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Abstract

As stated in the first part of this review, growth hormone (GH) acts on all organs and 
tissues, and untreated GH-deficient (GHD) patients suffer from several affectations 
occurring as a consequence of the lack of this key hormone. In the second part of this 
review, we will analyze the effects of GH on the liver, the kidney, the adrenal glands, the 
skeletal muscles, the bones, the hematopoietic system, the gastrointestinal system, and 
the adverse effects that may occur in these organs and systems in the GH deficiency not 
treated in children and adults. Apart from these, we conclude that GH is a co-hormone 
that seems to be necessary for the physiological actions of other important hormones in 
humans.

Keywords: GH deficiency, IGF-I, GH and liver, GH and kidney, GH and adipose tissue, 
GH and the hematopoietic system, GH and skeletal muscles

1. Introduction

GH, many times directly, and in other cases by cooperating with other hormones, or act-
ing through its own mediators, plays a role in the regeneration of the liver, in the develop-
ment and normal functioning of the kidney, in the amount of fat mass, in the development 
and maintenance of skeletal muscles, in the skeletal development and mineral acquisition 
in bones, and in systems as complex as the hematopoietic system and the immune system; 
in addition, the hormone is able to act at the gastrointestinal level and also on the adrenal 
glands. In this second part of this review, we will analyze the physiological effects of the hor-
mone on these organs and systems, as well as the consequences of its loss when it is untreated 
with replacement therapy.

© 2019 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



1.1. GHD and liver

The liver is an important organ, where the actions of GH take place. For instance, the loss of 
critical GH signaling pathways in mice with liver-specific knockouts leads these animals to 
share a common phenotype of hepatic steatosis [1–3], indicating that GH plays an important 
physiological role in hepatic triglyceride metabolism. Steatosis leads to hepatic degenera-
tion, which may be corrected by GH administration. A high prevalence of liver dysfunction 
has been reported in adult GHD patients [4], while GH-replacement therapy significantly 
reduced serum liver enzyme concentrations in these patients and improved the histological 
changes in their fatty liver [4–7]. Clinical reports in children have shown the same association 
between untreated GHD and liver steatosis [8–12], which is recovered after GH-replacement 
therapy. These effects of GH on liver repair are curious because the liver produces its own 
factor of regeneration: hepatocyte growth factor (HGF), first identified in the sera of 70% 
hepatectomized rats, as a mitogen of adult rat hepatocytes [13, 14]. Animal studies, using 
either anti-HGF antibody or c-Met gene destruction techniques, revealed that both the endo-
crine and paracrine effects of HGF are involved in liver growth after 70% hepatectomy and 
for recovery from hepatitis, respectively [15–18]. In spite of its liver production and its strong 
liver regenerative properties, it was found that in hypophysectomized rats, the responses of 
hepatic HGF gene expression and DNA synthesis to partial hepatectomy were accelerated 
by treatment with GH [19]. Whether GH stimulates the transcription of HGF or facilitates, it 
is not known, but our group found that GH is expressed in the liver of hypophysectomized 
rats subjected to partial hepatectomy and that this GH promotes the hepatic regeneration, 
directly or via HGF induction [20]. In this study, the analysis of the products obtained with 
the enzyme of restriction RsaI demonstrated that the hepatic GH gives origin to two bands in 
the expected molecular weight position (238 and 90 bp), identical to the bands obtained from 
pituitary rat GH [20]; see Figure 7 for this reference. From these data, it is clear that there is 
a hepatic expression of GH that contributes to, or determines, the high degree of regenerat-
ing ability of the liver, apart from playing important metabolic functions in this organ. As 
suggested above in the case of testis in GHD patients, it would be interesting to investigate 
whether the hepatic expression of GH exists or not in untreated GHD humans. In any case, 
GH-replacement therapy plays an important reparative function in non-alcoholic liver steato-
sis, and perhaps in other liver diseases (Figure 1).

