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Chapter

On the Impact of the Choice of the
Prior in Bayesian Statistics
Fatemeh Ghaderinezhad and Christophe Ley

Abstract

A key question in Bayesian analysis is the effect of the prior on the posterior, and
how we can measure this effect. Will the posterior distributions derived with
distinct priors become very similar if more and more data are gathered? It has been
proved formally that, under certain regularity conditions, the impact of the prior is
waning as the sample size increases. From a practical viewpoint it is more important
to know what happens at finite sample size n. In this chapter, we shall explain how
we tackle this crucial question from an innovative approach. To this end, we shall
review some notions from probability theory such as the Wasserstein distance and
the popular Stein’s method, and explain how we use these a priori unrelated con-
cepts in order to measure the impact of priors. Examples will illustrate our findings,
including conjugate priors and the Jeffreys prior.

Keywords: conjugate prior, Jeffreys prior, prior distribution, posterior distribution,
Stein’s method, Wasserstein distance

1. Introduction

A key question in Bayesian analysis is the choice of the prior in a given situation.
Numerous proposals and divergent opinions exist on this matter, but our aim is not
to delve into a review or discussion, rather we want to provide the reader with a
description of a useful new tool allowing him/her to make a decision. More pre-
cisely, we explain how to effectively measure the effect of the choice of a given
prior on the resulting posterior. How much do two posteriors, derived from two
distinct priors, differ? Providing a quantitative answer to this question is important
as it also informs us about the ensuing inferential procedures. It has been proved
formally in [1, 2] that, under certain regularity conditions, the impact of the prior is
waning as the sample size increases. From a practical viewpoint it is however more
interesting to know what happens at finite sample size n, and this is precisely the
situation we are considering in this chapter.

Recently, [3, 4] have devised a novel tool to answer this question. They measure
the Wasserstein distance between the posterior distributions based on two distinct
priors at fixed sample size n. The Wasserstein (more precisely, Wasserstein-1)
distance is defined as

dW P1, P2ð Þ ¼ sup
h∈H

∣E h X1ð Þ½ � � E h X2ð Þ½ �∣

for X1 and X2 random variables with respective distribution functions P1 and P2,
and where H stands for the class of Lipschitz-1 functions. It is a popular distance
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between two distributions, related to optimal transport and therefore also known as
earth mover distance in computer science, see [5] for more information. The
resulting distance thus gives us the desired measure of the difference between two
posteriors. If one of the two priors is the flat uniform prior (leading to the posterior
coinciding with the data likelihood), then this measure quantifies how much the
other chosen prior has impacted on the outcome as compared to a data-only poste-
rior. Now, the Wasserstein distance being mostly impossible to calculate exactly, it
is necessary to obtain sharp upper and lower bounds, which will partially be
achieved by using techniques from the so-called Stein method, a famous tool in
probabilistic approximation theory. We opt for the Wasserstein metric instead of,
e.g., the Kullback-Leibler divergence because of precisely its nice link with the Stein
method, see [3].

The chapter is organized as follows. In Section 2 we provide the notations and
terminology used throughout the paper, provide the reader with the minimal nec-
essary background knowledge on the Stein method, and state the main result
regarding the measure of the impact of priors. Then in Section 3 we illustrate how
this newmeasure works in practice, by first working out a completely new example,
namely priors for the scale parameter of the inverse gamma distribution, and
second giving new insights into an example first treated in both [3, 4], namely
priors for the success parameter in the binomial distribution.

2. The measure in its most general form

In this section we provide the reader with the general form of the new measure
of the impact of the choice of prior distributions. Before doing so, we however first
give a very brief overview on Stein’s method that is of independent interest.

2.1 Stein’s method in a nutshell

Stein’s method is a popular tool in applied and theoretical probability, typically
used for Gaussian and Poisson approximation problems. The principal goal of the
method is to provide quantitative assessments in distributional comparison state-
ments of the form W≈Z where Z follows a known and well-understood probability
distribution (typically normal or Poisson) and W is the object of interest. Charles
Stein [6] in 1972 laid the foundation of what is now called “Stein’s method” by
aiming at normal approximations.

Stein’s method consists of two distinct components, namely

Part A: a framework allowing to convert the problem of bounding the error in
the approximation of W by Z into a problem of bounding the expectation of a
certain functional of W.

