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Chapter

Empirical Mode Decomposition of
EEG Signals for the Effectual
Classification of Seizures

Fasil OK and Reghunadhan Rajesh

Abstract

Empirical mode decomposition (EMD) is a remarkable method for the analysis
of nonlinear and non-stationary data. EMD will breakdown the given signal into
intrinsic mode functions (IMFs), which can represent natural signals effectively. In
this work, the competence of EMD with traditional features to classify the seizure
and non-seizure EEG signals is studied. Due to the complex nature of human brain,
the EEG signals which are recorded from different regions of brain are non-
stationary in nature. Different features such as entropy features (approximate
entropy (ApEn), sample entropy (SmEn), Shannon entropy (ShEn), Rényi entropy
(RnEn)), fractal dimension features (Petrosian fractal dimension, Higuchi fractal
dimension, Katz fractal dimension), statistical features (mean, standard deviation
and energy) and exponential energy features are extracted from IMFs and fed to a
SVM classifier. The performances of extracted features are studied independently.
The result shows that, the EMD method is well suited for complex seizure EEG
signal classification.

Keywords: seizures, EEG, empirical mode decomposition, intrinsic mode functions

1. Introduction

Seizures are characterized as unexpected, unprovoked and uncontrolled explosion
of electrical impulses in brain [1]. During the seizure, the patient may experiences
changes in behavior, loss of consciousness, unusual movements and unusual feelings
[2, 3]. The recurrent and unprovoked seizure leads to epilepsy disorder which is a
prevalent neurological disorder. Epilepsy disorder will tamper the patients way of life
with social stigma, work productivity lose and premature death [4].

Electroencephalogram (EEG) is one of the traditional and easiest tool for the
identification and diagnosis of seizures [5]. The availability of EEG for common
people within their budgetary limits made it a typical method. Due to the sophisti-
cated nature of brain system, the EEG signals acquired from the brain are also
complicated. Automated analysis of EEG signals using modern signal processing
techniques might be effortless and precise for the diagnosis of seizures rather than
manual approach [6].

Out of modern signal processing techniques, empirical mode decomposition
(EMD) is one of the widely used techniques for the efficient interpretation of
signals and images. After the introduction of EMD by Huang [7] in 1998, several
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studies utilized the EMD for various applications. In Nunes et al. [8] used the EMD
for texture analysis and image filtering. They have used bi-dimensional EMD in
their method. In another work Zeng et al. [9] applied EMD for the effective classi-
fication of gait patterns between patients with Parkinson disease and healthy sub-
jects. In another work Hasan et al. [10] combined the deep learning methods with
EMD to classify cardiovascular disease. Xiwei et al. [11] utilized the advantages of
EMD in a wind speed prediction model, in which, authors used EMD for the
extraction of fluctuation features of wind speed data. Another important study by
Thilagaraj et al. [12] also used EMD for the identification of alcoholism.

The usefulness of the empirical mode composition for the effective understand-
ing of the EEG signal is proven in many works in the literature. In [13], authors
classified the level of autism severity from EEG with the help of EMD. They have
used artificial neural network for the classification of extracted feature from intrin-
sic mode functions (IMFs). Two-class motor imagery EEG signals are classified in
another important study based on EMD [14]. Similarly Gaur et al. [15] used multi-
variate empirical mode decomposition for the effective classification of multi-class
BCI by analyzing EEG signals.

In this work, we have studied the effectiveness of empirical mode decomposi-
tion for the classification of seizures by analyzing EEG signals. The filtered EEG
signals are segmented into 10 non-overlapping segments and decomposed into
IMFs using EMD. First four IMFs are used for the feature extraction. Various
features such as approximate entropy, sample entropy, Shannon entropy, Rényi
entropy, exponential energy, fractal dimensional features and statistical features
(mean, standard deviation and energy) are extracted from the IMFs. Support vector
machine (SVM) with RBF kernel is used for classifying the seizure.