1.2. GHD and kidney

GH exerts important effects on the kidney, affecting renal function and kidney growth. GHR 
mRNA expression has been found in rat kidney during fetal development and adulthood 
[21]. This GHR expression was found in all nephron segments, with the strongest signals in 
the distal convoluted tubule and the collecting duct and a very weak signal in the glomeruli 
[22]. GHR expression has also been found in human fetal kidneys as early as 8.5–9 weeks 
of gestation [23]. GHR expression was stronger in the outer medulla than in the cortex and 
remained similar at midgestation and after birth. The fact that weak staining was also found 
in immature glomeruli in early gestation but disappeared at later developmental stages [23] 

suggests that GH is involved in glomerular morphogenesis. The kidney expression of GHR 
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seems to be induced by GH because hypophysectomy reduces GHR mRNA levels in rat kid-
neys, whereas GH therapy restores them [21]. There is also renal IGF-I biosynthesis, as it 
has been demonstrated in dogs [24] and confirmed by the fact that GH treatment increased 
IGF-I mRNA levels in the kidney of hypophysectomized rats [25, 26]. This is the reason by 
which GHR knockout leads to small kidneys in mice [27], and compensatory renal hyper-
trophy is directly dependent on GH-induced IGF-I expression [28]. It has been suggested 
that for GH-mediated kidney mass stimulation hepatic IGF-I production was crucial, while 
renal production of IGF-I has little or no effects on kidney growth [29]. In any case, studies 
in rodents demonstrated the importance of the GH/IGF-I system in the growth of kidneys 
during ontogenesis and development; however, no data indicate that a defective GH-/IGF-I 
signaling plays a significant role on kidney growth in humans.

In humans, short-term treatment with GH increases the glomerular filtration rate (GFR) [30]. 
This GH action is due to an IGF-1-mediated decrease in renal vascular resistance, leading to 
increased glomerular perfusion [31–33]. In addition to increasing glomerular perfusion, GH 
and IGF-1 augment extracellular volume and plasma volume [34], thereby also contributing 
to increased glomerular filtration.

Figure 1. Effects of GH on the liver. Upper graph: There is GH expression in the normal liver (left), although this 
organ has its own regeneration factor (hepatocyte growth factor—HGF). Untreated GHD may suffer non-alcoholic 
liver steatosis (right), showing increased plasma levels of liver enzymes (transaminases); GH treatment recovers the 
damaged liver (blue arrows); and plasma liver enzymes come back to normal levels (red arrow). Lower graph: Untreated 
GHD patients cannot recover a normal liver in spite of the liver expression of GH and HGF, but GH treatment leads to 
regeneration of the damaged liver (blue arrows)—it is not known if this regeneration occurs because GH administration 
increases the hepatic expression of HGF or if it is due to a direct effect of GH on the liver.
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The GH-IGF-1 system is a modulator of renal tubular sodium and water reabsorption [34]. 
Many years ago, the sodium-retaining properties of GH have been demonstrated in rats [35] 

and normal men [36]. This effect, traduced in an increase in extracellular volume, is stronger 
in men than in women [37] and seems to be dependent on the activation of the renin-angioten-
sin-aldosterone system because it has been seen that GH induces a rapid increase in plasma 
renin activity and plasma aldosterone levels in normal men [38]. However, further studies 
demonstrated that plasma angiotensin II and aldosterone did not increase during a treatment 
with GH, but plasma levels of atrial natriuretic peptide fell significantly [39]. Later studies in 
healthy volunteers [40] and GHD patients [41, 42] demonstrated that GH exerts a sodium-
retaining effect that is independent of the renin-angiotensin-aldosterone system.

IGF-I has also antinatriuretic effects, as it has been seen in GHD children in whom the GHR 
is inactive because of Laron syndrome [43], and in healthy men [44]. Therefore, GH and IGF-I 
seem to act by different independent mechanisms in the retention of sodium by the kidney.

