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Chapter

Online Automated Micro Sample 
Preparation for High-Performance 
Liquid Chromatography
Hiroyuki Kataoka, Atsushi Ishizaki and Keita Saito

Abstract

Sample preparation is one of the most labor-intensive and time-consuming 
operations in sample analysis. Sample preparation strategies include the exhaustive 
or non-exhaustive extraction of analytes from matrices. Online coupling of sample 
preparation with the separation system is regarded as an important goal. In-tube 
solid-phase microextraction (SPME) is an effective sample preparation technique 
that uses an open tubular fused-silica capillary column as an extraction device. 
In-tube SPME is useful for trace enrichment, automated sample cleanup, and rapid 
online analysis. Moreover, this method can be used to determine the analytes in 
complex matrices by direct sample injection or merely by simple sample treatment 
such as filtration. In-tube SPME is frequently combined with high-performance 
liquid chromatography (HPLC) using online column-switching techniques. Various 
operating systems and new sorbent materials have been reported to improve extrac-
tion efficiency, such as sorption capacity and selectivity. This chapter discusses 
efficient micro sample preparation techniques for HPLC, especially online auto-
mated in-tube SPME.

Keywords: sample preparation, online automated analysis, column switching, 
in-tube solid-phase microextraction, high-performance liquid chromatography

1. Introduction

Sample analysis consists of various analytical steps, including sampling, sample 
preparation, separation, detection and data analysis. One of the most important 
steps is sample preparation, which involves the extraction, isolation and concentra-
tion of target analytes from complex matrices. Sample preparation [1–18] is the 
most labor-intensive and error-prone process in analytical methodology and mark-
edly influences the reliability and accuracy of analyte determination. In addition, 
sample preparation requires large amounts of sample and organic solvents, and is 
therefore difficult to automate. An ideal sample preparation technique should be 
simple and fast; be specific for analytes through the efficient removal of coexist-
ing components; provide high sample throughput; utilize fewer operation steps to 
minimize analyte losses; and be solvent-free, inexpensive, and compatible with 
chromatography systems. Online automated sample preparation [19–29], in which 
sample preparation is directly connected to chromatographic separation systems, 
eliminates further sample handling between the trace-enrichment and separation 
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steps. Online automated sample preparation methods usually improve data quality, 
increase sample throughput, reduce costs, and improve the productivity of person-
nel and instruments.

In-tube solid-phase microextraction (SPME), using a capillary tube as an extrac-
tion device, was introduced by Eisert and Pawliszyn [30] to overcome the problems 
inherent to conventional fiber SPME. These drawbacks included fragility, low 
sorption capacity, bleeding from thick-film coatings on fibers, limited effectiveness 
for extraction of weakly volatile or thermally labile compounds not amenable to gas 
chromatography (GC) or GC-mass spectrometry (MS), and reduced stability in 
solvents used in high performance liquid chromatography (HPLC). In-tube SPME 
was also developed to completely automate the sample preparation process and to 
enable direct online coupling of in-tube SPME with HPLC using capillary column 
switching systems [31].

This chapter reviews the configurations and characteristics of in-tube SPME 
technology and discusses current and future directions, including the strategies 
involved in extraction efficiency and method development. The details of in-tube 
SPME have been described in well documented reviews [27, 32–50].

2. Configurations of in-tube SPME

In-tube SPME is an efficient sample preparation technique for extraction in 
capillary columns using stationary phases coated on the inner wall of the capillary 
or on the surface of the packing material (Figure 1). Various in-tube SPME capillary 
devices have been developed, such as inner wall-coated fused-silica open tubular 
(Figure 1A), fiber-packed (Figure 1B), sorbent-packed (Figure 1C), and rod-type 
porous monolith (Figure 1D) capillaries [16, 31]. The capillaries are easily fixed 
with the autosampler injection system, and are generally reusable without plugging 
or breaking the column and without exfoliation of coating materials.

Figure 1. 
Capillary devices for in-tube SPME: (A) polymer coated, (B) sorbent-packed, (C) fiber-packed, 
and (D) monolith capillary tubes.
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2.1 Operating systems of in-tube SPME

Flow-through systems (Figure 2), in which sample solutions are continuously 
passed in one direction through a capillary column; or as repeated draw/ejection sys-
tems (Figure 3), in which sample solutions are repeatedly aspirated and dispensed 
from a capillary column, are used as an operating system of in-tube SPME [18]. 
These systems are operated by column switching techniques under computer control.

