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Chapter

Animal Models of 
Cardiomyopathies
Enkhsaikhan Purevjav

Abstract

Cardiomyopathies are a heterogeneous group of disorders of heart muscle that 
ultimately result in congestive heart failure (CHF). Rapid progress in genetics as 
well as in molecular and cellular biology over the past three decades has greatly 
improved the understanding of pathogenic signaling pathways in inherited cardio-
myopathies. This chapter will focus on animal models of different clinical forms 
of human cardiomyopathies with their summaries of triggered key molecules, and 
signaling pathways will be described.

Keywords: cardiomyopathy, heart failure, genetic mutation

1. From genetic abnormality to cardiomyopathy phenotype

It’s widely accepted that inherited cardiomyopathies are a group of hetero-
geneous diseases of heart muscle resulting from genetic alterations in cardiac 
myocytes, the chief contractile cell type in the heart [1]. The genes encoding 
proteins that build muscle cytoskeleton and contractile apparatus are responsible 
for a cardiomyopathy phenotype with distinctive morpho-/histological cardiac 
remodeling [2]. Further, disruption of particular genetic and protein networks and 
pathways may intersect with other intracellular and intercellular pathways and 
disturbances in molecular signaling. Apoptosis, necrosis, autophagy, and metabolic 
and arrhythmogenic fluxes—which may present as the sole features or as overlap-
ping signs of decompensated cardiac homeostasis—result in definitive forms of 
cardiac remodeling including fibrosis, cardiomyocyte hypertrophy, and atrophy. 
Typically, molecular signaling activates associated compensatory responses and 
cooperates with other modifiers such as genetic modifiers and environment, stress, 
or toxicity related that, in turn, may or may not influence the final cardiomyopathy 
phenotype. Alterations in cellular morphology and size, gene expression patterns, 
and metabolic shifts in cardiomyocytes initially compensate and maintain cardiac 
function in the subtle, preclinical stages of cardiomyopathy. Thus, inherited 
forms of cardiomyopathy, irrespective of the specific genetic or morpho-/clinical 
condition, may or may not present signs of a failing heart. Five types of inherited 
cardiomyopathies are distinguished based on clinical features: dilated cardiomy-
opathy (DCM), hypertrophic cardiomyopathy (HCM), restrictive cardiomyopathy 
(RCM), arrhythmogenic ventricular cardiomyopathies (ACM), and left ventricular 
noncompaction cardiomyopathy (LVNC) [3] as demonstrated in Table 1. DCM 
is characterized by left ventricular (LV) dilation and systolic dysfunction; HCM 
is characterized by LV hypertrophy with diastolic dysfunction; and RCM is 
accompanied by increased stiffness of the myocardium and dilated atria due to 
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diastolic dysfunction without significant hypertrophy [4]. Frequent and often life-
threatening arrhythmias and associated sudden cardiac death and progressive heart 
failure are the main hallmarks of ACMs [5], while myocardial hypertrabeculation, 
intertrabecular recesses, and thin compact LV wall are the characteristics of LVNC 
[6]. Sustained maladaptive remodeling due to pathologic genetic insult results in the 
development of decompensated cardiomyopathy when the failing heart is unable 
to keep up with the hemodynamic demands at all levels, from the molecule to the 
whole organism. When compensatory mechanisms fail, additional neuroendocrine 
signaling and other pathways are activated on an organ and whole organism level, 
leading to CHF. Cellular and molecular level alterations of end-stage cardiomyopa-
thy and CHF respond to irreversible cardiac remodeling with significant changes in 
membrane ion currents and intracellular Ca2+ metabolism, fibrosis, hypertrophic 
or atrophic remodeling, and cell death. Cardiac function is significantly depressed 
with depleted contractile force development and slowed relaxation [7].