GH and IGF-1 are very important in the periods of increased bone formation, such as the 
growth stage, in which the phosphate metabolism must be well adjusted. As shown in almost 
60 years ago, GH treatment led to decreased urinary phosphate excretion and increased 
plasma phosphate concentrations in men [45]. This effect of GH on the retention of phosphate 
is due to an increase in the maximum tubular phosphate reabsorption rate, as demonstrated 
in normal men [30] and dogs [46], and it is independent of PTH [46].

Conversely, hypophysectomy and inhibition of pulsatile GH release in rats produce increased 
urinary phosphorus losses [47, 48]. This has also been observed in normal humans [49–51] 

and in GHD patients [52–54].

As it happens with phosphate, GH and IGF-1 play an important role in adapting calcium 
homeostasis to the increased demands during the period of juvenile growth with accelerated 
bone formation. GH and IGF-1 affect calcium homeostasis mainly through their effect on vita-
min D metabolism. GH stimulates calcitriol production in experimental animals [55] and men 
[56]; further investigations in mice and isolated cells showed that this GH action was mediated 
by IGF-1 stimulation of 1α-hydroxylase in the proximal tubule [57]. Chronic GH and IGF-1 defi-
ciencies are accompanied by significant changes in renal morphology and functions, as well as 
by altered body composition, osteoporosis with fractures, and an increased cardiovascular risk 
[58–60]. Several studies have analyzed kidney size in GHD human patients. After hypophysec-
tomy, kidney size fell by 20% after 5 months [61]. GH-untreated patients with Laron syndrome 
present larger ultrasonographic measured kidneys than control subjects when corrected for 
body surface area [62], but the kidney size is increased after long-term treatment with IGF-I 
[62]. GH treatment of adults with childhood-onset GH deficiency increases kidney length [63]. 
These effects of GH/IGF-I on the kidney are shown schematically in Figure 2.

The size of the kidneys in untreated GHD patients is lower than in normal people, but the 
administration of GH or IGF-I corrects this defect.

GH and IGF-1 deficiencies are associated with decreased glomerular filtration and renal 
plasma flow [64–66]. GH replacement therapy increased the GFR and renal plasma flow in 
some patients [64, 65] but it depends on the dose and duration of treatment. Treatment with 
IGF-I in patients with GH insensitivity also increases glomerular filtration [65].
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An ancient study in hypopituitary children and young adults showed an increase in total 
body volume, extracellular volume, and intracellular volume after 1 year of GH therapy [67]. 
Two clinical trials in GHD adults posteriorly showed beneficial effects of GH treatment on 
body composition, with an increase in lean body mass [68, 69].

It is well known that adult GHD patients present osteoporosis with a high risk of vertebral 
and femoral fractures. Low bone mass can be partially improved by GH replacement [70–73] 

because GH therapy in GHD adults causes a transient increase in plasma calcium concentra-
tions and urinary calcium excretion, which usually lasts between 3 and 6 months.

GH treatment increases plasma phosphate concentrations in GHD children [73, 74] and adults 
[52, 53, 75]. In contrast to plasma calcium concentrations, this increase in plasma phosphate 
persisted during 12–24 months of GH therapy [53, 73–75], while urinary phosphate excretion 
was decreased.

Figure 2. GH effects on the kidney. It is possible that GH participates in the early stages of the development of the 
kidneys by inducing glomerular morphogenesis. GH administration increases glomerular filtration rate, in this effect also 
participates GH-induced IGF-I, although the effects of both hormones on the glomerular filtration rate are independent. 
GH and IGF-I increase the retention of Na+, by decreasing its renal excretion. GH also increases the reabsorption of 
phosphate, while untreated GHD patients present an increase in the excretion of phosphate. GH also induces an increase 
in the intestinal absorption of Ca2+, but this effect is mediated by IGF-I, which leads to the formation of Calcitriol.
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These data show the importance of GH on a normal renal function, although most of its effects 
at this level are mediated by IGF-I. Disordered regulation of the IGF system has been impli-
cated in a number of kidney diseases. IGF-I activity is enhanced in early diabetic nephropathy 
and polycystic kidneys, whereas IGF-I resistance is found in chronic kidney failure. Moreover, 
IGFs have a potential role in enhancing stem cell repair after a kidney injury [76].

