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Chapter

Viscosity Models Based on the
Free Volume and Entropy Scaling
Theories for Pure Hydrocarbons
over a Wide Range of
Temperatures and Pressures
Hseen O. Baled and Isaac K. Gamwo

Abstract

Viscosity is a critical fundamental property required in many applications in the
chemical and oil industry. Direct measurements of this property are usually expen-
sive and time-consuming. Therefore, reliable predictive methods are often
employed to obtain the viscosity. In this work, two viscosity models based on the
free-volume and entropy scaling theories are assessed and compared for pure
hydrocarbons. The modeling results are compared to experimental data of 52 pure
hydrocarbons including straight-chain alkanes, branched alkanes, cycloalkanes, and
aromatics. This study considers viscosity data to extremely high-temperature and
high-pressure (HTHP) conditions up to 573 K and 300 MPa. The results obtained
with the free-volume theory viscosity in conjunction with the perturbed-chain
statistical associating fluid theory (PC-SAFT) equation of state are characterized by
an overall average absolute deviation (AAD%) of 3% from the experimental data.
The overall AAD% obtained with the predictive entropy scaling method by
Lötgering-Lin and Gross is 8%.

Keywords: high temperature, high pressure, hydrocarbons, modeling, viscosity

1. Introduction

Viscosity is a key property in many engineering disciplines, including chemical
and petroleum engineering. For instance, viscosity influences the fluid flow through
porous media and pipelines; hence, it is required for the design of pipelines and
transport equipment as well as for the estimation of recoverable oil and flow rates in
porous media or wellbores. Viscosity can be determined through experimental
measurements. However, carrying out viscosity measurements at all conditions of
interest is not only expensive and time-consuming but also may not be possible at
extreme conditions such as those encountered in ultra-deep reservoirs including
pressures up to 300 MPa and temperatures up to 573 K. Reliable prediction models
provide an alternative approach to generating predicted and correlated viscosity
data at conditions where experimental data are not readily available.
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Unlike the viscosity of gases at low pressures which is well defined by the kinetic
theory of the gases, the viscosity theory of liquids is still inadequately developed
due to the complications caused by the intermolecular forces between the molecules
[1]. Therefore, there is no widely accepted simple theoretical method for predicting
liquid viscosities, and most estimation techniques used for viscosity prediction of
liquids are of empirical or semiempirical nature. The empirical models are correla-
tions based on experimental observation with no theoretical background, whereas
semi-theoretical models have a fundamental basis but contain adjustable parame-
ters determined by fitting the model to experimental data.

In the present study, two viscosity models based on the free-volume and entropy
scaling theories are assessed and tested against viscosity data for pure hydrocarbons
from different chemical families that are commonly found in crude oil at high-
temperature and high-pressure (HTHP) conditions up to 573 K and 300 MPa. Pure
components are well-suited for initial evaluation of the viscosity models because a
viscosity model that has difficulty in correctly describing the viscosity of a single
hydrocarbon is likely to fail when predicting multicomponent mixtures.

2. Free-volume theory (FVT)

The FVT model is based on the free-volume concept. The idea that the viscosity
depends upon the free space was first introduced by Batschinski [2] about 100 years
ago. The viscosity, η, can be expressed as a sum of two contributions given in
Eq. (1):

η ¼ η0 þ Δη (1)

where η0 is the dilute gas viscosity and the Δη term dominates for liquid viscos-
ity. The dilute gas term η0 is determined from the kinetic gas theory at very low
pressures. It should be noted, though, that for liquids and supercritical fluids, the
dilute gas viscosity term η0 is negligibly small in comparison to the total viscosity η;
hence, η0 can be neglected for such fluids. Doolittle [3] found that the viscosity of
liquid n-alkanes can be represented by a simple function of the free space fraction,
f v ¼

vf
v0
¼ v�v0

v0
:

η ¼ A exp B=f v
� �

(2)

where v0 is the molecular volume of reference or hard-core volume, v is the
specific molecular volume, B is characteristic of the free-volume overlap, and A is a
material-specific constant. A viscosity model based on the relation between free
volume, friction coefficient, and viscosity has been proposed by Allal and coauthors
[4, 5]:

∆η ¼ A exp B=f v
� �

(3)

where the free-volume fraction f v was defined by means of the fluctuation-
dissipation theory as

f v∝
RT

E

� �3
2

(4)

where R is the gas constant and T is the temperature. In this expression,
E ¼ E0 þ PM

ρ
, where E0 ¼ αρ is related to the energy barrier that the molecule has to
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overcome in order to diffuse, ρ is the density, and P is the pressure. The viscosity of
the dense state is linked to the fluid microstructure using the friction coefficient, ζ,
which is related to molecular mobility and to the diffusion of linear momentum:

