
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

18

Reconfigurable Virtual Instrumentation Design
for Radar using Object-Oriented Techniques

and Open-Source Tools

Ryan Seal and Julio Urbina
The Pennsylvania State University

USA

1. Introduction

Over the years, instrumentation design has benefited from technological advancements,
and, simultaneously suffered adverse effects from increasing design complexity. Among
these advancements has been the shift from traditional instrumentation, defined by a
physical front-panel interface controlled and monitored by the user; to modern
instrumentation, which utilize specialized hardware and provide interactive, software-
based interfaces, from which the user interacts using a general-purpose computer (GPC).
The term virtual instrumentation (VI) (Baican & Necsulescu, 2000) is used to describe such
systems, which generally use a modular hardware-based stage to process or generate
signals, and a GPC to provide the instrument with a layer of reprogrammable software
capabilities. A variety of instruments can be emulated in software, limited only by
capabilities of the VI’s output stage hardware. In more recent years, the popularity of
reconfigurable hardware (Hsiung et al., 2009), more specifically field programmable gate
arrays (FPGAs) (Maxfield, 2004), have revolutionized capabilities of electronic
instrumentation. FPGAs are complex integrated circuits (ICs) that provide an interface of
digital inputs and outputs that can be assembled, using specialized development tools, to
create customized hardware configurations. By incorporating FPGA technology into
traditional VI, the instrument’s capabilities are expanded to include an additional layer of
hardware-based functionality.
In this chapter we explore the use of such enhanced instruments, which are further
augmented by the use of object-oriented programming techniques and the use of open-
source development tools. Using low-cost FPGAs and open-source software we describe a
design methodology enabling one to develop state-of-the-art instrumentation via a
generalized instrumentation core that can be customized using specialized output stage
hardware. Additionally, using object-oriented programming (OOP) techniques and open-
source tools, we illustrate a technique to provide a cost-effective, generalized software
framework to uniquely define an instrument’s functionality through a customizable
interface, implemented by the designer. The intention of the proposed design methodology
is to permit less restrictive collaboration among researchers through elimination of
proprietary licensing; making hardware and software development freely available while
building upon an existing open-source structure. Beginning with section 2, the concept of a

www.intechopen.com

 Radar Technology

368

virtual instrument, its inherent properties, and improvements through reconfigurable
hardware will be discussed. Section 3 will cover object-oriented software design principles
and its application to instrumentation. Finally, section 4 will provide an application of these
techniques applied to radar instrumentation, where we present the design of a radar pulse
generator used to synchronize transmit and receive stages for the 430 MHz radar at the
Arecibo Observatory (AO).

2. Virtual instrumentation

In this section, an overview of VI and related concepts will be provided in conjunction with
an introduction to reconfigurable hardware and tools necessary for design.

2.1 Virtual instruments

VI, like traditional instrumentation, is used for systematic measurement and control of

physical phenomena; but, unlike its counterpart, VI contains additional software layer

which defines the VI’s functionality. This additional functionality is used to emulate

traditional instrumentation and is bounded solely by physical limitations imposed by the

instrument’s output stage hardware. A block diagram illustrating the virtual instrument is

shown in Figure 1. Popularity of VI has flourished in scientific and research-oriented

environments, largely driven by the necessity and ubiquitousness of general-purpose

computing. Many commercially available (Baican & Necsulescu, 2000) systems exist today

and all provide some form of modular, specialized hardware configurations to augment the

number of emulable instruments available to the user. These specialized hardware units

commonly utilize some form of analog-to-digital (A/D) or digital-to-analog (D/A) circuitry

combined with a standard interface to communicate information to and from the GPC.

Fig. 1. A block diagram illustrating the concept of the virtual instrument

2.2 Reconfigurable logic

Reconfigurable, or programmable, logic devices come in many forms including: simple

programmable logic devices (SPLDs), complex programmable logic devices (CPLDs), field

www.intechopen.com

Reconfigurable Virtual Instrumentation Design for Radar
using Object-Oriented Techniques and Open-Source Tools

369

programmable logic devices (FPGAs), application-specific integrated circuits (ASICs), and

application-specific standard parts (ASSPs). The general term, programmable logic device