Part B: a collection of techniques to bound the expectation appearing in Part A;
the details of these techniques are strongly dependent on the properties of W as
well as on the form of the functional.

We refer the interested reader to [7, 8] for detailed recent accounts on this
powerful method. The reader will understand in the next sections why Stein’s
method has been of use for quantifying the desired measure, even without formal
proofs or mathematical details.
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2.2 Notation and formulation of the main goal

We start by fixing our notations. We consider independent and identically
distributed (discrete or absolutely continuous) observations X1,…, Xn from a para-
metric model with parameter of interest θ∈ Θ⊆. We denote the likelihood of
X1,…, Xn by ℓ x; θð Þ where x ¼ x1,…, xnð Þ are the observed values. Take two differ-
ent (possibly improper) prior densities p1 θð Þ and p2 θð Þ for our parameter θ; the
famous Bayes’ theorem then readily yields the respective posterior densities

pi θ; xð Þ ¼ κi xð Þpi θð Þℓ x; θð Þ, i ¼ 1, 2,

where κ1 xð Þ, κ2 xð Þ are normalizing constants that depend only on the observed
values. We denote by Θ 1, P1ð Þ and Θ 2, P2ð Þ the couples of random variables and
cumulative distribution functions associated with the densities p1 θ; xð Þ and p2 θ; xð Þ.

These notations allow us to formulate the main goal: measure the Wasserstein
distance between p1 θ; xð Þ and p2 θ; xð Þ, as this will exactly correspond to the differ-
ence between the posteriors resulting from the two priors p1 and p2. Sharp upper
and lower bounds have been provided for this Wasserstein distance, first in [3] for
the special case of one prior being flat uniform, then in all generality in [4]. The
determination of the upper bound has been achieved by means of the Stein Method:
first a relevant Stein operator has been found (Part A), and then a new technique
designed in [3] has been put to use for Part B. The reader is referred to these two
papers for details about the calculations; since this chapter is part of a book on
Bayesian inference, we prefer to keep out those rather probabilistic manipulations.

2.3 The general result

The key element in the mathematical developments underlying the present
problem is that the densities p1 θ; xð Þ and p2 θ; xð Þ are nested, meaning that one
support is included in the other. Without loss of generality we here suppose that

I2⊆ I1, allowing us to express p2 θ; xð Þ as κ2 xð Þ
κ1 xð Þ ρ θð Þp1 θ; xð Þ with

ρ θð Þ ¼
p2 θð Þ

p1 θð Þ
:

The following general result has been obtained in [4], where we refer the reader
to for a proof.

Theorem 1.1 Consider H the set of Lipschitz-1 functions on  and define

τi θ; xð Þ ¼
1

pi θ; xð Þ

ðθ

ai

μi � yð Þpi y; xð Þdy, i ¼ 1, 2, (1)

where ai is the lower bound of the support Ii ¼ ai, bið Þ of pi. Suppose that
both posterior distributions have finite means μ1 and μ2, respectively. Assume
that θ↦ρ θð Þ is differentiable on I2 and satisfies (i) E jΘ 1 � μ1jρ Θ 1ð Þ½ �<∞,

(ii) ρ θð Þ
Ð θ

a1
h yð Þ � E h Θ 1ð Þ½ �ð Þp1ðy; xÞdy

� �

is integrable for all h∈H and

(iii) lim θ!a2, b2ρ θð Þ
Ð θ

a1
h yð Þ � E h Θ 1ð Þ½ �ð Þp1 y; xð Þdy ¼ 0 for all h∈H. Then

∣μ1 � μ2∣ ¼
∣E τ1 Θ 1; xð Þρ0 Θ 1ð Þ½ �∣

E ρ Θ 1ð Þ½ �
≤ dW P1, P2ð Þ≤

E τ1 Θ 1; xð Þjρ0 Θ 1ð Þj½ �

E ρ Θ 1ð Þ½ �
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and, if the variance of Θ 1 exists,

∣μ1 � μ2∣ ≤ dW P1, P2ð Þ≤ ρ0k k∞
Var Θ 1½ �

E ρ Θ 1ð Þ½ �

where �k k∞ stands for the infinity norm.
This result quantifies in all generality the measure of the difference between two

priors p1 and p2, and comprises of course the special case where one prior is flat
uniform. Quite nicely, if ρ is a monotone increasing or decreasing function, the
bounds do coincide, leading to

dW P1; P2ð Þ ¼
E τ1 Θ 1; xð Þjρ0 Θ 1ð Þj½ �

E ρ Θ 1ð Þ½ �
, (2)

hence an exact result. The reader notices the sharpness of these bounds given
that they contain the same quantities in both the upper and lower bounds; this fact
is further underpinned by the equality Eq. (2). Finally we wish to stress that the
functions τi θ; xð Þ, i ¼ 1, 2, from Eq. (1) are called Stein kernel in the Stein method
literature and that these functions are always positive and vanish at the boundaries
of the support.