Importantly, children with chronic kidney disease have growth failure that can be treated 
with GH improving growth velocity without adverse side effects [77, 78].

For more detailed information about the effects of GH on the kidney, see [79].

1.3. GHD and adipose tissue

GH is defined as a lipolytic hormone. Untreated GHD children and adults usually present an 
increase in fat mass [80, 81], preferentially visceral fat; this has been attributed to the fact that 
GH inhibits lipid storage in adipose tissue by increasing the activity of hormone-sensitive 
lipase, an enzyme that plays a key role on lipolysis [82, 83], and by decreasing the inhibiting 
effect of insulin on hormone-sensitive lipase activity [83], although positive changes in the 
secretion of certain adipokines, such as adiponectin, have also been suggested as mediators of 
the increased adiposity in GHD states [84]. The adipose tissue is an endocrine organ that pro-
duces several hormones and cytokines that exert autocrine, paracrine, and endocrine effects. 
Two of these hormones, leptin and adiponectin, play very important roles in the organism. 
For instance, leptin is the hormone of satiety, released from adipocytes in response to food 
intake, and it is correlated with total fat mass. Its function, acting on its receptors in the arcu-
ate nucleus of the hypothalamus, is related to decreasing food intake and increasing energy 
expenditure; conversely, adiponectin is negatively correlated with fat mass and acts as an 
insulin-sensitizing hormone [85]. Although it would be expected that GH effects on adipose 
tissue would be different in terms of leptin and adiponectin secretion, it has been seen that, 
in fact, these effects are negatively correlated with the release of both hormones from adipo-
cytes. For example, in Laron syndrome, there is a marked obesity and adiponectin hyperse-
cretion that does not change during long-term IGF-I treatment [86]. In any case, usually GH 
therapy reverts the increased adiposity existing in pituitary GHD children and adults [80, 81], 
therefore confirming the relationship between GHD and increased fat mass. Recent publica-
tions describe that in addition to its effects on the adipose tissue, GH also acts as a starvation 
signal that alerts the brain about energy deficiency, triggering adaptive responses to keep a 
minimum of energy deposits. This mechanism takes place at the central level by activating 
hypothalamic agouti-related protein neurons (AgRP) [87]. Figure 3 shows how GH acts in the 
adipocyte.

Among other factors, since GH secretion decreases progressively from puberty, it is likely 
that the increase in body fat that is generally observed as we get older is related to deficient or 
insufficient secretion of GH. For a more detailed review of GH and the adipose tissue, see [85].

1.4. GHD and skeletal muscles

The GH-IGF-1 axis represents an important physiological mechanism to coordinate hypertro-
phy and postnatal skeletal muscle expansion. Both in normal rats and adult-onset GHD human 
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patients, the administration of GH improves muscle strength and reduces body fat [88–90]. GHR-
deficient mice have reduced muscle mass with defective myofiber specification and growth [91]; 
in skeletal muscles lacking GHR, there is a decrease in the size of myofibers, while the number 
of myofibers is normal. The administration of GH increases myonuclear number, facilitating the 
fusion of myoblasts with nascent myotubes, a mechanism mediated by the transcription factor 
NFATc2; however, during a time, it has been discussed if the positive actions of GH on muscle 
mass would be restricted to inducing enhanced uptake of amino acids by muscle, while the 
effects on muscle protein synthesis, and consequently the increase in muscle mass, would be 
dependent on GH-induced IGF-I expression, mediated by STAT5b. In fact, recent in vitro studies 

indicate that treatment of primary myoblasts with GH quickly increases IGF-I mRNA, while 
administration of IGF-I leads to a significant increase in primary myoblast proliferation [92]. 
Therefore, the role of GH on muscle would be dependent on its induction of production of IGF-I 
by myoblasts, and IGF-I would then be responsible for stimulating myoblasts proliferation in an 
autocrine manner. The real thing is that GH and IGF-I induce a hypertrophic effect on skeletal 
muscles by different signaling pathways, and their effects are additive (Figure 4). The disruption 
of GHR in skeletal muscle and the consequent histomorphometric changes in myofiber type and 
size and myonuclei number result in functionally impaired skeletal muscle. In agreement with 
these effects, the histology of muscles of untreated GHD patients is strongly altered, and glucose 
and triglyceride uptake and metabolism in skeletal muscle of GHR mutant mice are affected.