(PLD), is used to describe both SPLDs and CPLDs, which contain coarsely defined groups of

logic, determined by the manufacturer, that can be customized by the end-user. These

devices are more beneficial for special-purpose hardware applications, and are typically

chosen when the design engineer has a well-defined set of specifications to work from, but

the potential for variability in specifications or the instrument's functionality exists. At the

opposite end of the programmable logic spectrum lies both ASICs and ASSPs. These devices

are also used in special-purpose hardware applications, but these applications require

stringent design specifications, allowing the design engineer to finalize and send the design

to a special-purpose ASIC/ASSP manufacturer. Any engineering changes made to an

ASIC/ASSP require retooling by the manufacturer, thus making this technology more costly

in design environments with variability. FPGAs fall somewhere between the more complex

CPLD design and the rigidness of the ASIC design, providing smaller groups of internal

logic that can be combined to create CPLD-like designs and even larger, complex designs

like that of the typical ASIC application. This amount of flexibility, combined with costs

much lower than ASIC design, and comparable to CPLDs, make the FPGA a strong

candidate for reconfigurable VI design.

In addition to these advantages, many FPGA vendors provide free software design tools

that can be used with many of the vendor’s low-cost devices, which are suitable for most VI

applications. FPGA designs follow a well-defined design structure, known as the design flow

(Navabi, 2006), which consists of several stages including:

1. Design Entry
In this stage the design engineer translates the design requirements into a language

recognized by FPGA vendor tools. There are several languages to choose from and the field

of FPGA language design is growing at a rapid rate. The five most common of these are: 1)

Verilog, 2) SystemVerilog, 3) VHDL, 4) SystemC, and 5) pure C/C++ (Maxfield, 2004).

Future trends appear to be moving towards higher-level (i.e. object-oriented) languages to

better accommodate the ever-growing size and complexity of FPGAs.

2. Design Validation
After entering the design, the design engineer must create a simulation test-bench to ensure

that the design entry functions as expected. A number of tools are available for test-bench

simulation, and, depending on the language used for design entry, many of these tools are

available in open-source, including: iverilog and gplcver for Verilog; ghdl for VHDL; and

SystemC.

3. Synthesis
The Synthesis stage compiles the given design entry into a bitstream file format that can be
used to program the device. Several sub-stages in the synthesis process optimize the design
to meet requirements using vendor-specific tools.
4. Post Synthesis Verification
During the synthesis stage, timing information and loading effects for each electrical

path in the design are collected. This information is contained in the bitstream file generated

at the final stage of synthesis and is used to perform secondary simulations to ensure

that timing delays and loading effects, not apparent in the design entry phase, are

understood.

www.intechopen.com

 Radar Technology

370

2.3 Reconfigurable virtual instruments

Combining the concepts presented in sections 2.1 and 2.2, an even more powerful form of VI

can be constructed, providing the designer with the ability to utilize a reconfigurable

hardware module to assist in time-critical applications or application-specific algorithms

(e.g. FFTs, image processing, filtering, etc...) more suitable for hardware-based platforms.

An illustration of reconfigurable virtual instrumentation (RVI) is depicted in Figure 2 along

with each component’s responsibilities. RVIs distribute the virtual instrument component

among the GPC and reconfigurable hardware module, with the partitioning ratio dependent

upon the application and the intentions of the design engineer. RVIs provide opportunities

for areas of instrumentation development unachievable using standard VI, due to the GPC’s

computational inefficiencies and scheduling delays inherent in GPC-based systems. High-

performance computing is now commonplace using GPC platforms assisted by

reconfigurable hardware (Bishof et al., 2008), with results often tens to hundreds of times

faster than equivalent multiprocessor systems. The benefits of such systems can also be

applied to radar-based problems, including computational problems and instrumentation

design; an example of the latter will be detailed in section 4.

Fig. 2. A block diagram illustrating the introduction of a reconfigurable hardware module to
enhance the basic VI concept.

3. RVI design methodology using a generic framework

In this section, additional specifications are given to the RVI definition provided in section
2.3 to further generalize the design and alleviate difficulties typically encountered in the
implementation phase. Furthermore, relevant details concerning principles of software re-
use and object-oriented principles will be discussed.
RVIs provide a basic instrumentation platform for a user to interface with the instrument
through a software interface, typically supplied by a Personal Computer (PC), which also
controls the reconfigurable hardware module and output stage hardware through a
common communication peripheral. Although useful, in this section we present a more
robust solution providing a stand-alone instrumentation core that can be customized to a
variety of applications, including radar instrumentation.