∆η ¼ ρNAζL
2

M
(5)

where NA is Avogadro’s number and L is a characteristic molecular length
parameter. By combining the relations between free volume, friction coefficient,
and viscosity, the following expression was obtained for the viscosity:

∆η ¼
ρl αρþ PM

ρ

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffi

3RTM
p exp B

αρþ PM
ρ

RT

 !3=2
2

4

3

5 (6)

The unit for the viscosity is [Pa�s], when all other variables are in SI units. The
term PM

ρ
is linked to the energy necessary to form vacant vacuums required for the

diffusion of the molecules. l is the characteristic length parameter in Å. The unitless
parameter B is characteristic of the free-volume overlap. The density appears
explicitly in Eq. (6), and hence the values of the free-volume theory parameters are
directly dependent on whether experimental or calculated densities are used.

The three pure component parameters l, α, and B are determined by fitting
Eq. (1) to experimental viscosity data. The use of the FVT requires density infor-
mation, either experimental or calculated values. In this study, FVT is used in
conjunction with the hybrid group-contribution perturbed-chain statistical associ-
ating fluid theory equation of state (G-C PC-SAFT EoS) [6] since this EoS provides
reliable density predictions over wide ranges of pressure and temperature. In this
equation, the PC-SAFT parameters are determined using two different sets of
group-contribution (G-C) parameters for two pressure ranges: low-to-moderate
pressures (≲7 MPa) and high pressures (≳7 MPa).

3. Entropy scaling model by Lötgering-Lin and Gross (ES-LG)

The basic idea of this method is to relate the viscosity to the residual entropy.
The residual entropy is defined as the difference between a real state value and ideal
gas state value at the same temperature and density, sres ρ, Tð Þ ¼ s ρ, Tð Þ � sid ρ, Tð Þ.
Lötgering-Lin and Gross [7] proposed a predictive entropy scaling method for
viscosities using a group-contribution (G-C) method based on the group-
contribution perturbed-chain polar statistical associating fluid theory equation of
state (G-C PCP-SAFT EoS) [8, 9]. Lötgering-Lin and Gross linked the Chapman-
Enskog viscosity to PCP-SAFT segments in terms of G-C parameters, with

ηCE, gc ¼
5
16

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

MmolkBT= mgcNAπ
� �

q

σ2gcΩ
2, 2ð Þ ∗
gc

(7)

where Mmol is the molar mass, kB is the Boltzmann constant, and T is the
absolute temperature, NA is Avogadro’s number, m is the segment number, σ is the
segment diameter, and Ω

2, 2ð Þ ∗ is the reduced collision integral. The index gc indi-
cates pure component parameters that are calculated with the group-contribution
method based on G-C-PCP-SAFT EoS.
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A reduced viscosity is then defined as

η ∗ ¼ η

ηCE, gc
(8)

where the pure component reduced viscosity, η ∗
i , is empirically correlated as

ln η ∗
i ¼ Ai þ Bi zþ Ci z

2 þDi z
3 (9)

with

z ¼ sres
kBmgc, i

(10)

The residual entropy, sres, is calculated from the G-C-PCP-SAFT EoS originally
proposed by Vijande et al. [8] and reparametrized by Sauer et al. [9]:

sres ρ, Tð Þ ¼ � ∂ares
∂T

� �

ρ

(11)

where ares ¼ Ares=N is the specific Helmholtz energy given by Gross and
Sadowski [10]. N is the total number of molecules.

The viscosity parameters Ai to Di of pure substances are obtained from param-
eters Aα to Dα of functional group α, respectively. The following empirical expres-
sions are proposed by Lötgering-Lin and Gross [7] for mixing group-contribution
parameters:

Ai ¼
X

α

nα, imασ
3
αAα (12)

Bi ¼
X

α

nα, imασ
3
α

Vγ

tot, i
Bα (13)

Ci ¼
X

α

nα, iCα (14)

Di ¼ D
X

α

nα, i (15)

With

Vtot, i ¼
X

α

nα, imασ
3
α (16)

where nα, i denotes the number of functional groups of type α in the substance i.
The exponent γ and the parameter D are kept constant for all studied substances
and are optimized for n-alkanes (D = �0.01245 and γ = 0.45) [7]. The group-
contribution parameters Aα, Bα, and Cα of all groups α are given in [7].