Figure 3. GH effects on fat mass. There are GHR in the membrane of adipocytes. After interacting with endocrine GH, the 
activity of the lipase (blue arrow) is increased leading to increased lipolysis. In addition, GH-GHR interactions lead to the 
inhibition of lipase activity (red arrow) induced by insulin. This insulin-inhibiting lipase activity is enhanced by adiponectin 
(blue arrow), a hormone secreted by adipocytes and responsible for increasing fat mass. In untreated GHD patients, there is 
hypersecretion of adiponectin. This is the reason by which these patients show excessive fat mass. In addition, GH acts on 
hypothalamic neurons that express AgRP, stimulating its production to alert the brain about energy deficiency.
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In humans, a single bolus of GH induces gene expression of regulators of substrate metabo-
lism and cellular growth of skeletal muscle in vivo. Some of these genes, such as GISH gene, 
seem to be directly induced by GH; however, other genes, such as ANGPTL4 gene [93], seem 
to be expressed in relation to the subsequent increase in free fatty acid levels induced by 
GH-dependent lipolysis (Figure 4).

These results agree with the role that GH plays on lipid metabolism. With regard to the 
putative effects of GH on muscle strength, GH use has been speculated to improve physical 
capacity in subjects without GHD through stimulation of collagen synthesis in the tendon and 
skeletal muscle, which leads to better exercise training and increased muscle strength. In this 
context, the use of GH in healthy elderly should be an option for increasing muscle strength. 
However, a clinical trial showed that after 6 months of therapy, muscle strength in the bench 
press responsive muscles did not increase in groups treated with GH (no GHD) or placebo and 
showed a statistically significant increase in the leg press responsive muscles in the GH group. 

Figure 4. GH effects on skeletal muscle. 1: GH induces IGF-I expression in myoblasts. In turn, IGF-I leads to the 
proliferation of these myoblasts and produces muscular hypertrophy. The effects of GH and IGF-I are additive. 2: GH 
induces cellular growth in skeletal muscles by different mechanisms. One of them is due to the effects of GH on gene 
expression of regulators of substrate metabolism and cellular growth of skeletal muscle, such as GISH; other depends 
on the GH-induced lipolysis, which leads to increased levels of free fatty acids in plasma (FFA), and these stimulate 
the expression of ANGPTL4 gene that acts directly on the cellular growth. In addition, GH inhibits the expression of 
muscular myostatin, a negative regulator of muscular growth; however, this last effect has been questioned recently. 3: 
According to the GH/IGF-I effects on skeletal muscles, untreated GHD patients have decreased muscular power, but this 
is corrected with GH treatment. Blue arrows, stimulation; red arrows, inhibition; >, increase; <, decrease.
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The study demonstrated an increase in muscle strength only in the lower body part (quadri-
ceps, for instance) after GH therapy in healthy men [94]. Therefore, GH administration does 
not provide significant improvements in increasing muscle power, except when GHD exists.

Of interest, sarcopenia appears while aging or after a prolonged immobilization. Although 
most likely this is a multifactorial process, a predominant role is played by myostatin, a mus-
cular hormone that inhibits cell cycle progression and reduces levels of myogenic regulatory 
factors, thereby controlling myoblastic proliferation and differentiation during developmental 
myogenesis, as we and others demonstrated [95–97]. GH-induced muscular expression of the 
IGF-I-Akt–mTOR pathway, which mediates both differentiation in myoblasts and hypertrophy 
in myotubes, has been shown to inhibit myostatin-dependent signaling. Blockade of the Akt–
mTOR pathway, using siRNA to RAPTOR, a component of TORC1 (TOR signaling complex 1), 
facilitates the inhibition by myostatin of muscle differentiation because of an increase in Smad2 
phosphorylation [98]. Therefore, GH administration in these conditions of muscle wasting may 
be useful for recovering muscle mass at expenses of inhibiting myostatin signaling. However, 
a more recent study challenged these concepts, demonstrating that GH treatment in GHD did 
not reduce the previously elevated levels of myostatin in plasma and skeletal muscle [99]. These 
authors conclude that GH treatment is less effective than higher weight-based diets in increasing 
skeletal muscle mass. Independently of it, the role of GH/IGF-I in skeletal muscle is key and clear.