www.intechopen.com

Reconfigurable Virtual Instrumentation Design for Radar
using Object-Oriented Techniques and Open-Source Tools

371

3.1 Small form factor general-purpose computers

In recent years, GPC technology has become an imposing competitor to more traditional
standards (e.g. PC104 and Single Board Computers) in the embedded market, primarily due
to price/performance ratios, but also from the surge in small, custom hardware modules
supporting standard communication interfaces (e.g. PCI, Ethernet, USB 1.0/2.0). Small form
factor (SFF) GPCs provide four form factors, shown in Figure 3, suitable for compact, stand-
alone instrumentation. All SFF GPCS are commercial-off-the-shelf (COTS) products and

Fig. 3. Comparison of Small Form Factor Motherboards available today

incorporate standard peripherals, such as integrated video cards, keyboard/mouse
connections, USB 1.0/2.0, IDE connectors, RS-232, and 100Mbps Ethernet ports. These
systems are competively priced, provide impressive processing capabilities, and can be
readily replaced in the event of failure. Capitalizing on these factors, we propose a generic
RVI core that can be integrated into a standard rack-mount chassis; providing a packaged
instrument accessible directly by keyboard, video, and mouse; or remotely accessible using
an Ethernet-based communication protocol. The instrument provides a generalized
framework from which customizations can be made to meet specifications determined by
the designer. The overall design is intended to provide a packaged, customizable system,
that can operate in remote locations accessible to Internet. This concept is illustrated in
Figure 4

Fig. 4. An illustration of a reconfigurable virtual instrument with a remote interface.

www.intechopen.com

 Radar Technology

372

3.2 Software description and structure overview

Designing a generalized software framework conducive to customization is a crucial
component in VI designs. In this section, we will provide a framework for generic, object-
oriented interfaces that can be easily extended to meet requirements of custom applications.

3.3 Object-oriented programming and open-source software

Object-oriented programming, popularized in the mid 1980s, has long been considered a
method for managing ever-increasing software complexity through a structuring process
known as object-oriented decomposition (Booch, 1994). Objects, with respect to software design,
can be considered tangible entities providing an interface through which interactions take
place. The description, or definition, of the object is usually referred to as a class. In a
program, a class is instantiated to create an object. Details of these actions are hidden behind
the interface using a technique referred to as encapsulation, which separates the behavior of
the object from its interface. Concerning instrumentation development, we can use these
techniques to define software utilizing well-defined interfaces (Pugh, 2007), and then
subsequently define its behavior to emulate that of the instrument being designed.
An instrument is defined by its inputs, outputs, control parameters, and its function.
Mathematically, an instrument can be represented by

 (1)

where y is the output vector, x represents the input vector, and c is the control vector.

Design of the instrument requires definition of the instrument’s function T(⋅, ⋅) and c.
Additionally, careful consideration must be given to users of the instrument by ensuring
that the instrument’s control parameters use familiar terminology and provide expected
behavior. These criteria are typically provided in the instrument’s planning stages, known
as design requirements. Modern VI designs commonly use graphical user interfaces (GUIs)
to simplify the instrument’s input interface. Although useful, designs utilizing command-
line interfaces provide important advantages over GUIs, primarily relating to system
debugging, upgrades, and, in some cases, performance. In addition to these benefits, the
command-line system can be easily augmented to accommodate a GUI after completing the
initial design, which also removes the tendency for the designer to couple code describing
system functionality with the GUI framework, leading to difficulties when making
necessary revisions. For this reason, focus will be given to a command-line driven system.
To provide a generic framework for customization, the instrument’s design is divided into
two categories:

• Instrument configuration
Describes the instrument’s static configuration, which includes the instrument’s type
and its initial control parameter values.

• Instrument run-time operation
Defines the dynamic portion of the instrument, namely its dynamic command-set (e.g.
start, stop, reset, etc...) as well as control parameter values that can be changed
dynamically, while the system is in operation.

3.4 Instrument configuration design
The instrument’s configuration is defined by the user through a plain-text input file, either
located directly on the instrument, or, in the case of a remote-interface, the user’s local

www.intechopen.com

Reconfigurable Virtual Instrumentation Design for Radar
using Object-Oriented Techniques and Open-Source Tools

373

machine. Reasons (Hunt & Thomas, 1999) for using plain-text input files are numerous,
including:

• Universally understood by all Operating Systems (OS) and programming languages.

• Consists of printable characters interpretable by people with the use of special tools.