3. Applications and illustrations

Numerous examples have been treated in [3, 4], such as priors for the location
parameter of a normal distribution, the scale parameter of a normal distribution, the
success parameter of a binomial or the event-enumerating parameter of the Poisson
distribution, to cite but these. In this section we will, on the one hand, investigate a
new example, namely the scale parameter of an inverse gamma distribution, and,
on the other hand, revisit the binomial case. Besides providing the bounds, we will
also for the first time plot numerical values for the bounds and hence shed new
intuitive light on this measure of the impact of the choice of the prior.

3.1 Priors for the scale parameter of the inverse gamma (IG) distribution

The inverse gamma (IG) distribution has the probability density function

x !
βα

Γ αð Þ
x�α�1 exp �

β

x

� �

,  x>0,

where α and β are the positive shape and scale parameters, respectively. This
distribution corresponds to the reciprocal of a gamma distribution (if X � Gamma

α, βð Þ then 1
X � IG α, βð Þ) and is frequently encountered in domains such as machine

learning, survival analysis and reliability theory. Within Bayesian Inference, it is a
popular choice as prior for the scale parameter of a normal distribution. In the
present setting, we consider θ ¼ β as the parameter of interest and α is fixed. The
observations sampled from this distribution are written x1,…, xn.

The first prior is the popular noninformative Jeffreys prior. It is invariant under
reparameterization and is proportional to the square root of the Fisher information
quantity associated with the parameter of interest. In the present setting simple
calculations show that it is proportional to 1

β
. The resulting posterior P1 then has a

density of the form
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p1 βjxð Þ∝
1

β
βnα exp �β

X

n

i¼1

1

xi

( )

¼ βnα�1 exp �β
X

n

i¼1

1

xi

( )

which is none other than a gamma distribution with parameters nα,
Pn

i¼1
1
xi

� �

.

Now, the gamma distribution happens to be the conjugate prior for the scale
parameter of an IG distribution. We consider thus as second prior a general

gamma distribution with density β↦ κη

Γ ηð Þ β
η�1 exp �κβf g, where the shape and scale

parameters η and κ are strictly positive. The ensuing posterior distribution P2 has
then the density

p2 βjxð Þ∝ βη�1 exp �κβf g � βnα exp �β
X

n

i¼1

1

xi

( )

¼ βnαþη�1 exp �β
X

n

i¼1

1

xi
þ κ

 !( )

which is a gamma distribution with updated parameters nαþ η,
Pn

i¼1
1
xi
þ κ

� �

.

Considering Jeffreys prior as p1 and the gamma prior as p2 leads to the ratio

ρ βð Þ ¼
p2 βð Þ

p1 βð Þ
∝

κη

Γ ηð Þ β
η�1 exp �κβf g

1
β

¼
κη

Γ ηð Þ
βη exp �κβf g:

One can easily check that all conditions of Theorem 1.1 are fulfilled, hence we
can calculate the bounds. The lower bound is directly obtained as follows:

dW P1, P2ð Þ≥ μ1 � μ2j j ¼
nα

Pn
i¼1

1
xi

�
nαþ η

Pn
i¼1

1
xi
þ κ

�

�

�

�

�

�

�

�

�

�

(3)

¼
nα
Pn

i¼1
1
xi
þ nακ � nα

Pn
i¼1

1
xi
� η
Pn

i¼1
1
xi

Pn
i¼1

1
xi

Pn
i¼1

1
xi
þ κ

� �

�

�

�

�

�

�

�

�

�

�

�

�

(4)

¼
nακ � η

Pn
i¼1

1
xi

Pn
i¼1

1
xi

Pn
i¼1

1
xi
þ κ

� �

�

�

�

�

�

�

�

�

�

�

�

�

: (5)

