exponentials could be used in numerical calculations
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accurately and with a small computational effort. A survey of various existent
algorithms for computing matrix exponentials and a useful discussion of the diffi-
culties involved are presented in [3].

In the present work, we use new formulae for arbitrary matrix exponentials that
contain highly convergent infinite series which allow accurate and stable numerical
computations. Employing these formulae, two new solution methods are proposed
which are particularly efficient for large-scale general linear algebraic systems.

2. Differential equations associated with linear systems of algebraic
equations

We start with simple vector differential equations whose solutions are related to
the solution of general systems of linear algebraic equations. Later, in Section 5 we
construct differential equations that allow an efficient numerical integration in
order to obtain the solution of these systems.

2.1 Matrix series solution of some vector differential equations

Consider a first order vector differential equation of the form

ð1Þ

where A∈Rn�n is a general nonsingular matrix, b∈Rn is a given n-dimensional

vector, x ¼ x1, x2,…, xnð ÞT is the unknown n-dimensional vector,T indicates the
transpose, and f vð Þ is a continuous function over some interval of the real variable v.
With the condition

ð2Þ

xo being a given vector, (1) has a unique solution over the interval considered
[4]. Integrating both sides of (1) from vo to v yields

ð3Þ

where

ð4Þ

is a primitive for f vð Þ, i.e., f vð Þ ¼ dg=dv. Thus, (1) can be written in the form

ð5Þ

Integrating again both sides from vo to v gives

ð6Þ

Two particular cases are presented.
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If f vð Þ is chosen to be f vð Þ ¼ �1 then g vð Þ ¼ �v. Choosing vo ¼ 0 gives g voð Þ ¼ 0
and (6) becomes

ð7Þ

If f vð Þ ¼ 1=v then g vð Þ ¼ ln v. With vo ¼ 1 and g voð Þ ¼ 0 (6) becomes now

ð8Þ

The solution of (1) with f vð Þ ¼ 1=v can also be obtained by employing a Taylor
series expansion about xo ¼ 1. Indeed,

ð9Þ

and evaluating the derivatives yields

ð10Þ

where I is the identity matrix. The series in (10) is convergent for v∈ 0, 2ð Þ but
its rate of convergence is, in general, very small for v very close to zero.

2.2 Relationship with linear systems of algebraic equations

Consider now a system of equations written in matrix form as

ð11Þ

and assume that x is a continuous function of the real variable v over a certain
interval. The solution of (11) can be obtained from (3) for a v � vS for which

ð12Þ

To satisfy this condition g vð Þ in (3) must be chosen such that

ð13Þ

For positive definite matrices A and a finite g voð Þ this is achieved if g vð Þ ! �∞

for v ! vS. Thus, the solution of (11) cannot be computed directly from (6). On the
other hand, in the particular case of f vð Þ ¼ 1=v, g vð Þ ¼ ln v the solution of (11) can
be obtained from (10) with v ¼ vS ¼ 0,

ð14Þ

The expression in the brackets is just the inverse of A,
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ð15Þ

The rate of convergence of the series in (14) and (15) is very small and they
cannot be practically used in numerical computation for arbitrary matrices.

We note that the solution of (11) can be formally expressed from (6) as

ð16Þ

which is valid for any v 6¼ vo in the interval considered. To compute xs with (16)

would require the computation of eAg voð Þ � eAg vð Þ
� ��1

. Equation (16) will be used in

Subsection 4.1.
Note. The matrix product in the terms of the series in (10), (14) and (15) can be

expressed as a matrix polynomial using the relationship with the Stirling numbers

of the first kind S
mð Þ
kþ1 [5]

ð17Þ

While each new term in such series as those in (10), (14) and (15) is calculated
through a multiplication with a matrix that becomes more andmore well-conditioned
as k increases, the computation with the expression in (17) would require successive
multiplications with the same original matrix and, for each k, a new polynomial is to
be constructed and new Stirling numbers have to be generated. The formulae derived
in the next two sections contain the same type of series and, therefore, are simpler
and more efficient to be used for numerical computations.

3. New formulae for computing matrix exponentials

In this section, we derive matrix exponential expressions which contain highly
convergent infinite series that allow accurate and stable numerical computations in
numerous applications. They shall also be used in the next section.