• Can be made more verbose, more representative of human language, thus making it
self-describing (i.e. no documentation required) and obsolescent-proof.

• Expedites debugging and development.

Fig. 5. Sample Human Interpretable File illustrating simplicity and ease of use.

This plain-text file is referred to as a Human Interpretable File (HIF) and contains a number
of parameters necessary to define the instrument and its configuration. These parameters
include, but are not limited to: instrument type, control parameters, FPGA bitstream file,
and, if necessary, the output stage hardware. An example HIF is shown in Figure 5. The HIF
structure and content are chosen at the designer’s discretion, but the instrument’s type must
be consistent, as it is required to load the proper interface for parsing and translating the
remaining portion of the file, which contain control parameters particular to the specified
instrument type. This interface is referred to as the Instrument Definition Interface (IDI) and
its responsibilities include:

• Contains the instrument’s control parameter specifications, which are used to verify
settings requested in the HIF.

• Formats the HIF into an intermediate format more suitable for use in the verification
and post-verification processes.

• Creates an Instrument Interpretable File (IIF) formatted for direct use by the
reconfigurable hardware.

Fig. 6. Block diagram illustrating the Instrument Definition Interface

A block diagram of the IDI is shown in Figure 6. The IDI, in terms of OOP-style
programming, defines an interface that accepts an input file and produces an output file.
The implementation details are coded by the instrument’s designer, who must provide a
customized instrumentation class that implements the IDI. The resulting output file, or IIF, is
structured to provide information concerning the required bitstream file, output stage
hardware, and a custom data structure directly readable by the reconfigurable hardware. A
sample IIF file is illustrated in Figure 7. As an example, a class diagram, depicted in Figure
8, is used to illustrate how a specialized instrument class implements the IDI. Additionally,

www.intechopen.com

 Radar Technology

374

Fig. 7. Sample Instrument Interpretable File illustrating structure.

Fig. 8. Block diagram illustrating the Instrument Definition Interface

the concept of inheritance can also be seen, where the WaveFormGenerator class is further

specialized into a RadarPulseGenerator class, which, in turn, is a derivative of the

WaveFormGenerator class. Several instrumentation classes can coexist in the RVI’s storage and

a particular class is chosen by the instrument type, which is defined by the HIF. It should be

noted that all information provided by the IDI is considered static information, meaning this

file is used to initialize the system; including the instrument’s type, the instrument’s control

parameters, and the FPGA bitstream file. These concepts are realized through creation of a

generator program, which is a command-line program used to read an HIF, validate its

inputs, and create an IIF readable by the run-time program described in section 3.5.

3.5 Instrument run-time operation design

After defining the instrument’s specifications and control parameters, a mechanism is

needed from which the user can select and load the virtual instrument and reconfigurable

www.intechopen.com

Reconfigurable Virtual Instrumentation Design for Radar
using Object-Oriented Techniques and Open-Source Tools

375

hardware definitions into the system. All information necessary to accomplish this task is

contained in the IIF, which was produced by the configuration program presented in section

3.4. These operational tasks are performed by the run-time program, which provides a

command-line interface through which the user interacts with the system. The run-time

program begins with a minimal interface, and, after the user chooses an IIF, this interface is

expanded to include functionality provided by the instrument described in the file. A

specialized helper class is used to parse the IIF, determine the instrument's type, and load

the specified Instrument Operating Interface (IOI) into the system. Next, the system

programs the reconfigurable hardware with a generalized bitstream file, whose purpose is

to retrieve identification information (e.g. reading an EEPROM device) from the output

stage hardware and verify compatibility with the user’s requested instrumentation type.

After verification, the system initializes the reconfigurable hardware with the bitstream file

provided in the requested IIF. Finally, the system can accept commands provided by the

loaded virtual instrument. A diagram illustrating this process is shown in Figure 9. Software

encompassing these concepts is referred to as the run-time program, which operates in a

shell environment incorporating a command-line user interface. As previously mentioned,

these concepts can easily be expanded to include a GUI-based display system, depending on

the user’s requirements.

Fig. 9. Block diagram illustrating the interactive run-time interface.

4. Implementation of a radar pulse generator

In this section, discussion of a specialized radar instrument, referred to as the radar pulse

generator (RPG), is developed using concepts defined in earlier sections. The sections that

follow will provide details of hardware components, software, and all tools necessary for

implementation. The RPG (Seal, 2008) was designed for use at AO and served as a starting

point for concepts developed in sections 2 and 3.