2. Animal models of human cardiomyopathies

Translational comparative animal research is of considerable value in inherited 
cardiomyopathies, because animal models enable to explore and investigate the 
cellular and molecular pathology originating from the initial genetic assault but 
also may closely recapitulate the effects of cardiac remodeling culminating into a 
specific cardiomyopathy type seen in humans. Animal models carrying human gene 
mutations may not present clinical phenotypic signs of cardiomyopathy resembling 
the human disease until adulthood, supporting a temporal mechanism by which 
chronically altered cellular responses and cardiac remodeling lead to the clinically 
relevant phenotype.

2.1 Naturally occurring animal models of cardiomyopathy

Naturally occurring cardiomyopathy among small and large animals is com-
monly observed in canine and feline species [8, 9]. HCM is a common disease in pet 

Table 1. 
Clinical types of inherited cardiomyopathy and specific hallmarks of different types of cardiomyopathy.



3

Animal Models of Cardiomyopathies
DOI: http://dx.doi.org/10.5772/intechopen.89033

cats, affecting 10–15% of the pet cat population [10], while DCM is more typical in 
dogs [11]. The similarity to human HCM or DCM, the rapid progression of disease, 
and the defined and readily determined endpoints of feline HCM or in canine DCM 
make them excellent natural models that are genotypically and phenotypically 
similar to human heart muscle disease [12]. The Maine Coon and Ragdoll cats are 
particularly valuable models of HCM associated with myosin binding protein C 
(MyBP-C) mutations and even higher disease incidence compared to the overall 
feline population [13, 14]. In canine, mutations in genes such as dystrophin (DYST) 
in German Shorthaired Pointers [15], desmin (DES) and α-actinin in the Doberman 
[16, 17], titin-cap (TCAP) in Irish Wolfhounds [18], and striatin in Boxers [19] were 
reported to be associated with DCM. In addition, many naturally occurring porcine 
HCM and DCM have been described offering the useful models for translational 
research [20–22].

2.2 Genetically engineered animal models of cardiomyopathy

Experimentally, numerous small and large animal models including fruit fly, 
fish, rodents, rabbit, canine, pig, and other species have been developed to discover 
pathogenetic mechanisms involved in cardiomyopathy in the research field [23–25]. 
Characterization of the mechanisms of cardiomyopathies using the study of animal 
models is challenging owing to the complexity of disease-causing mechanisms and 
modulators of pathology [25]. Moreover, animal models are successfully used for 
genome-wide screening, assessing of cardiac phenotypes and disease symptoms, 
genotype-phenotype association studies, and drug discovery and development 
assays. The accessibility of transgenic (TG), knockout (KO) and knock-in (KI) 
murine models has, however, been one of the most successful approaches for 
studying genetic cardiomyopathies [26]. With recent advances in CRISPR/Cas9 
technology, researchers are able to achieve more effective and precise genome edit-
ing because of its simplicity, design, and efficiency over other traditional methods 
for genetic editing such as transgenesis and homologous recombination targeting 
techniques [27–29].

The lowest species that has typically been used for cardiomyopathy research is 
Drosophila melanogaster as a tool to study various developmental biological processes 
and mechanisms underlying congenital defects and inherited heart diseases [30, 31]. 
The Drosophila heart looks as a primitive linear tube similar to embryonic heart tube 
in vertebrates, and many heart development, function, and aging regulatory genes 
and networks such as NK-2, MEF2, GATA, Tbx, and Hand have been evolutionarily 
conserved. The conserved development of the heart in simple model organisms 
and vertebrates provides a unique ability to use many different animal models in 
cardiomyopathy research [32]. Important advantages of the use of animal models 
are the ability to manipulate gene expression and identify genes and mechanisms 
regulating heart development, cardiac pathology, and pathophysiology [33, 34]. 
Advanced systems to identify genes causing human cardiomyopathies such as UAS/
GAL4 [35], techniques for accurate phenotyping of cardiac diseases such as opti-
cal coherence tomography [36], powerful electrophysiological, mechanical, and 
histological approaches to characterize heart development, cardiac tissue properties, 
and structure in the Drosophila heart have emerged as a pioneering model system in 
basic, genetic, and molecular studies of cardiac development, function, aging, and 
disease [37]. Numerous Drosophila models have been used to elucidate the patho-
physiology of human HCM and DCM and other heart diseases, such as heart failure, 
cardiac tachycardia, atrial fibrillation, and congenital heart diseases [38–40].