The remaining sections of the paper are as follows. A short description of EMD
and algorithm is explained in Section 2. Section 3 explains the details of the dataset
used in this study and in Section 4; various feature extraction methods are men-
tioned. In Section 5 experimental setup and results are explained. A detailed discus-
sion of achieved results is given in Section 6 and Section 7 concludes the paper.

2. Empirical mode decomposition (EMD)

Empirical mode decomposition is a data-driven decomposition method proposed
by Huang et al. for the analysis of nonlinear and non-stationary data [7], which will
decomposes the signal into finite and smaller number of intrinsic mode functions
(IMFs). A non-stationary signal can be represented as sum of IMFs and each IMFs
should follow two conditions: (1) the number of extrema and number of zero
crossing of the IMFs should be equal or differ at most by one and (2) the mean value
of two envelopes defined by local maxima and local minima should be zero [16].

IMFs can be extracted from a signal through a iterative method known as
shifting process as follows:

1. Use cubic spline interpolation method to construct upper (e,,,,) and lower
(émin) envelops by connecting detected maxima and minima individually from
the signal x(2).

(6 'max T€min )

2.Calculate the mean m(t) = o=,

3.Extract the difference d(z) between signal x(z) and calculated m;(t),
d(t) =x(t) —m(t).
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4.Check whether d(t) is satisfying the IMFs basic conditions. Repeat step 1 to 3
until d(z) satisfying the IMFs conditions.

5.if d(t) satisfies IMFs condition once, define the first IMF as IMF; = d(t).

6.The next IMFs can be obtained by generating residue r(t) as 7(t) = x(t) — IMF;
and use these residue as the original data for the next iteration.

7.Iteration will stop when final residue is a function which cannot produce any
more IMFs or final residue is constant/monotonic function.

The original signal can be represented as the sum of all IMFs and final residual.

K
x(t) = Z[MF;’ + V]((l’) (1)

i=1

where IMF; is the ith IMF, K is the number of IMF and rx() is the final residual.

3. Dataset

A benchmark data set named as Bern-Barcelona EEG dataset is used in this
study. The dataset includes two class EEG signals such as focal and non-focal. Each
class contains 3750 pairs of signals. EEG signals in the focal class are collected from
the epileptic area of the brain and non-focal signals are collected from non-epileptic
area of the brain. The signals are 20 s duration with 10,240 samples in each. The
signals are sampled at 512 Hz sampling rate. In our study we have used 50 signals
from each class as did in many other studies [17-19].

4. Feature extraction

Feature extraction is one of the important tasks in any machine learning appli-
cation. An effective and unbiased feature will provide the best results. There are
several features, which are traditionally used for various EEG related studies.

Entropy features are widely used for the analysis of various non-stationary bio-
signals [20-22]. Different verities of entropy are introduced in past years. In this
work we have used four verities of entropy features, namely approximate entropy
(ApEn), sample entropy (SmEn), Shannon entropy (ShEn) and Rényi entropy
(RnEn). Among considered entropy features, approximate entropy introduced by
Pincus [23] is a good measure of complexity for non-stationary signals. One of the
study proposed by Hozinger et al. [24], extracted approximate entropy from ECG
time-series for better understanding of electrocardiogram (ECG) signals. Another
study by Ahmed et al. [25] utilized approximate entropy for surface electromyo-
gram (EMG) signal classification. Similar to [24], they also extracted approximate
entropy from direct signals with no transformation. Also, other entropy measures
such as sample entropy [27-29], Shannon entropy [30, 31] and Rényi entropy
[32, 33] are used in many studies.

Fractal dimension based feature are also got wide attention of researchers in
recent years. The fractal dimensions are better measures of complexity of a non-
linear or non-stationary data [35]. In this work we extracted three different fractal
dimension features such as Petrosian fractal dimension, Higuchi fractal dimension
and Katz fractal dimension. These measures are used in various EEG related studies
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in the literature. In a study of drowsiness detection [36], authors extracted
Petrosian and Higuchi fractal dimensions from EEG time domain signals. Similarly
in another work, Acharya et al. [37] extracted Katz fractal dimension with other
features for the classification of various sleep stages. We have also extracted one of
the newly introduced feature, namely exponential energy by Fasil and Rajesh [26].
Some of the statistical features (mean, standard deviation and energy) are also
tested in this work.