RPGs provide logic-level signals to control and synchronize a radar’s transmit and receive
stages in pulsed radar applications as shown in Figure 10. These pulses ensure the

www.intechopen.com

 Radar Technology

376

Fig. 10. Monostatic radar overview illustrating the pulse generator used to control both
transmitter and receiver.

transmitter operates within a safe regime while simultaneously controlling the receiver’s
sampling mechanism to record user-defined ranges. The transmitted pulse is given by

 (2)

where ω0 is the transmitter’s carrier frequency and m(t) is a periodic waveform that

modulates the carrier signal with pulse width δt and period Tt. For monostatic radars, a
pulse is transmitted, and after a specified delay, the radar switches into receive mode. The
RPG, in its most basic form, supplies the receiver’s gating circuitry with a periodic pulse

(gating pulse) of width δr and period Tt, as specified by m(t). The rising edge of δr represents
the first range sample r0. The radar’s received signal is given by

 (3)

where α is a generalized attenuation factor reflecting power loss in the returned signal, w(t)

represents additive noise, and τ is a specified delay determined by

 (4)

where r is the range in meters, and vp is the wave’s velocity in meters per second. In addition
to timing control between transmit and receive modes, the RPG must also generate the
transmitter’s modulating waveform m(t), which can potentially consist of moderately
complex pulse modulation patterns. The RPG’s design must accommodate a large number
of these patterns, as well as an efficient, user-friendly interface to create, modify, and store
them.

4.1 Hardware

Specifications for the design were taken from existing hardware in operation at AO and new
capabilities were suggested from the scientific staff. Primary suggestions included: an
efficient, easy-to-use interface for designing moderately complex bit patterns; the ability to
store and cycle bit patterns without clocking glitches; flexibility, with minimal hardware
modifications, to expand system functionality for new research as well as future needs; and

www.intechopen.com

Reconfigurable Virtual Instrumentation Design for Radar
using Object-Oriented Techniques and Open-Source Tools

377

the ability to monitor, configure, and control the system remotely. Given these specifications
and requirements, an RVI-based system, utilizing a GPC and COTS FPGA module, was
chosen, and a block diagram illustrating these components is shown in Figure 11.

Fig. 11. Block diagram illustrating radar pulse generator components.

Small form factor general-purpose computer
Remote configuration and control were an important aspect of the system; allowing
engineers to operate, diagnose, and monitor the instrument’s status from an off-site location
(e.g. home). To accomplish this, a small on-board computer, supplied with an Ethernet
interface, was chosen. The computer, a Mini-ITX form factor mainboard, depicted in Figure
12, contains a number of standard peripherals (e.g. USB, RS-232, video, etc...) commonly
found in PCs. The Linux Operating System was chosen for the design due to scalability and
availability of existing open-source tools (e.g. VNC, ssh, sockets) for remote access.

Fig. 12. VIA ML6000 Mini-ITX form factor mainboard

On-site system status
To assist on-site monitoring, debugging, and maintenance; a USB-controlled liquid crystal
display (LCD) was used. Software was written to display a number of parameters to
indicate the system’s operational state.
System power
The instrument’s mainboard and FPGA carrier are powered from a standard PC power
supply. Although smaller, more-efficient solutions were available, these supplies are more

www.intechopen.com

 Radar Technology

378

readily available and less costly to replace. LCD power is derived directly from the
mainboard’s USB interface, and output stage hardware is powered from the FPGA carrier. A
momentary pushbutton switch mounted on the rear panel is used to power the system.
FPGA module
For experiments requiring sub-microsecond timing, reconfigurability, and the ability to

produce lengthy bit patterns, a low-cost COTS FPGA module was chosen. The module,

shown in Figure 13, uses a consumer-grade Xilinx Spartan-3A FPGA and provides an on-

board clock oscillator and phase lock loop (PLL) circuitry. The module is controlled using a

USB 2.0 interface with greater than 32 MBPS downstream (GPC to FPGA) transfer rates and

nearly 18 MBPS upstream data rates. Verilog HDL was used for coding and verification was

performed using icarus and gtkwave. FPGA synthesis was performed using the Xilinx

Webpack development suite, which is freely available and supports a number of Xilinx

FPGAs. Further details of the FPGA code implementation is described in section 4.3