1.5. GHD and bone

The actions of the GH–IGF-I axis in the growth plate to promote longitudinal growth are 
already well known [100], but these are not the unique effects that the GH/IGF-I system 
plays at the bone level. This axis also regulates skeletal development and mineral acquisi-
tion [101]. Mouse models with disruptions of GH–IGF-I axis present a clear deterioration 
in parameters of bone health, dependent on GH-induced IGF-I expression, which increases 
bone mineral density [102]. Apart from GH, other GH-independent mechanisms regulate 
bone IGF-I expression, for instance, parathormone (PTH) [103]. Experimental mouse models 
reveal that osteoblast-derived IGF-I is a key determinant of bone mineralization. Targeted 
osteoblast-specific overexpression of Igf1 via the osteocalcin promoter produced a phenotype 
of increased bone mineral density and trabecular bone volume [104], whereas knockout of the 
gene in bone (and muscle) but not liver via Cre recombinase expressed by the collagen type 
1α2 promoter included a phenotype of reduced bone accretion [105].

In summary, although the effects of GH at the bone level are mainly related to the longitudi-
nal growth of the organism before the end of puberty, and its effects are mediated by the local 
production of IGF-I, it cannot be discarded that GHD, both pathological and physiological (as 
it happens in aging), may play a role in the development of osteopenia/osteoporosis.

1.6. GHD and hematopoietic and immune systems

GH seems to play a role in the regulation of the hematopoietic system, being involved in the 
normal differentiation and function of blood cells [106]. GH increases plasma erythropoietin 
(Epo) levels and Hb in adult GHD patients [107] and increases plasma granulocyte-colony stim-
ulating factor (G-CSF) levels and neutrophil counts in adult GHD patients [108] (Figure 5(1)). 
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Another study carried out in GHD patients treated with GH showed that the treatment signifi-
cantly increased erythrocytes, Hb, and hematocrit and led to the recovery from anemia (typical 
of GHD patients during childhood), without affecting the number of leukocytes or platelets 
[109]. In all, these data indicate that GH exerts a positive role on the hematopoietic system, 
similar to that played by G-CSF [110]. Circulating levels of G-CSF are significantly lower in 
GHD than in non-GHD children, although in non-GHD children, the number of red blood 
cells, Hb, and hematocrit values significantly increased after 1 year of GH treatment [106]. 
Interestingly, unpublished data from our group indicate that short-term GH administration 
exerts the same effect on the hematopoietic system than G-CSF in 12-year-old Beagle dogs.

In the last years, it has been postulated that GH has a strong influence on the immune sys-
tem. The production and action of immune cell-derived GH are now well known, although 
its important role in immunity is still being unveiled. Cells of the immune system express 
GH, GHRH, IGF-I, and its receptor, who through autocrine/paracrine and intracrine, but also 
endocrine, pathways, play a role in the immune function [111] (Figure 5(2)). The intracellular 
mechanisms of action of immune cell-derived GH are not well known, but, for instance, GH 
promotes the maturation and activation of dendritic cells that, as antigen-presenting cells, 
participate in the immune response of the organism [112].