4. Modeling results

The two viscosity methods, FVT and ES-LG, are tested on a database consisting
of 52 hydrocarbons (21 normal alkanes, 13 branched alkanes, 4 cycloalkanes, 14
aromatics) typically present in most of the crude oils from ambient conditions to
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extremely high-temperature and high-pressure (HTHP) conditions up to 573 K and
300 MPa. The temperature and pressure ranges considered in this study are given
for each substance in Table 1. The performance of each model is assessed by the
following statistical measures:

Absolute Average Deviation AADð Þ ¼ 100
N

X

N

i¼1

ηi, cal�ηi, exp
ηi, exp

	

	

	

	

	

	

	

	

	

	

(17)

Maximum Deviation MDð Þ ¼ 100 � max
ηi, cal�ηi, exp

ηi, exp

	

	

	

	

	

	

	

	

	

	

(18)

Bias ¼ 100
N

X

N

i¼1

ηi, cal�ηi, exp
ηi, exp

(19)

where N is the total number of data points, ηi, cal represents the calculated
viscosity value, and ηi, exp is the experimental data point obtained from the litera-
ture. The absolute average deviation AAD is a measure of how close the calculated
values are to the experimental data, while the bias indicates how well the calculated
values are distributed around the literature data. Low values of the bias imply that
the deviations are evenly distributed about zero. A positive bias indicates
overestimation of the calculated viscosity, whereas a negative value indicates

Compound Ranges of

conditions

Reference FVT ES-LG

T/K P/MPa AAD/% MD/% Bias/% AAD/% MD/% Bias/%

Straight-chain alkanes (normal alkanes)

CH4 298–573 0.1–300 [11–13] 3 33 �2 15 47 13

C2H6 298–573 0.1–70 [11, 14] 2 5 1 7 35 �6

C3H8 298–500 0.1–100 [14, 15] 5 21 1 6 20 �2

n-C4H10 298–573 0.1–69 [11] 4 20 2 5 21 2

n-C5H12 298–573 0.1–252 [16, 17] 3 18 1 6 15 �3

n-C6H14 298–573 0.1–300 [16, 18] 4 18 �2 5 19 �1

n-C7H16 298–573 0.1–100 [16, 19] 2 6 0 4 17 4

n-C8H18 298–523 0.1–242 [18, 20, 21] 2 6 0 2 7 2

n-C9H20 298–473 0.1–300 [16, 19, 21] 2 9 0 4 10 4

n-C10H22 298–573 0.1–300 [16, 17,
21–24]

2 6 0 4 14 2

n-C11H24 303–323 0.1–62 [19] 0.1 1 0 1 4 �1

n-C12H26 298–573 0.1–300 [16, 22–27] 3 13 0 4 17 2

n-C13H28 303–353 0.1–100 [28] 1 4 1 4 8 �4

n-C14H30 313–393 0.69–60 [29] 2 8 �1 5 12 �2

n-C15H32 310–
408

0.1–320 [25] 2 7 0 4 11 0

n-C16H34 298–534 0.1–273 [30, 31] 3 9 0 10 24 1

n-C17H36 323–573 0.1–0.1 [3] 2 6 �2 8 16 �8

n-C18H38 326–534 0.1–280 [25, 31] 3 12 0 9 28 8

n-C19H40 333–523 [32] 3 8 0 4 10 2

n-C20H42 326–534 1.38–243 [31, 33] 4 13 0 12 40 9
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Compound Ranges of