Fig. 13. XEM3001V2 Opal Kelly FPGA module

FPGA carrier
The FPGA carrier board was designed to provide both signal buffering and access using 20-

pin dual-header connectors. In total, 32 signal outputs, divided into two 16-bit ports labeled

PORTA and PORTB, are provided, along with external clock inputs, synchronization

sources, and an external trigger. These modifications allow the FPGA module to

synchronize with an external system clock, and provide precision timing through an on-site

atomic clock. A 256Kx16 SRAM module is mounted on-board, allowing PORTA to

optionally function as a dedicated SRAM controller. Additionally, PORTB can be dedicated

to use a quadrature 10-bit AD9761 DAC. A block diagram of the board is shown in Figure

14. Schematic capture, board layout, and overall design were completed using the GPL’d

Electronic and Design Automation software (gEDA), a popular open-source development

suite for schematic capture and printed circuit board (PCB) design.

Output stage hardware
The output stage hardware is composed of two boards, each providing 8 signals, to drive a
50-ohm coaxial transmission line using TTL-level signals. Each board mounts to the
instrument’s front-panel using BNC pcb-to-panel connectors and provides socketed ICs for
quick, in-field replacement. Power and signals are supplied from ribbon cables connected to
the FPGA carrier board’s 20-pin port connectors.

4.2 System design and operation

Software design consists of two independent programs: 1) the system’s generator program,
which is responsible for bit pattern creation and system configuration; and 2) the run-time

www.intechopen.com

Reconfigurable Virtual Instrumentation Design for Radar
using Object-Oriented Techniques and Open-Source Tools

379

Fig. 14. FPGA carrier board block diagram

shell, which allows the user to control the system via command-line. These programs follow
design approaches presented in sections 3.4 and 3.5 and all software was written using the
C++ program language (Stroustrup, 2000).
Generator program
The RPG is capable of producing any number of arbitrary, indefinitely repeatable, bit
patterns. Generation of such patterns must account for operating limits of the radar system,
and an effective, efficent entry method who use the system. To lessen complexity, the
approach discussed in section 3.4 was utilized by designing an HIF to store common system
parameters specific to the radar’s transmitter. These parameters are passed to the IDI, where
they are analyzed using a language parser. The parser translates the data into a bit-vector
format which passes through rule-checking and verification stages that contain custom-
defined transmitter specifications. If verification succeeds, an IIF is written to the system’s
hard drive; otherwise the system exits and reports the error to the user. This particular IIF
contains an ASCII-based structure of 1’s and 0’s, representing digital logic levels. The
FPGA’s bitstream file is configured to parse this structure and instruct the hardware of the
requested bit pattern sequence, clock source, and synchronization method.

Fig. 15. The Configuration Interface implements the Instrument Definition Interface.

Run-time shell program
After bit pattern generation and verification, a run-time shell program is used to operate the
instrument; communicating directly with the FPGA through a library-based interface
provided by the manufacturer. This library is free and currently available in the following
languages: C/C++, Python, Ruby, Matlab, and LabView. Although we present an
implementation using C++, any of these languages can be substituted to independently

www.intechopen.com

 Radar Technology

380

develop a customized system that may be more suitable for a particular development group,
depending on the developer’s experience and skill set. The program resides in the on-board,
Linux-based computer and provides the following control commands: 1) load and unload
any number of bit patterns; 2) start and stop the system; 3) request hardware status; 4)
switch bit patterns; and 5) select the desired clock and trigger source. Using a separate
thread of execution (i.e. multi-threading), system status is polled from the FPGA at a user-
defined rate (25 ms default) and an overall status is displayed on the instrument’s LCD.
Figure 16 illustrates an overview of program operation.

Fig. 16. Block diagram illustrating interaction between the user and the radar pulse
generator’s run-time shell.

4.3 HDL design and operation

Code for FPGA implementation was written in Verilog HDL and functionality was divided

into a number of small, well-defined modules designed to improve readability and alleviate

code maintenance. The Opal Kelly XEM3001v2 FPGA module, used in this design, utilizes a

Xilinx xc3s400 FPGA containing 400,000 gates, 208 I/O, and 288 kbits of on-board RAM.

Other features provided by the XEM3001v2 limit the potential number of I/O to 90.