In order to acquire the upper bound we need to calculate

ρ0 βð Þ ¼
κη

Γ ηð Þ
βη�1 exp �κβð Þ η� κβ½ �

and, writing Θ 1 the random variable associated with Gamma nα,
Pn

i¼1
1
xi

� �

and

f
Gamma nα,

Pn

i¼1
1
xi

� � βð Þ the related density, we get

 ρ Θ 1ð Þ½ � ¼

ð∞

0

κη

Γ ηð Þ
βη exp �κβf g � f

Gamma nα,
Pn

i¼1
1
xi

� � βð Þdβ (6)

¼
κη

Γ ηð Þ

Pn
i¼1

1
xi

� �nα

Γ nαð Þ

ð∞

0
βη exp �κβf gβnα�1 exp �β

X

n

i¼1

1

xi

( )

dβ (7)

5

On the Impact of the Choice of the Prior in Bayesian Statistics
DOI: http://dx.doi.org/10.5772/intechopen.88994



¼
κη

Γ ηð Þ

Pn
i¼1

1
xi

� �nα

Γ nαð Þ

ð∞

0
βnαþη�1 exp �β

X

n

i¼1

1

xi
þ κ

 !( )

dβ (8)

¼
κη

Γ ηð Þ

Pn
i¼1

1
xi

� �nα

Γ nαð Þ

Γ nαþ ηð Þ
Pn

i¼1
1
xi
þ κ

� �nαþη (9)

¼
κη

Beta nα, ηð Þ

Pn
i¼1

1
xi

� �nα

Pn
i¼1

1
xi
þ κ

� �nαþη : (10)

From the Stein literature we know that the Stein kernel for the gamma distribu-

tion with parameters nα,
Pn

i¼1
1
xi

� �

corresponds to τ β;xð Þ ¼ β
Pn

i¼1
1
xi

. Employing the

triangular inequality we have thus

 τ Θ 1; xð Þjρ0 Θ 1ð Þj½ � ¼ 
Θ 1

Pn
i¼1

1
xi

κη

Γ ηð Þ
Θ

η�1
1 exp �κΘ 1f gjη� κΘ 1j

" #

(11)

≤
κη

Pn
i¼1

1
xi

� �

Γ ηð Þ
 Θ

η
1 exp �κΘ 1f g ηþ κΘ 1ð Þ

� �

: (12)

Now we need to calculate the expectation

 Θ
η
1 exp �κΘ 1f g ηþ κΘ 1ð Þ

� �

(13)

¼

ð∞

0
βη exp �κβf g ηþ κβð Þ � f

Gamma nα,
Pn

i¼1
1
xi

� � βð Þdβ (14)

¼

Pn
i¼1

1
xi

� �nα

Γ nαð Þ

ð∞

0
ηβnαþη�1 exp �β

X

n

i¼1

1

xi
þ κ

 !( )

dβ (15)

þ

Pn
i¼1

1
xi

� �nα

Γ nαð Þ

ð∞

0
κβnαþη exp �β

X

n

i¼1

1

xi
þ κ

 !( )

dβ (16)

¼

Pn
i¼1

1
xi

� �nα

Γ nαð Þ
η

Γ nαþ ηð Þ
Pn

i¼1
1
xi
þ κ

� �nαþη þ κ
Γ nαþ ηþ 1ð Þ
Pn

i¼1
1
xi
þ κ

� �nαþηþ1

0

B

@

1

C

A
: (17)

The final expression for the upper bound then corresponds to

dW P1, P2ð Þ≤

κη

Pn

i¼1
1
xi

� �

Γ ηð Þ

�

Pn

i¼1
1
xi

� �nα

Γ nαð Þ η
Γ nαþηð Þ

Pn

i¼1
1
xi
þκ

� �nαþη þ κ
Γ nαþηþ1ð Þ

Pn

i¼1
1
xi
þκ

� �nαþηþ1

2

6

4

3

7

5

κη

Beta nα, ηð Þ �

Pn

i¼1
1
xi

� �nα

Pn

i¼1
1
xi
þκ

� �nαþη

(18)

¼
Beta nα, ηð Þ

Pn
i¼1

1
xi
þ κ

� �nαþη

Γ nαð ÞΓ ηð Þ
Γ nαþηð Þ

Pn
i¼1

1
xi

� � �
1

Pn
i¼1

1
xi
þ κ

� �nαþη ηþ κ
nαþ η

Pn
i¼1

1
xi
þ κ

 !