The zebra fish (Danio rerio) model remains one of the most effective technolo-
gies for discovering and functional studying novel cardiomyopathy candidate 
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genes, especially the ability to use morpholino knockdown techniques in fish models 
[26, 41, 42]. Compared with other vertebrate models, the zebra fish embryos are 
transparent allowing genetic engineering approaches to apply fluorescent reporter 
transgenes with genetic fate mapping strategies combined with high-resolution, 
high-throughput microscopy imaging in vivo of the heart [43, 44]. The transparency 
of the embryos allows to observe fluorescent proteins that are expressed in various 
cell types of the cardiovascular system, and these research advances have opened 
avenues to improve our knowledge of regulatory mechanisms of cardiomyocyte and 
other cardiac cells’ differentiation [45, 46], regeneration [44], morphogenesis [47], 
drug effects and toxicity [48], and gene regulation [49]. The advancement in high-
speed video imaging and automated image analysis techniques including light sheet 
planar illumination microscopy not only allows to precisely monitor morphologic 
and functional characteristics such as heart rate, arrhythmias, and ejection fraction 
in zebrafish but also progresses our current understanding of the different types of 
cardiomyopathy.

Rodent models are the most used model species for cardiomyopathy research, 
including genetics, pharmacology, and long-term survival considering that rodents 
have a short gestation time, have the ability to be genetically manipulated to 
generate transgenic or mutant strains, and are easy to handle and house with low 
maintenance costs [24, 50]. In addition, a fact that mice have short life span allows 
investigators to generate genetic models in a shorter time period and follow the 
natural history of genetic diseases at an accelerated pace, enabling to rapidly launch 
proof-of-principle experiments and potentially translating and exploiting the 
results into human studies. Significant advantages to rodents as the species of choice 
can limit the murine data’s applicability to human cardiovascular function; there are 
significant differences between the mouse models and human disease presentation 
[25]. Rodents are phylogenetically farthest distant from humans compared to other 
mammals, and some pathophysiological features of cardiomyopathy phenotypes 
and their response to environmental stress and treatments may not be reliable for 
human diseases [23].

The rabbit and pig experimental models of cardiomyopathy offer significant 
advantages for cardiovascular research [50]. Compared with the mouse, the larger 
size and slower heart rate of the rabbit and pigs are advantageous for physiological 
analyses such as echocardiography and cardiac catheterization.

2.2.1 Hypertrophic cardiomyopathy animal models

Animal models of HCM mostly carry human mutations in sarcomeric pro-
tein-encoding genes such as a-MHC, a-tropomyosin, troponins, myosin binding 
protein C (MyBP-C), and other genes shown in Table 1 [51–55]. Many models 
carry cardiac-specific (CS) expression or ablation of the proteins of interest. 
These models have demonstrated that HCM mutations enhance contractile 
properties with increased force generation, ATP hydrolysis, and actin-myosin 
sliding velocity, showing that the hypertrophy is not a compensatory response 
to diminished contractile function [56–58]. Models of HCM also show abnormal 
Ca2+ cycling in cardiomyocytes before overt histopathologic changes occurred in 
the myocardium and delayed myocardial relaxation that occurs before the onset 
of hypertrophy, suggesting that diastolic dysfunction is a direct consequence of 
HCM mutations [59, 60]. Hearts from models of HCM progressively accumulate 
myocardial fibrosis in the same manner as human patients, and fibrosis is consid-
ered to be a cellular substrate for cardiac arrhythmias and sudden cardiac death 
in humans [61–63].
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2.2.2 Dilated cardiomyopathy animal models

Animal models of DCM mostly resemble human mutations in genes encod-
ing cytoskeletal, sarcomeric, and Z-disk proteins and present with ventricular 
dilation and thinning of the ventricular walls correlated with loss of heart muscle 
mass. In addition, functional changes in non-myocytes induce fibrotic scars that 

Table 2. 
Animal models of hypertrophic cardiomyopathy [51–58, 60–81].