Considering the system’s requirements, it was determined that the memory structure

implemented in the design and clock routing choices would be the primary factors

determining performance. Design of the FPGA module began with an analysis of

communication methods provided by the Opal Kelly library’s Application Programming

Interface (API). The Opal Kelly API operates using firmware to establish FPGA/PC

communication and a small HDL module integrates into the user’s FPGA design to provide

communication with the host API. For data transfers implemented in this design, two types

of communication were chosen: 1) multi-byte data transfers using the Opal Kelly PIPE

modules, and 2) simple status/control commands using the Opal Kelly WIRE modules.

Opal Kelly PIPE modules are designed to efficiently transfer a known number of 16-bit wide

integers between the host PC and FPGA module while the WIRE modules are more suitable

for controlling or monitoring a single 16-bit state. An overview of the FPGA’s HDL data

flow design is depicted in Figure 17 and a description of relevant modules is given in the

sections that follow.

InputControl module
This module was designed to act as a simple state machine and makes use of a single Opal
Kelly PIPE input module to transfer data into the FPGA. When data is present on the PIPE

www.intechopen.com

Reconfigurable Virtual Instrumentation Design for Radar
using Object-Oriented Techniques and Open-Source Tools

381

Fig. 17. Overview of FPGA HDL model and illustration of data flow from the module’s
input to output.

port, the InputControl module routes data to the proper memory buffer and maintains a
count of bytes transferred. When the proper number of bytes have been transferred, the
module sends a signal back to the host PC and returns to the idle state. The module also
communicates with other modules in the FPGA to perform synchronization and hand-
shaking internal to the system.
OutputControl module
After system initialization is complete (i.e. bit patterns are loaded), the user can send a start
command to the FPGA. This signal is sent to the OutputControl module and the first state of
the active buffer’s bit pattern is loaded onto the output ports. An internal state counter is
decremented at a rate determined by clock divider variable until the count reaches zero. At
this point, the next state is loaded onto the output ports and the state counter is initialized
with the new state count. When the process reaches the last state in the bit pattern, the
system checks for a switch or stop signal. The switch signal tells the module to switch buffers
and continue with the new bit pattern. Additionally, the host is alerted of the successful
switch and prompted to load a new bit pattern into the preload buffer. This dual-layer
buffering allows the system to cycle, glitch free, through any number of bit patterns without
delay. The stop signal will halt the module’s execution and go into an idle state. If neither
signal is present, the module will reload the first state in the current buffer and repeat the bit
pattern. Since this module monitors the switch signal, it controls the buffering system,
alternating the designation of preload and active buffers. The OutputControl module is
responsible for sending bit patterns to the output ports, incrementing through the states via
the state counter, and selecting the active and preload buffers, which change when signaled
from the PC using a command. Additionally, the module synchronizes the states to the user
selected source and implements a clock divider module for seamless switching of the state
machine’s operating rate.
ControlSignals module
The ControlSignals module relies on a 16-bit word that is responsible for controlling the

FPGA’s changeable states. The word uses 14 bits, with each bit controlling states on the

port’s input and output modules. The 2 remaining bits provide custom functionality specific

to the 430 MHz transmitter at AO. This behavior is easily customizable to match needs for

any system. Among the various controls are: 1) system start, 2) system stop, 3) switch

patterns, and 4) sync source selection.

StatusSignals module
Similar to the ControlSignals module, the StatusSignals module monitors the status of both
InputControl and OutputControl modules. This 16-bit word is read by the calling program as
often as necessary. Currently, the shell program creates a separate thread and reads the
status word at 25 ms intervals. The module’s primary function is to provide feedback to the

www.intechopen.com

 Radar Technology

382

PC and synchronize data transfers; preventing any aliasing of data buffers and providing
verification of the control commands sent the FPGA.
Results
System performance can be characterized in terms of resource usage, clock speed, and GPC-
to-FPGA communication rates. At the start of the design, specifications were given requiring
the FPGA module to accept 3 possible clock sources: an on-board oscillator and 2 external
clock sources. The on-board oscillator was provided by the FPGA module and is used for
isolated system debugging. The 2 external clock sources both required a maximum reference
frequency of 20 MHz, which specified a minimum pulse resolution of 100 ns (i.e. one half
the clock rate). The memory requirements were taken from the existing equipment and
specified by 4kx16 blocks for each port. Loading new bit patterns into the machine required
real-time scheduling and had to be scheduled precisely with the site’s clock reference (i.e.
atomic clock). After the initial design entry and functional verification, synthesis and
various optimizations were performed using the provided Xilinx Webpack tools. All of the
system’s timing requirements were met and clock inputs up to ≈ 68 MHz were achieved;
well above the specified 20 MHz clock rate. According to generated reports, approximately
25% of the FPGA’s resources were utilized. All available block RAM was allocated to
pattern storage and communication rates were limited by the 25 ms refresh rate imposed on
the status and control lines. The FPGA employed a dual-stage buffer to provide real-time
mode switching. Precision of the pattern switching was accomplished through