3.1 Series expressions for matrix exponentials

Consider the matrix function vA � eA ln v where v is a positive real variable and A
a general square matrix with real number entries. By integration,

ð18Þ

For v∈ 0, 2ð Þ the integrand can be expanded in a power series as

ð19Þ
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that can be integrated term by term. From (18) and (19)

ð20Þ

which is valid for any A, positive definite or not, of arbitrary condition. One can
see that, for a positive definite A and for v ! 0, the expression in the brackets of

(20) gives a series expansion for the inverse A�1 (see (14) and (15)). Various
expressions for the matrix exponential are obtained by giving particular values to v
in (20). For example, for any v ¼ e�q, q>� ln 2, we have

ð21Þ

the series becoming less convergent as q increases above q = 0. On the other hand,
with v ¼ 1=e in (20) and then A replaced with qA we obtain for any real number q

ð22Þ

this series being more convergent than that in (21) for greater values of q.
For any v∈ 1, 2ð Þ, the terms in the series expressions derived from (20) have

coefficients that are alternately positive and negative. With v ¼ e1=2 = 1.64872127,
e.g., and then replacing A with 2A we have

ð23Þ

As well, by replacing A by � qA in (23) one obtains instead of (22) an expression
with alternating in sign series coefficients.

3.2 Rapidly convergent series formulae

From the basic Eq. (20) we derive now formulae which contain series that have
a higher rate of convergence than those presented in the previous subsection.

Firstly, it is obvious that for values of v close to 1 the series in (20) has a high rate
of convergence. For instance, with v ¼ 1þ 10�q, 10�q

≪ 1, and replacing
A ln 1þ 10�qð Þ by A we obtain

ð24Þ

where cq � 1= ln 1þ 10�qð Þ. This series is rapidly convergent.
Secondly, the convergence of the series in the expressions derived from (20) can

further be improved by successive integrations. Indeed, integrating both sides of
(20) from 1 to v, we have

ð25Þ
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Integrating repeatedly we obtain the identity

ð26Þ

Same result is obtained by replacing A with pI þ A in (20). This identity con-
tains an infinite series whose coefficients decrease rapidly as p increases. Obviously,
for a given A and v, (26) generates more efficient computational formulae than
those in the previous subsection. As before, for v∈ 1, 2ð Þ the infinite series have

coefficients that alternate in sign. For example, with v ¼ e1=2 in (26) and then
replacing A by 2A and p by 2p we have instead of (23)

ð27Þ

Taking v ¼ 1þ 10�q, with q>0 and cq � 1= ln 1þ 10�qð Þ, (26) gives (compare
with (24))

ð28Þ

Notice that, in the new formulae derived from (26) the infinite series are
very rapidly convergent, with their rate of convergence increasing when the
parameter p increases. Highly accurate numerical results can be generated with
only a small number of terms retained in the infinite series of these formulae (see
Section 4).

Note. All the formulae presented in this section remain valid if A is changed
in �A. Obviously, in all these expressions A can be replaced by a real number and
the identity matrix I by 1, yielding a few novel identities and summation formulae
for series of real numbers. Also, the expression in the brackets of (26) for v ! 0

is just I þ A=pð Þ�1=p if I þ A=p is positive definite and, thus, we obtain another
identity, i.e.,
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ð29Þ

which reduces for A ¼ 0 to an elementary binomial sum.

4. Solution of general linear systems

In what follows, we apply the matrix exponential formulae from the previous
section and present a new iteration procedure and a matrix product formula for the
solution of large systems of linear algebraic equations.

4.1 An iterative method

Equation (16) can be written in the form

ð30Þ

where xS ¼ x vSð Þ is the solution of (11), xo ¼ x voð Þ, A is a positive definite
matrix and g vð Þ is a function of the real variable v such that g vð Þ ! �∞ for v ! vs
(see Subsection 2.2). To get x vð Þ for values of v very close to vS we choose an
adequate g vð Þ and a formula for the matrix exponential from Section 3. When
g voð Þ ¼ 0, applying (22) for instance gives

ð31Þ

If g vð Þ � ln v, with vo ¼ 1 and vs ¼ 0, we compute x e�N
� �

for N≫ 1 which is
closer to the solution xS,

ð32Þ

where x 0ð Þ
S � xo. This equation is applied iteratively by replacing x

1ð Þ
S and x

0ð Þ
S ,

respectively, with x
ið Þ
S and x

i�1ð Þ
S , i ¼ 2, 3, …, until x ið Þ

S satisfies (11) with a desired
accuracy.