(19)
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¼
1

Pn
i¼1

1
xi

ηþ κ
nαþ η

Pn
i¼1

1
xi
þ κ

 !

: (20)

The Wasserstein distance between the posteriors based on the Jeffreys prior and
conjugate gamma prior for the scale parameter β of the IG distribution is thus
bounded as

nακ � η
Pn

i¼1
1
xi

Pn
i¼1

1
xi

� �

Pn
i¼1

1
xi
þ κ

� �

�

�

�

�

�

�

�

�

�

�

�

�

≤ dW P1,P2ð Þ ≤
1

Pn
i¼1

1
xi

ηþ κ
nαþ η

κ þ
Pn

i¼1
1
xi

 !

:

It can be seen that both the lower and upper bound are of the order of O n�1ð Þ. In
addition, it is noticeable that for the larger observations, the rate of convergence is
getting slower.

In order to show the performance of the methodology which leads to have the
lower and upper bounds, we have conducted a simulation study including two
parts. First we simulate N ¼ 100 samples for each sample size n ¼ 10, 11,⋯, 100
from the inverse gamma distribution with parameters α, βð Þ ¼ 0:5, 1ð Þ in each iter-
ation. For each of these samples we calculate the lower and upper bounds of the
Wasserstein distance and calculate the average over all N replications, together with
the difference between the bounds. Finally we plot these values for each sample size
in Figure 1. We repeat the same process for N ¼ 1000 samples with the same sizes.
The hyperparameters from the prior gamma distribution are κ, ηð Þ ¼ 0:2, 2ð Þ. We
clearly observe how fast these values decrease with the sample size. Of course,
augmenting the number of replications does not increase the speed of convergence,
however the curves become noticeably smoother.

This methodology not only can help the practitioners to make a decision
between existing priors in theory, but also helps them to know from what sample
size on the effect of choosing one prior becomes less important, especially in
situations when the cost and time matter. This can be particularly useful when the

Figure 1.
(a) Shows the bounds and the distances between the bounds for N ¼ 100 iterations for each sample size 10–100
by steps of 1, and (b) illustrates the same situation for N ¼ 1000. The hyperparameters are κ ¼ 0:2 and η ¼ 2,
while the fixed parameter α equals 0.5.
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hesitation is between a simple, closed-form prior and a more complicated one. It is
advisable to use the simpler one when there is no considerable difference between
the effect of the two priors.

3.2 The impact of priors for the success parameter of the binomial model

The probability mass function of a binomial distribution is given by

x↦
n

x

	 


θx 1� θð Þn�x

where x∈ 0, 1,⋯, nf g is the number of observed successes, the natural number n
indicates the number of binary trials and θ∈ 0, 1ð Þ stands for the success parameter.
In this setting we suppose n is fixed and the underlying parameter of interest is θ.

A comprehensive comparison of various priors for the binomial distribution
including a beta prior, the Haldane prior and Jeffreys prior, has been done in [9],
based on the methodology described above. Therefore, since there is a complete
reference for the reader in this case, we use the binomial distribution as a second
example to show numerical results.

The theoretical lower and upper bounds between a Beta α, βð Þ prior and the flat
uniform prior are given by

xþ 1

nþ 2

αþ β � 2

nþ αþ β

	 


�
α� 1

nþ αþ β

�

�

�

�

�

�

�

�

≤ dW P1, P2ð Þ≤
1

nþ 2
jα� 1jþ

xþ α

nþ αþ β
jβ � 1j � jα� 1jð Þ

� �

,

where x is the observed number of successes. We see that both lower and upper
bounds are of the order of O n�1ð Þ. This rate of convergence remains even in the
extreme cases x ¼ 0 and x ¼ n. We invite the reader to see [3, 9] for more details.