There is GH production in lymphocytes; this GH is important for lymphocyte growth, survival, 
and production of cytokines [113–121]; therefore, lymphocyte GH may be an important media-
tor of cellular immune function mediated by the TH-1 pathway [122]. Lymphocyte GH appears 
to stimulate IFNγ production with a small positive effect on IL-10 production [122]. Treatment 
of rat lymphocytes with a specific GH antisense oligodeoxynucleotide decreased the amount 
of lymphocyte GH synthesized and, at the same time, reduced lymphocyte proliferation [113], 
what confirms the production by lymphocytes of the hormone and its effects on these cells, 
which is inhibited by noradrenaline and cortisol. However, it is likely that some of the effects of 
lymphocyte GH are due to GH-induced IGF-I production. In fact, IGF-I has also been found in 
lymphocytes, and studies using neutralizing antibodies to GH found that the number of cells 
positive for IGF-I decreased two-fold. This indicated that endogenously produced GH induces 
the production of IGF-I by lymphocytes [114]. Consequently, it seems that lymphocyte GH acts 
as an intracrine hormone [123]. It has been shown that overexpression of GH in a lymphoid cell 
line, devoid of the GHR, decreases the production of superoxide and increases the production 
of nitric oxide and the expression of IGF-I and IGF-IR, resulting in protection from apoptosis by 
a mechanism most likely involving an increase in the production of BcL-2 [115–118].

In all, it seems that there is a complex intracrine/autocrine regulatory circuit for the produc-
tion and function of leukocyte-derived GH and IGF-I within the immune system. Therefore, 
this circuit could fulfill local tissue needs for these hormones independent of the pituitary 
or liver without disrupting homeostasis of other organ systems. For example, cells of the 
immune system would recognize the association of bacteria, virus, and tumors as an oxida-
tive stress event and signal the release and transport GH, or different GH isoforms generated 
into the cytoplasm, and GHR into the nucleus. Once in the nucleus, GH-GHR would be free to 
influence transcriptional responses to the stress event and to defend the cell against oxidative 
damage. The results from a study by Weigent [124] support the concept that changes in the 
cellular redox status influence the intracellular levels of lymphocyte GH, which may exert 
effects on elements mediating the oxidative stress response.
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A very recent study indicates that GH treatment in GHD children led to some positive changes 
in the cellular and humoral immune profiles [125]. These data are similar to former results 
obtained after GH treatment in adults with childhood-onset GHD [126] and to more ancient 
studies in children with idiopathic short stature being treated with GH [127], although other 
study did not show changes in the immune function or immune parameters in GHD children 
after being treated with the hormone [128].

1.7. GHD and gastrointestinal functioning

Untreated GHD is associated with metabolic inflammation that usually is decreased when GH 
treatment is given [129]. However, situations of systemic inflammation, such as inflammatory 
bowel diseases (IBD), may induce GH resistance because inflammation negatively affects GH 
signaling. The GHR is expressed in the intestine [130, 131] for responding to GH signaling 
and enhancing the intestinal barrier function and mucosal healing [132, 133]. STAT5b, a key 

Figure 5. (1) GH plays an important role on hematopoiesis. This is the reason by which untreated GHD patients present deficits 
in the number of red blood cells, Hb, and hematocrit. Curiously, in these patients, there are also decreased plasma levels of EPO 
and G-CSF. GH administration normalizes these deficits (blue arrow) and increases plasma levels of EPO and G-CSF. (2) GH 
is expressed in cells of the immune system, as it happens with IGF-I and its receptor IGF-IR. There is also expression of GHRH, 
but its role in these immune cells is unknown. In all, these expressions contribute to increase immunity, and GH, particularly, 
increases the growth and survival of lymphocytes and the production of cytokines. Endocrine GH induces the activation and 
maturation of dendritic cells, the antigen-presenting cells. Therefore, GH and its mediators play an important role in immunity.
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mediator of GH effects in the cells, maintains colonic barrier integrity by modulating the 
survival of colon epithelial cells; this is the reason by which STAT5b-deficient mice present 
increased susceptibility to develop colitis. In addition, GH enhances epithelial proliferation. 
However, the expression of GHR in the colon is reduced in patients with ulcerative colitis [134], 
which favors the development of resistance to the beneficial effects of GH on the function of the 
intestinal barrier. According to these data, it is likely that GHD patients may suffer intestinal 
dysfunctions. An example of it might be the relatively elevated prevalence of GHD in children 
suffering coeliac disease, although this disease is a genetically determined gluten-sensitive 
enteropathy.