5. Experiments and results

In this work, seizure EEG signals and non-seizure EEG signals are classified by
decomposing the EEG signal into IMFs using empirical mode decomposition. The
frequencies beyond 60 Hz are irrelevant in the EEG analysis due to the non-
availability of proper information in higher frequencies [34]. A sixth order butter-
worth filter is used to remove frequencies beyond 60 Hz. The signals are further
segmented into 10 non-overlapping segments. Empirical mode decomposition is
applied on the segmented EEG signals and first four IMFs are obtained. Feature are
extracted from four IMFs and averaged across the segments. Support vector

EEG Signals _u

Butter-Worth Filter

\

Signal Segmentation

IMF 1 | IMF 2 IMF 3 IMF4 | IMF5| IMF®6

\ 4 \ 4 \/ Y Y

Feature Extraction

\
SVM Classifier

Seizure EEG Non-Seizure
EEG

Figure 1.
Block diagram of the proposed seizuve classification method.
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machine with RBF kernel is used for the classification task. An overall diagram of
the work is given in Figure 1.

The empirical mode decomposition produces six IMFs in total, though we have
considered only first four IMFs. The reason behind this selection procedure is the
non-availability of useful information in last IMFs. In this work we have extracted
various features such as approximate entropy (ApEn), sample entropy (SmEn),
Shannon entropy (ShEn), Rényi entropy (RnEn), Petrosian fractal dimension,
Higuchi fractal dimension, Katz fractal dimension, exponential energy from four
IMFs and statistical feature (mean, standard deviation and energy).
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Figure 2.
Focal EEG signals and six IMFs obtained from focal EEG signal.
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Sample focal EEG signal and IMFs obtained from focal EEG signals are shown in
Figure 2. Similarly sample non-focal EEG signal and IMFs obtained from non-focal
EEG signals are shown in Figure 3.

Each record in the dataset contains a pair of signals denoted as ¢’ and ‘’. EMD
applied on both signal separately and total 8 IMFs are obtained (4 from ¢’ and 4
from ‘y’). To investigate the ability of each feature to classify seizures, experiments
are conducted on all features individually. In classification task, the capacity of RBF
kernel in support vector machine is already proved in various seizure studies
[26, 34]. In this work we have used RBF kernel in support vector machine for the
classification task.
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Figure 3.
Non-focal EEG signals and six IMFs obtained from non-focal EEG signal.
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Feature Accuracy (%) Sensitivity (%) Specificity (%)
Shannon entropy 58 26 90
Statistical features 68 54 82
Higuchi fractal dimension 71 72 70
Sample entropy 73 83 60
Approximate entropy 75 82 68
Petrosian fractal dimension 75 68 82
Rényi entropy 79 82 76
Katz fractal dimension 80 88 72
Exponential energy 84 84 84
Table 1.

Results of various features extracted from the IMFs.
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Figure 4.
Boxplot of the extracted exponential energy feature of four IMFs of focal (green color box, labeled as F_IMF)
and non-focal (blue color box, labeled as NF_IMF) EEG signals.

We have used k-fold cross-validation with k& = 5 for testing the ability of
extracted features from IMFs. The results of the experiments are calculated with
three benchmark measures, such as accuracy, sensitivity and specificity. The mea-
sured results are tabulated in Table 1.