Fig. 18. Radar Pulse Generator prototype top view with component labeling

www.intechopen.com

Reconfigurable Virtual Instrumentation Design for Radar
using Object-Oriented Techniques and Open-Source Tools

383

synchronization with a 1 PPS timing signal derived from the on-site atomic clock. This
enabled the user to request a new pattern from the non-real-time run-time shell program, and
still maintain real-time scheduling requirements. Machining of the prototype took place in-
house at AO and the FPGA carrier and output stage hardware boards were sent to a
manufacturing facility. The device is contained in a 3U size rack-mount chassis and three
different views of the instrument are illustrated in Figures 18, 19 and 20.

Fig. 19. Radar Pulse Generator prototype front view with component labeling

Fig. 20. Radar Pulse Generator prototype rear view with component labeling

5. Conclusion

In this chapter, we have presented principles and techniques enabling the design and
implementation of high-speed, low-cost instrumentation employing COTS components and
reconfigurable hardware. Several open-source tools were introduced to provide viable
alternatives to expensive, proprietary software requiring maintenance fees and limiting the
ability to promote code sharing due to licensing restrictions. Emphasis was also given to
object-oriented programming techniques, which help reduce design complexity and

www.intechopen.com

 Radar Technology

384

promote software reuse through interface-oriented techniques. Finally, a radar-based
application was presented, demonstrating a number of concepts developed throughout the
chapter.

6. References

Baican, R. & Necsulescu, D. (2000). Applied Virtual Instrumentation,WIT Press, UK.
Bishof, C., Bucker,M., Gibbon, P., Joubert, G., Lippert, T.,Mohr, B. & Peters, F. (2008).

Advances in Parallel Computing, IOS Press.
Booch, G. (1994). Object-Oriented Analysis and Design, The Benjamin/Cummings

Publishing Company, Inc. Hsiung, P., Santambrogio, D. & Huang, C. (2009).
Reconfigurable System Design and Verification, CRC Press, USA.

Hunt, A. & Thomas, D. (1999). The Pragmatic Programmer, Addison-Wesley Professional,
USA.

Maxfield, C. (2004). The Design Warrior’s Guide to FPGAs, Newnes, USA.
Navabi, Z. (2006). Verilog Digital System Design, McGraw-Hill Publishing Companies, Inc.,

USA. Pugh, K. (2007). Interface-Oriented Design, The Pragmatic Programmers LLC.,
USA.

Seal, R. (2008). Design and implementation of a multi-purpose radar controller using
opensource tool, Proceedings of the IEEE Radar Conference 2008, Rome, May 2008, pp.
pp. 1–4.

Stroustrup, B. (2000). The C++ Programming Language, Addison-Wesley, USA.

www.intechopen.com

Radar Technology

Edited by Guy Kouemou

ISBN 978-953-307-029-2

Hard cover, 410 pages

Publisher InTech

Published online 01, January, 2010

Published in print edition January, 2010

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

In this book “Radar Technology”, the chapters are divided into four main topic areas: Topic area 1: “Radar

Systems” consists of chapters which treat whole radar systems, environment and target functional chain. Topic

area 2: “Radar Applications” shows various applications of radar systems, including meteorological radars,

ground penetrating radars and glaciology. Topic area 3: “Radar Functional Chain and Signal Processing”

describes several aspects of the radar signal processing. From parameter extraction, target detection over

tracking and classification technologies. Topic area 4: “Radar Subsystems and Components” consists of

design technology of radar subsystem components like antenna design or waveform design.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Ryan Seal and Julio Urbina (2010). Reconfigurable Virtual Instrumentation Design for Radar using Object-

Oriented Techniques and Open-Source Tools, Radar Technology, Guy Kouemou (Ed.), ISBN: 978-953-307-

029-2, InTech, Available from: http://www.intechopen.com/books/radar-technology/reconfigurable-virtual-

instrumentation-design-for-radar-using-object-oriented-techniques-and-open-so

© 2010 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