To evaluate the amount of computation necessary to obtain the solution of (11)
with a certain accuracy, let us take N such that N Ak k ¼ 10 when one needs about
30 terms in the infinite series, i.e., 30 matrix-vector multiplications. The number of
iterations increases with the condition number of A. To see this and to determine
the corresponding number of iterations, consider (11) with b ¼ 0 and A replaced
with a diagonal matrix whose entries are positive numbers, the greatest of these
being 1, and whose condition is the same as that of A. The solution of this system is
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xS ¼ 0 and the components of the solution of (1), with f vð Þ ¼ 1=v, are xokv
λk where

λk, k ¼ 1, 2,…, n, are the entries in the diagonal matrix. In order to make the mag-
nitudes of all these components at least 1%, e.g., of the corresponding magnitudes
of the initial components, one needs no iteration if the condition number is less
than 2, but 5 and, respectively, 46 iterations are needed if the condition number is
10 and 100.

What is remarkable in the iterative method based on (32) is that, for matri-
ces with same condition number and same norm, the number of iterations
required is the same, independently of the size of the matrices. Considering
approximately 2n2 arithmetic operations for one matrix-vector multiplication,
where n is the number of equations and unknowns in (11), the total number of
arithmetic operations required is, thus, proportional to only n2. In the examples
given above one has to perform, respectively, 60n2, 300n2 and 2760n2 arith-
metic operations. Assuming only 2n3=3 arithmetic operations for the Gaussian
elimination procedure, the method presented in this subsection requires less
computation for the same examples if, respectively, n>90, n>450 and n>4140.
One can also notice that the application of Eq. (32) leads to the actual solution of
(11) independently of the small error introduced in the computation at each
iteration.

4.2 A matrix product formula

The original general system (11) is replaced with an equivalent system such that
its solution is obtained in terms of matrix exponentials for which highly convergent
and accurate series formulae have been derived in Section 3.

Namely, instead of (11) we use the system

ð33Þ

where α is a real scalar to be chosen, α 6¼ 0, and

ð34Þ

Assuming A to be positive definite, α is taken positive. Then, since e�αA
�

�

�

�< 1 for

a normal matrix, the solution can be expressed as

ð35Þ

with the norm of the matrix exponentials decreasing when k increases [6]

ð36Þ

where λ is the smallest eigenvalue of A. bα can be accurately computed by using
instead of (34) an equivalent expression, for instance (see (22))

ð37Þ
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If the infinite series in (35) is truncated to k ¼ NS the rest of the series has a norm

ð38Þ

Much less numerical computation (see below) is needed if the infinite series in
(35) is transformed into an infinite product using the identity [5]

ð39Þ

which is also valid for matrices whose norm is less than 1. Thus, (35) becomes

ð40Þ

with the norm of the exponentials e�2kαA decreasing very rapidly when k
increases. Truncating the infinite product to k ¼ NP, i.e., NP þ 1 factors, leaves a
remaining factor

ð41Þ

whose norm is

ð42Þ

Let us compare the maximum value of the norm of the truncated matrix in the
brackets of (35) and (40) with that of the corresponding untruncated matrix in
order to get a rough estimate of the numbers NS and NP of matrix exponentials
involved in the numerical computation to achieve a certain accuracy. This will also
allow to estimate the total number of matrix-vector multiplications necessary to
obtain the solution. The ratio of the maximum norm of the truncated matrix to the
maximum norm of the untruncated matrix in the brackets of (35) and (40) is,
respectively, (see (38) and (42))

ð43Þ

and

ð44Þ

To illustrate the computation complexity when using (35) or (40), assume that
Ak k ¼ 1 and α ¼ 20. If ρ is imposed to be ≈0:99, for example, one needs NS ¼ 2, i.e.,

three terms in (35) and NP ¼ 1, i.e., two factors in (40) if λ ¼ 10�1. If λ ¼ 10�2 these

numbers increase to NS ¼ 23 and NP ¼ 4, and when λ ¼ 10�3 one getsNS ¼ 230, but
NP only increases to NP ¼ 7. It is clear that applying the formula (40) the number of
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exponentials needed in the numerical computation is much smaller than that if for-
mula (35) would be applied. For all the matrix exponentials involved in the numerical
computation we use the formula (28) containing a highly convergent series, such that