The results in Table 1 indicates that the features extracted from the IMFs of
empirical mode decomposition gives promising results. Among the tested features,
exponential energy feature provided better accuracy with 84%. A box-plot of
extracted exponential energy is shown in Figure 4. Katz Fractal Dimension also
provides better accuracy of 80% followed by Rényi entropy with 79%. Statistical
features and Shannon entropy gives less accuracy out of all. It is noted that Shannon
entropy giving very low sensitivity value and very high specificity, which indicates
that more number of seizure signals are miss-classified as non-seizure signals.
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6. Discussion

The study of EEG signals using empirical mode decomposition (EMD) gives an
insight into the effectiveness of EMD method to analyze EEG signal for seizure
classification. The features (includes four types of entropy features, three types of
fractal dimensions, statistical features and exponential energy) considered in this
work, produces better classification accuracy when it is extracted from decomposed
IMFs.

Empirical mode decomposition method decomposes the signals into various
intrinsic mode functions (IMFs). Since, IMFs carries more detailed information of a
signal, the features extracted from these IMFs leads to better classification.

Similar to EMD, discrete wavelet transformation (DWT) is a method, which
decomposes the signal into various sub-bands [38-40, 42]. Many EEG related
studies used DWT method for various analysis. Li et al. [41] combined DWT
method with envelope analysis for the effective feature extraction to classify epi-
leptic signal. In another work, Kumar et al. [42] extracted fuzzy entropy from the
sub-bands of DWT for seizure detection. Similarly Liu et al. [43], Mohammadi et al.
[44] and Silveira et al. [45] also used DWT method to analyze EEG signals for
various purposes. Though, EMD is more better than the DWT method.

A comparison of EMD method with DWT is also carried out in this work. The
same features which are extracted from the IMFs are also extracted from the DWT
sub-bands and classified with same classifier. A bar chart of the comparison of
classification accuracy is given in Figure 5. The comparison results show that the
EMD based feature produces better classification results than DWT based features.
EMD based method produced an average accuracy of 73.66%. In case of DWT the
average accuracy is 68%. Although, DWT methods shows a slight improvements in
results for approximate entropy and Shannon entropy features.
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Figure 5.

A comparison of classification accuracy between empivical mode decomposition (EMD) and discrete wavelet
transform (DWT). Red dashed vertical line indicates the average accuracy of all DWT features and green
dashed vertical line indicates the average accuracy of all EMD featuves.
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Among various entropy features, EMD-Rényi combination (79% accuracy) pro-
vides higher classification accuracy. Approximate entropy extracted from IMFs
produced an accuracy of 75%. Shannon entropy with EMD is not a good choice of
feature for epileptic seizure detection. The classification accuracy produced by
Shannon entropy is only 58%. Complexity of EEG data is the reason for less per-
centage of accuracy.

Three fractal dimensions (Petrosian fractal dimension, Higuchi fractal dimen-
sion, Katz fractal dimension) used in this work also produce promising results when
they are extracted from IMFs. In this study, EMD based Katz fractal dimension
produces higher (80%) classification accuracy than Petrosian (75%) fractal dimen-
sion and Higuchi (71%) fractal dimension.

EMD based statistical features did not produce promising results for classifica-
tion of epileptic EEG signals. But the results are comparatively better than the
features from time domain and DWT domain. The highest classification accuracy
(84%) reported in this study is with newly introduced exponential energy feature
by Fasil and Rajesh [26]. Exponential energy feature utilizes the detailed informa-
tion available in IMFs to classify epileptic EEG signals effectively. The achieved
results show the effectiveness of empirical mode decomposition (EMD) as major
step in epilepsy classification.

7. Conclusions

The scope of the empirical mode decomposition of EEG signals in effectual
classification of seizure is studied in this work. Four intrinsic mode functions
(IMFs) are obtained by applying EMD on filtered EEG signals. Widely used features
such as entropy features, fractal dimension features, statistical features and expo-
nential energy features are extracted and its discriminating power is studied. SVM
with RBF kernel is used for the classification task. Exponential energy feature
provided better results for the seizure classification.

Seizure identification is a challenging and risk bearing activity, which require
better accuracy. In future, authors will concentrate on improving the results by
incorporating other signal transformation methods with EMD.
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