Animal Models in Medicine and Biology

6

stiffen the heart tissue and impede normal cardiomyocyte contractility. Novel 
DCM mechanisms such as impaired Z-disk assembly, sensitivity to apoptosis 
and abnormalities in myofibrillogenesis under metabolic stress, protein folding, 
inhibition of protein aggregation, and degradation of misfolded proteins have 
been explored (Table 2).

Table 3. 
Animal models of dilated cardiomyopathy [82–112].
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2.2.3 Restrictive cardiomyopathy animal models

RCM is the least common but most lethal form of cardiomyopathy where 
impaired ventricular relaxation due to increased stiffness of the myocardium and 
pressure in the ventricles overcomes the changes in myofibrillar arrangement and 
cardiomyocyte gross abnormalities [113]. Animal models carrying human RCM-
associated mutations have also been generated to mimic human RCM phenotype. 
These mutations are identified mainly in sarcomeric protein-encoding genes such as 
troponins, myosin and MYPN (summarized in Table 3).

Table 4. 
Animal models of restrictive cardiomyopathy [67, 114–117].

Table 5. 
Animal models of arrhythmogenic ventricular cardiomyopathy [119–139].
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2.2.4 Arrhythmogenic ventricular cardiomyopathy models

Many models of ARVC with mutations in genes encoding desmosomal (DSP, 
PKP, DSC, DSG, and JUP) and non-desmosomal (RYR2, TMEM43, and ZASP) 
proteins have been developed [118]. Structural and functional alterations include 
progressive, diffuse, or segmental loss of cardiomyocytes, probably due to cardio-
myocyte apoptosis or necrosis, and replacement with fibrotic and adipose tissue 
(Table 4). Fibro-fatty tissue primarily is seen in the right ventricle (RV), with 
common LV involvement in later stages of the disease [119] (Table 5).

2.2.5 Left ventricular noncompaction cardiomyopathy models

Animal models of LVNC typically demonstrate a spongiform ventricular myo-
cardium and deep trabeculations, and many reports suggested that LV trabeculation 
and compaction processes are two distinct but tightly interconnected morphoge-
netic events resulting in the development of a functionally proficient ventricular 
chamber wall [140]. Animal models exhibiting LVNC phenotypes and potential 
pathogenetic mechanisms are summarized in Table 6.

3. Conclusion

Advances in molecular and genetic techniques have vastly improved the under-
standing of molecular mechanisms responsible for cardiomyopathies and cardiac 

Table 6. 
Animal models of left ventricular noncompaction cardiomyopathy [141–159].
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dysfunction. The wide range of innovative technologies and techniques used in 
animal models in vivo has led to advances in our knowledge on the etiology, patho-
physiology, and therapeutics of inherited cardiomyopathies. It is clear that mutant 
proteins in cardiomyocytes can perturb cardiac function whether the prime distress 
occurs in the contractile apparatus or neighboring cellular complexes, yet persistent 
cellular stress leads to tissue-, organ-, and organism-level pathology and patho-
physiology. However, development and investigation of animal models are complex 
processes and the outcomes of which could be difficult to translate to humans due to 
differences in human and animal cardiovascular anatomy and physiology as well as 
differing pathophysiology of human cardiomyopathies and experimentally induced 
diseases in animals [160]. Therefore, the choice of appropriate animal model(s) 
for cardiomyopathy research should utterly rely on clinical knowledge of human 
cardiovascular diseases, proper research questions, sufficient number of study 
animals, and correct and relevant interpretation of results and outcomes in animals 
to human population. Although animal models of human cardiomyopathies often 
represent incomplete or inaccurate pathological and pathophysiological features 
seen in humans, the use of animal models not only has improved our knowledge on 
the etiology and mechanisms of cardiac muscle diseases and therapeutic interven-
tions but also has greatly promoted an advancement in cardiac tissue engineering, 
induced pluripotent stem cells (iPSCs) technology, in silico and in vitro techniques, 
and preclinical assessment of drug discovery and development [161].
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