ð45Þ

where q>o and cq � 1= ln 1þ 10�qð Þ. With α Ak k ¼ 20 and choosing q ¼ 1 and

p ¼ 10, for instance, e�αA is determined accurately by retaining 50 terms in the

infinite series and, thus, to multiply e�αA with a vector one needs 71 matrix-vector
multiplications. To compute xs from (40) one has to use repeatedly the multiplica-

tion of e�20A with a vector. For a matrix A with λ ¼ 10�1 one has to retain two

factors in (40) and, thus, to multiply e�20A and e�2�20A with a vector. This means to
use repeatedly 3 times the multiplication of e�20A with a vector which requires,

therefore, 3� 71 ¼ 213 matrix-vector multiplications. When λ ¼ 10�2 the infinite
product in (40) is truncated at k ¼ NP ¼ 4 and this requires the multiplication of

e�2k�20A, k ¼ 0, 1, 2, 3, 4, with a vector, i.e., to use repeatedly 31 times the multipli-
cation of e�20A with a vector, for a total of 31� 71 ¼ 2201 matrix-vector multipli-
cations. We also have to add the matrix-vector multiplications required to compute
bα in (37). A very accurate result for bα when α ¼ 20 can be achieved by applying
four times the series in the brackets of (37) for α ¼ 5, each time retaining 30 terms.
This requires a total of about 120 multiplications of a matrix I � 5A=k with a vector.
In all the matrix-vector multiplications involved when applying (45), the matrices
are in the form I � cqαA=k and become better and better conditioned as k increases.

Adding up the number of arithmetic operations involved shows that, with
respect to the classical Gaussian elimination method, the procedure presented in
this subsection is advantageous for very large systems (11). Namely, assuming same
accuracy and only 2n3=3 arithmetic operations for the Gaussian elimination, with
the data given above, one has to have n>3� 213þ 120ð Þ ¼ 999 equations and

unknowns if λ ¼ 10�1 and n>3� 2201þ 120ð Þ ¼ 6963 equations and unknowns if

λ ¼ 10�2 for the proposed method to be more advantageous. For a given α Ak k, one
application of e�αA requires a determined finite number of matrix-vector multipli-
cations, independently of the size of A. It is remarkable, as for the iterative method

in the previous subsection, that for a given condition of A, one has to apply e�αA a
well-determined number of times and, thus, the total number of arithmetic opera-
tions necessary to compute the solution with an imposed accuracy is proportional to
only n2.

It should be noted that, since the infinite series in the expression (45) is trun-
cated and thus determined with a finite accuracy, the accuracy of the solution xS
becomes compromised after a too big a number of matrix exponential-vector mul-
tiplications. This is why, the worse conditioned systems (11) should be
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appropriately preconditioned. Practically, the computation with (40) is continued
factor by factor and the accuracy of x is checked after each step.

5. Solution of general linear systems by numerical integration of
differential equations

In this section, we introduce first order differential equations whose numerical
integration allows to efficiently find the solution of linear systems of algebraic
equations. Differential equations of the type of those in (1), with f vð Þ ¼ �1 or
f vð Þ ¼ 1=v, cannot be used for this purpose due to the fact that the first and higher
order derivatives of x vð Þ tend to infinite values as x tends to the solution xS of (11)
(see Section 2).

Here below, we construct ordinary differential equations for x vð Þ which satisfy
the condition that the first few derivatives are finite when x vð Þ tends to xS and,
therefore, are particularly useful for an accurate computation of xS. Let us consider
the system (11) with a symmetric positive definite matrix. A quadratic functional

ð46Þ

is associated with (11) [6] whose minimum value is F xSð Þ ¼ 0. Define now a real
variable v, v≥0, such that

ð47Þ

where r is a real number to be chosen, r>0, with v ¼ 0 corresponding to the
solution x ¼ xS and v ¼ vo to an initial point xo, F xoð Þ ¼ vro. Then,

ð48Þ

and, thus,

ð49Þ

This is the differential equation to be integrated from v ¼ vo to v ¼ vS ¼ 0. The
second derivative of x is obtained in the form

ð50Þ

Higher order derivatives can be worked out if needed.
In order to see the behaviour of the derivatives close to the solution xS, Eqs. (49)

and (50) are rewritten as
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ð51Þ

and

ð52Þ

with F xð Þ in (46) put in the form

ð53Þ

Notice that as x tends to xs, when Ax� bk k � ε tends to zero,

ð54Þ

where K1 vð Þ and K2 vð Þ are finite when v ! 0. Therefore, as

x ! xS, dx=dvk k ! 0 if r>2 and d2x=dv2
�

�

�

� ! 0 if r>4.

