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Chapter

Introductory Chapter: 
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Improvement of Legume Crops
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1. Introduction

Legumes are agriculturally grown flowering plants that are found in most of 
the archaeological record of plants [1]. Various ecosystems, including rain forests, 
arctic/alpine regions, and deserts have been colonized by legumes [1, 2]. The most 
two popular flowering plants are Asteraceae and Orchidaceae [1]. The third in 
terms of popularity is Leguminosae or Fabaceae with 670–750 genera and 18,000–
19,000 species, respectively [1]. Legumes are utilized efficiently as (a) food crops 
for humans and animals; (b) pulps for paper, wood, and timber manufacturing; 
(c) sources for fuel and oil production; (d) ornamental plants used as living barri-
ers and firebreaks, among others [3]; and (e) cover crops such as cereals and other 
staple foods [1]. Additionally, they can be utilized for other purposes including 
production of massive amounts of organic nitrogen. This is because legumes can 
be intercropped with rhizobia resulting in high yield productivity, soil organic 
matter improvement, modification of soil osmosis and texture, nutrient reuse, 
decrease of soil pH and soil pressure, microorganism differentiation, and allevia-
tion of disease problems [1, 4]. Furthermore, legumes can produce amounts of 
organic nitrogen at a slow rate when rotated with cereals. Such nitrogen produced 
can be utilized in prospective cropping technologies for improving the production 
of these crops, recognizing their potential role in promoting better human nutri-
tion and soil health [1, 5].

2. Main legumes

Forage legumes such as alfalfa (Medicago sativa), clover (Trifolium spp.), bird’s-
foot trefoil (Lotus corniculatus), and vetch (Vicia spp.) are utilized as main sources 
for dairy and meat which are used for protein, fiber, and energy production [1]. 
Global production of alfalfa was approximately 436 tons in 2006 suggesting that it 
is the most essential forage crop. The highest amount of alfalfa was produced in the 
United States, being produced around 15 million tons in 2010 [1, 6]. Grain legumes 
or pulses are crops harvested massively for the dry seeds. They are found containing 
high amounts of protein in their seeds. Therefore, they represent a major food source 
for population consumption. They are considered as the main protein suppliers 
especially for people from developing countries [1]. Additionally, their high amino 
acid content is of nutritional value during utilization of cereals and tubers as food 
sources [1, 7]. The soybean (Glycine max), a native plant of Eastern Asia, is an annual 
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summer legume of great agricultural possibilities due to its fundamental role in the 
nutrition of many people and livestocks besides its industrial possibilities [1, 8].

3. Enhancing legume productivity

Legumes are highly diversified, so they are utilized for several economic and 
cultural purposes including their role as vegetables to tolerate various ecological 
conditions, their source for producing large quantities of proteins, their utilization 
in grazing domains, and their function in increasing worldwide productivity of 
food and other commodities [1]. Therefore, recent findings have directed towards 
developing new biological and environment-friendly techniques to enhance the 
growth efficiency of legumes [1]. Scientists have derived several economic and 
ecological uses when legumes form symbiotic associations with nitrogen-fixing 
fungi and bacteria [9]. Biological nitrogen fixation (BNF) within legumes occurs 
through their association with microorganisms [1]. These microorganisms, which 
are also needed for the Earth’s nitrogen cycle, are utilized for developing agricul-
tural production of plants. Furthermore, they participate in soil colonization and 
plant growth promotion when utilized in live formulations or biofertilizers applied 
to seed, root, soil, or the interior of the plant as they can supply large amount of 
proteins to host cell and enhance soil protection [1]. The need of agroecosystems 
for nitrogen is assessed through a cost-effective, prospective, and eco-friendly pro-
cess of biological nitrogen fixation rather than chemical nitrogen fixation. There 
are several benefits to the process of biological nitrogen fixation. It meets the needs 
of legumes and intercropped or succeeding crops for nitrogen [1]. This, in turns, 
avoids or even restricts the application of nitrogen fertilization. Additionally, 
nitrogen-fixing organisms play an essential role when the amount of nitrogen 
in the soil is low. They introduce ammonium into the legume biomass to allow 
faster growing than their plant competitors, but if the protein content is high, 
nitrogen-fixing microorganisms become alternative to non-fixing species due to 
high bioenergy cost of nitrogen fixation process [1, 10]. Thus, it can be concluded 
that nitrogen fixation in legume systems occurs through a variety of physiological 
and ecological possibilities including the plant’s need for nitrogen and the C:N 
stoichiometry of the ecosystem [1]. It has proven experimentally and theoretically 
the hypothesis of a feedback control between legume’s need for nitrogen and BNF 
in a specific ecosystem [11].

To enhance the efficiency of the nitrogen fixation process, the most suitable 
microorganisms for such purpose are selected, and/or genetic engineering of plant 
species are involved to guarantee high legume crop productivity [1]. Farmers 
are familiar with the application of commercially available microorganisms 
(inoculants) that are of great efficiency to nodulate plants and fix nitrogen in the 
soil [1]. These microorganisms such as rhizobia form associations with legumes 
in a situation called symbiosis that introduces benefits for both parts [1]. In this 
scenario, leguminous plants represent the source of energy and photosynthetic 
products to rhizobia, while rhizobia supplies the legumes with nitrogen in form of 
ammonium [1, 12]. The symbiosis begins when the roots of leguminous plants are 
inoculated the rhizobia, which, in turn, form root nodules where BNF occurs with 
the help of nitrogenase enzyme [1, 13]. In conclusions, several techniques have 
been developed genetically and biochemically to enhance plant development and 
crop productivity, suggesting their marvelous importance in improving legumes 
and other crops [1, 14–37].
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