1.8. GHD and adrenal glands

The system GH/IGF-I also plays a role in adrenal glands. In rats, we demonstrated that the com-
pensatory adrenal hypertrophy that follows a unilateral adrenalectomy seems to be mediated by 
adrenal GH expression [135]. GH and IGF-I enhance steroidogenesis responsiveness to ACTH 
in cultured adrenal cells and adrenal steroid responsiveness to ACTH increases in Turner syn-
drome after long-term treatment with high GH doses [136]. GH is an important modulator of the 
activity of 11β-hydroxysteroid dehydrogenase type 1 enzyme in the adrenal gland [137], as indi-
cated by the fact that plasma DHEAS levels are significantly lower in GHD patients (even in the 
patients with normal ACTH secretion) than in age-matched controls. GH replacement therapy 
in these GHD patients significantly increases DHEAS plasma levels. This suggests that if there 
is a normal secretion of ACTH, GH stimulates adrenal androgen secretion in GHD patients. 
Conversely, GHD patients present an increased cortisol/cortisone ratio, and GH replacement 
therapy reduces the increased cortisol production [138]. However, in normal subjects or labora-
tory animals, the stimulation of adrenal steroidogenesis by GH seems to be restricted to the fetal 
period [139]. Years ago, it was demonstrated that GHR is strongly expressed in the ovine fetal 
adrenal gland [140], but GH infusion did not affect plasma steroid levels. This suggested that the 
steroidogenic effects of GH may depend on the gestational age, at least in the ovine fetus.

In all, besides from the putative effects of GH on adrenal steroidogenesis, the hormone may 
also play a trophic regenerative role on the adrenal glands.

1.9. GHD and other effects of GH

In addition to the well-known metabolic effects of GH, and the effects of the hormone on virtu-
ally all organs and tissues of the body, reviewed previously, untreated GHD patients present 
some other alterations. For instance, blood pressure is higher in GHD children and adults than 
in normal controls [141]. This specially affects the systolic blood pressure; moreover, since GHD 
is associated with increased obesity, both factors contribute to increase the risk of future car-
diovascular affectations. Quality of life and psychosocial behavior are affected in GHD children 
and adults [142], usually they are more susceptible to suffer from depression, fatigue, and less 
physical activity, and all these are improved after GH treatment [143]. GH is also a key modula-
tor of neonatal hypersensitivity and pain-related behaviors during developmental inflamma-
tion. It has been found in rats in which the GHR had been deleted that there was behavioral and 
afferent hypersensitivity to different stimuli, mainly during early developmental stages [144]. 
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This led the authors to postulate that GH treatment might be a therapeutic weapon for pedi-
atric pain. Regarding the effects of GH at the brain level, it has been recently shown that GHD 
mainly affects the brain network involving the somatosensory, somatic motor, and cerebellum 
networks, which may contribute to the behavioral problems existing in GHD children [145].

2. Conclusions

As it has been analyzed throughout this review, GH and its mediators play a very important 
role in practically the entire human organism, already from the early stages of development. 
This role goes far beyond than the classical concepts attributing to the hormone a merely 
metabolic role and an effect on longitudinal growth. Besides the pituitary production of GH 
that acts as an endocrine hormone, there is a peripheral production of GH that acts in auto-
crine/paracrine and even intracrine in the cells, which produce it. As a consequence of its 
physiological actions, the deficit of GH or its receptor leads to very important affectations. 
Consequently, GH replacement therapy improves the affectations occurring in GHD patients 
and their quality of life. Since GH secretion declines progressively from 20 years of age until 
being practically undetectable from 50 years old, it is likely that most of the age-related dis-
eases and the decreased quality of life occur as a consequence of the absence of this hormone. 
In some cases, GH acts coordinately with other hormones; therefore, for carrying out some of 
its effects, it has to be considered as a co-hormone.
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