Another differential equation we present here is

ð55Þ

with the second derivative

ð56Þ

In this case, always

ð57Þ

even for x ! xS, but the second derivative tends to an infinite value
when x ! xS

ð58Þ

where K sð Þ is finite and ε � Ax� bk k. The relationship between the differentials
of the variables v and s in (49) and (55) is
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ð59Þ

and for x ! xS we have (see (54))

ð60Þ

The differential Eqs. (49) in v and (55) in s require practically the same amount
of computation for their right-hand sides, i.e., one matrix-vector multiplication.
The first derivatives dx=dv for r ¼ 2 and dx=ds remain finite when x tends to xS,
while the second derivatives increase to infinite values as in (54) and (58). For r ¼ 4
the second derivative in (52) remains finite when x tends to xS (see (54)), while the
first derivative and the ratio ds=dv tend to zero as in (54) and (60), respectively. If

r>4 even d2x=dv2
�

�

�

� tends to zero as in (54).

Equations (49) and (55) can be integrated by classical numerical methods. Since
we are not looking for an accurate solution of these equations all along from xo to xS
but for finding accurately the final value x ¼ xS, we can use a lower order method,
for instance, even Euler’s method [7]. This yields an approximate value of xS which
is to be used as initial point for repeating the numerical integration procedure. As
we get closer to the solution xS, we decrease the step size in order to reduce the
error. In the case of Euler’s method the error is determined in terms of the norm of
the second derivative. Higher order numerical integration methods can also be used
in order to increase the computation efficiency.

To find a starting point for the integration procedure which is reasonably close
to the solution point, one can minimize F xð Þ in (46) along the normal direction,
followed by a minimization of the distance to the solution point xS along the
direction of the normal to F [8]. These two preliminary steps are repeated a few
times as needed.

Numerical experiments have been performed applying Euler’s method to (49)
for r ¼ 2, r ¼ 4 and r ¼ 8, and to (55). Systems (11) of various sizes have been
automatically generated and the differential Eqs. (49) for r ¼ 2 and r ¼ 4, and (55)
have produced results with the least amount of computation when imposing an
accuracy of 1%.

For matrices which are not symmetric positive definite, (46) is replaced with

F xð Þ ¼ 1=2 Ax� bð ÞT Ax� bð Þ:

6. Conclusions

A special type of matrix series are used in Section 2 to express the relationship
between some first order ordinary differential equations and systems of linear
algebraic equations and, also, in Section 3 to derive efficient formulae for matrix
exponentials that allow accurate and stable numerical computations in various
applications. The main feature of these series consists in the fact that, starting with
their first term which is already a matrix substantially better conditioned than the
original problem matrix, each of the subsequent terms is obtained through a multi-
plication with a better and better conditioned matrix that tends to the identity
matrix. The new matrix exponential formulae contain very rapidly convergent
series and can be applied to general, arbitrarily conditioned, positive definite or not
matrices. They are used in Section 4 for two new methods of solution for general
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linear algebraic systems. One is an iterative method which corresponds to the
solution of the differential Eq. (1) with f vð Þ ¼ 1=v: It is based on the exact analytical
expressions (30)–(32) that always yield results converging finally to the exact
solution of the system (11). In a second method, the original algebraic system (11) is
replaced with an equivalent system containing a matrix exponential e�αA such that

instead of inverting the system matrix A we have now to invert I � e�αA. The exact
analytical solution is obtained in the form of a series of matrix exponentials which is
transformed into an infinite matrix product in order to reduce substantially the
necessary amount of computation. It should be remarked that, since the number of
matrix-vector multiplications required for the application of one matrix
exponential-vector multiplication only depends on the norm of the matrix while the
number of matrix exponential-vector multiplications depends on the condition of
the system matrix, the total number of arithmetic operations needed to achieve an
imposed accuracy when applying each of the two methods is practically propor-
tional to n2, where n is the dimension of the matrix. The two methods require a
comparable total amount of computation. It is also remarkable that for both
methods the necessary amount of computation can be roughly predicted before-
hand in terms of the system size, the system condition and the desired accuracy.

In Section 5, a powerful method is presented based on the numerical integration
of specially constructed ordinary differential equations.
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