conditions

Reference FVT ES-LG

T/K P/MPa AAD/% MD/% Bias/% AAD/% MD/% Bias/%

n-C32H66 373–458 0.3–0.3 [34] 1 2 0 2 4 2

Branched alkanes

Isobutane 300–511 0.1–55 [35, 36] 3 11 2 3 13 �1

Isopentane 303–573 0.098–196 [16, 37] 6 22 �3 11 23 �7

Neopentane 311–444 0.7–55 [38] 7 23 �3 16 60 �13

2-Methylpentane 298–550 0.1–300 [16] 1 9 0 5 16 1

3-Methylpentane 313 0.1–147 [39] 1 4 1 8 10 8

2,2-Dimethylbutane 313 0.1–147 [39] 2 8 �1 27 37 �27

2,3-Dimethylbutane 313 0.1–147 [39] 0.3 1 0 7 11 �7

3-Ethylpentane 313 0.1–147 [39] 2 3 �2 17 20 17

2,4-Dimethylpentane 313 01.147 [39] 2 6 1 23 29 23

2,2,4-
Trimethylpentane

298–523 0.1–300 [20, 40–42] 2 8 0 5 13 1

2,3,4-
Trimethylpentane

298–453 0.1–195 [41] 3 11 0 7 15 �7

Squalane 303–473 1–202 [43, 44] 6 33 �2 26 49 23

2,2,4,4,6,8,8-
Heptamethylnonane

298–453 0.1–195 [41, 45, 46] 7 49 �6 7 51 �5

Cycloalkanes

Cyclopentane 298–353 0.1–300 [47, 48] 5 16 �2 2 6 �1

Cyclohexane 298–393 0.1–100 [49, 50] 2 7 0 4 14 1

Methylcyclohexane 298–343 0.1–300 [51, 52] 1 6 0 4 10 �4

Ethylcyclohexane 300–
530

1–50 [53] 3 12 �1 7 23 �5

Aromatics

Benzene 298–373 0.1–300 [54] 1 3 0 5 13 �4

Toluene 298–373 0.1–299 [55] 2 6 0 3 9 2

Ethylbenzene 298–453 0.1–195 [41] 2 4 1 16 40 16

Butylbenzene 313–373 0.1–100 [56] 2 9 0 4 11 4

Hexylbenzene 313–373 0.1–100 [56] 1 3 0 5 9 5

Octylbenzene 313–373 0.1–100 [56] 1 5 0 4 9 3

1,2-Diphenylethane 353–453 0.1–195 [41] 1 2 0 12 17 �12

m-Xylene 298–473 0.1–199 [20] 2 6 0 4 10 �2

o-Xylene 298–348 0.1–110 [57] 1 3 0 25 30 �25

p-Xylene 298–348 0.1–110 [57] 2 7 �1 6 8 �6

Naphthalene 375–454 0.1–101 [58] 8 33 1 11 22 �11

1-Methylnaphthalene 298–473 0.1–200 [20] 11 35 �7 32 60 �32

Tetralin 298–448 0.1–201 [20] 5 20 �1 29 53 28

Phenanthrene 396–573 0.1–101 [58] 13 41 �6 17 29 �17

Overall AAD% 3 8

Table 1.
Performance of FVT and ES-LG models for pure hydrocarbons over wide ranges of pressure and temperature
(entries are rounded to nearest whole number).
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underestimation. These statistical measures of the ability of each of the selected
seven models to reproduce viscosity values at HTHP conditions for each of the 52
pure compounds are given in Table 1.

The overall AAD obtained with the FVT model in conjunction with the hybrid
G-C PC-SAFT EoS is 3%. The three adjustable parameters (l, α, B) required in this
method are obtained by fitting the FVT predictions for each pure compound to the
corresponding literature data. These optimized parameters yield reliable viscosity
values over the whole ranges of temperatures to 573 K and pressures to 300 MPa.

The results obtained with the entropy scaling method by Lötgering-Lin and
Gross are generally in good agreement with experimental data with an overall AAD
of 8%. The AADs obtained for n-alkanes, branched alkanes, cycloalkanes, and
aromatics are within 1–15, 3–27, 2–7, and 3–32%, respectively. These results are
impressive for a fully predictive model that requires only the input of the molecular
mass and the number of functional groups in each molecule. Unfortunately, this
model cannot differentiate between isomers, such as 2-methylpentane and 3-
methylpentane, and xylene isomers. In addition, this model has not yet been
extended to binary, ternary, and multicomponent mixtures, such as crude oils.

For comparison purposes, Figure 1(a–d) shows the performance of the two
studied viscosity methods, FVT and ES-LG, for four pure compounds representa-
tive of straight-chain alkanes (n-hexane), branched alkanes (2,2,4-
trimethylpentane), cycloalkanes (methylcyclohexane), and aromatics (toluene).

5. Conclusions

This work provides an assessment of the capabilities of two viscosity methods
based on the free-volume and entropy scaling theories to model the viscosity of
pure hydrocarbons over wide ranges of temperatures and pressures. The perfor-
mance of the two studied viscosity models is discussed and evaluated by compari-
son to experimental viscosity data of 52 pure hydrocarbons from four different
chemical families, namely, straight-chain alkanes, branched alkanes, cycloalkanes,
and aromatics, at ambient and extremely high-temperature and high-pressure
(HTHP) conditions up to 573 K and 300 MPa. The viscosity of pure components is

Figure 1.
Viscosity predictions obtained with FVT and ES-LG viscosity models compared with literature data (EXP) for
(a) n-hexane, (b) 2,2,4-trimethylpentane, (c) methylcyclohexane, and (d) toluene.
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required in most mixture models as an input parameter, and hence accurate and
reliable model for pure compounds, particularly under high-pressure conditions, is
a prerequisite for the mixture viscosity to be accurately estimated using the mixture
model. The predictive entropy scaling method proposed by Lötgering-Lin and Gross
(ES-LG model) predicts the viscosity with an overall absolute average deviation of
about 8%, and the predictions are reasonable for most engineering and industrial
applications given that the accuracy of most experimental viscosity data is within
1–5%. The free-volume theory (FVT) viscosity model provides very satisfactory
results with an overall AAD of 3%. However, it is important to note that unlike the
entropy scaling method, the free-volume theory is not a predictive model and
requires that sufficient experimental viscosity data are readily available over the
temperature and pressure ranges of interest to determine the fluid specific
parameters.
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