In order to illustrate the behavior of the lower and upper bounds and the
distances between them, we have conducted a two-part simulation study for the
binomial distribution. First, we consider 100 sample sizes (number of trials in the
binomial distribution) varying from 10 to 1000 by steps of 10, and generate bino-
mial data exactly once for every sample size (with θ ¼ 0:2). The results of the
bounds, obtained for hyperparameters α, βð Þ ¼ 2, 4ð Þ from the beta prior, are
reported in Figure 2a and we can see that, even with only one iteration, when the
number of trials (the sample size) increases the lower and upper bound become
closer, which is a numerical quantification of the fact that the influence of the
choice of the prior wanes asymptotically. This becomes also visible from the dis-
tance between the two bounds. Sampling only once for each sample size leads to
slightly unpleasant variations in the lower bounds (non-monotone behavior), which
however nearly disappear in the second considered scenario. Indeed, in Figure 2b
we increased the number of iterations to 50 for the same different sample sizes and
took averages. A better smoothness is the consequence. This simulation study not
only provides the reader with numerical values for the bounds, to which he/she can
compare his/her bounds obtained for real data, but also gives a nice visualization of
the impact of the choice of the prior at fixed sample size. The main conclusion is
that the impact drops fast at small sample sizes, and the bounds start to become
very close for medium-to-large sample sizes.

Finally, we investigate the impact of the hyperparameters on the upper and
lower bounds. To this end, we varied both α and β in Table 1. The situation with α

fixed to two and relatively small β corresponds well with p ¼ 0:2, which explains
why the upper and lower bounds, and hence the Wasserstein distance and thus the
impact of the prior, are the smallest. Increasing β more augments the distance.
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Hyperparameters (α, β) Average of the lower bounds Average of the upper bounds

(0.2, 0.4) 0:002561383 0:003726728

(0.2, 0.8) 0:00296002 0:003344393

(2, 2) 0:002699325 0:00490119

(2, 5) 0:0008115384 0:007984289

2, 10ð Þ 0:004506271 0:01241273

2, 15ð Þ 0:008208887 0:01626326

2, 30ð Þ 0:01750177 0:02581062

2, 50ð Þ 0:02739205 0:0359027

2, 100ð Þ 0:04592235 0:05470826

2, 200ð Þ 0:07071766 0:07976386

2, 500ð Þ 0:1103048 0:1196464

2, 1000ð Þ 0:1399961 0:1495087

10, 2ð Þ 0:02813367 0:03132908

35, 2ð Þ 0:08571115 0:09033568

50, 2ð Þ 0:1127136 0:1178113

100, 2ð Þ 0:1830272 0:189071

200, 2ð Þ 0:2783722 0:2853418

400, 2ð Þ 0:3933338 0:401145

700, 2ð Þ 0:4901209 0:4985089

1000, 2ð Þ 0:5482869 0:5569829

Table 1.
The summary of upper and lower bounds for different hyperparameters, with p ¼ 0:2 and for N = 50
iterations.

Figure 2.
(a) Shows the lower and upper bounds and the distances for the number of trials {n = 10,...,1000} for one
iteration. (b) Shows the same situation, however this time based on averages obtained for 50 iterations. In both
situations the hyperparameters from the beta prior are α ¼ 2 and β ¼ 4.
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On the contrary, fixing β ¼ 2 yields priors rather centered around large values of p
and hence bigger distances. Moreover, the more α is increased, the more the dis-
tance augments, as the prior is further away from the data and hence impacts more
on the posterior at a fixed sample size. For the sake of illustration, we present three

Figure 3.
Plots of the beta prior densities together with the average lower and upper bounds (and their difference) on the
Wasserstein distance between the data-based posterior and the posterior resulting from each beta prior.
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choices of hyperparameters together with the bounds and the related prior density
in Figure 3. This will help understanding our conclusions.

4. Conclusions

In this chapter we have presented a recently developed measure for the impact
of the choice of the prior distribution in Bayesian statistics. We have presented the
general theoretical result, explained how to use it in a particular example and
provided some graphics to illustrate it numerically. The practical importance of this
study is when practitioners hesitate between two proposed priors in a given situa-
tion. For instance, Kavetski et al. [10] considered a storm depth multiplier model to
represent rainfall uncertainty where the errors appear under multiplicative form
and are assumed to be normal. They fix the mean, but state that “less is understood
about the degree of rainfall uncertainty,” i.e., the multiplier variance, and therefore
studied various priors for the variance. Knowledge of the tools presented in this
chapter would have simplified the decision process.

In case of missing data, the present methodology can still be used. Either the
data get imputed, in which case nothing changes, or the missing data simply are left
out from the calculation of upper and lower bounds, whose expression does of
course not alter.

Further developments on this new measure might lead to a more concrete
quantification of words such as “informative, weakly informative, noninformative”
priors, and we hope to have stimulated interest in this promising new line of
research within Bayesian Inference.
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