In flow-through systems, the complete analytical system consists of an auto-
matic six-port valve, two pumps (a sample pump and a wash pump) and a liquid 
chromatography (LC) system. A capillary column is installed in the six-port valve 
or sometimes placed in the loop. Although one or two six-port valves are available, 
one valve mode is used more frequently than others. The procedure consists of 
four steps, conditioning, extracting, washing and desorbing. After conditioning of 
capillary column with water, the aqueous sample is pumped through the column 
under the load position (Figure 2A). Remaining matrix and residues in capillary are 
removed by washing with water. After switching the six-port valve to the injection 
position, the LC mobile phase is passed through the column (dynamic desorp-
tion), with the flow-rate of the LC pump (Figure 2B). The desorbed analytes are 
subsequently transferred to the analytical column for separation and detection. The 
flow-through extraction system, however, may include systematic troubles, such as 
contamination of the switching valve by sample matrix [18, 31, 37, 41].

Repeated draw/ejection systems include the placement of a capillary column for 
extraction between the injection loop and the injection needle of the autosampler. 
Since the sample solution moves only in the capillary, the metering pump and 
switching valve are not contaminated by sample matrix [18, 31, 37, 41]. A built-in 
UV diode array detector (DAD) or fluorescence detector (FLD) between the HPLC 
and the MS can enhance the multidimensional and simultaneous multi-detections, 
improving analyte identification. During the extraction and concentration step 
(Figure 3A), the injection syringe is programmed to repeatedly draw and eject 
sample solution from the vial until the concentration of the analyte reaches distri-
bution equilibrium between the sample solution and the stationary phase. After 
switching the six-port valve to the injection position, the extracted analytes can 
be directly desorbed from the capillary coating by LC mobile phase flow (dynamic 

Figure 2. 
Schematic diagrams of a flow-through extraction system used for online in-tube SPME. (A) Load position 
(extraction), and (B) injection position (desorption).
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desorption) or by an aspirated desorption solvent (static desorption) (Figure 3B) 
[31]. The desorbed analytes are subsequently transferred to an LC column. The 
computer controls the drawing and ejection of sample solution; switching of the 
valves; control of peripheral equipment, such as the HPLC and MS; and analyti-
cal data processing, thus reducing labor and enhancing precision. In addition, the 
autosampler can automatically process a large number of samples without carry-
over, because the injection needle and capillary column are washed in methanol and 
the mobile phase before the sample is extracted.

2.2 Extraction sorbent materials

The amount of analyte extracted into the stationary phase of the capillary during 
in-tube SPME is dependent on the characteristics of the capillary coating and the 
target analyte. Among the commercially available GC capillary columns, silica modi-
fied columns have been found more suitable for the analysis of nonpolar compounds. 
Porous polymer type capillary columns such as Supel-Q PLOT (divinylbenzene 
polymer, film thickness 17 μm) have shown better extraction efficiencies due to their 
large surface area for most organic compounds than other liquid-phase type capillary 
columns, such as CP-Sil 5CB (100% polydimethylsiloxane, film thickness 5 μm), 
Quadrex 007–5 (5% phenyl polydimethylsiloxane, film thickness 12 μm), CP-Sil 19CB 
(14% cyanopropyl phenyl methylsilicone, film thickness 1.0 μm), and CP-Wax 52CB 
(polyethylene glycol, film thickness 1.2 μm). CP-Sil 19CB was superior for extraction 
of polyaromatic hydrocarbons, although the film layer was thin. In contrast, some 
compounds were effectively extracted with other PLOT type coatings, including 
Carboxen-1006 PLOT (carboxen molecularsives, film thickness 17 μm) and CP-Pora 
PLOT amine (basic modified styrene divinylbenzene polymer, film thickness 10 μm).

Several unique phases and technical solutions have been developed to improve 
extraction efficiency and selectivity when extended to microscale applications 

Figure 3. 
Schematic diagrams of a draw/eject extraction system used for online in-tube SPME (reproduced from Ref. [37]). 
(A) Extraction and concentration step, and (B) desorption and injection step.
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[44, 51–53]. These include polypyrrole (PPY) coated capillaries; PEEK tube 
capillaries packed with molecularly imprinted polymer (MIP) particles [54–61]; 
and highly biocompatible SPME capillaries packed with alkyl-diol-silica (ADS) 
particles as restricted access media (RAM) [62, 63], immunosorbents [64], ionic 
liquids [65–67], monolithic materials [68–73], carbon nanomaterials [74–82], 
silica-coated magnetite (SiO2-Fe3O4) [83–86], and temperature responsive poly-
mers [87, 88]. Novel extraction sorbent materials for in-tube SPME are shown in 
Figure 4.

For example, chemically or electrochemically deposited PPY coatings have 
higher extraction efficiencies than commercial GC coatings due to the various types 
of interactions (e.g., π–π, polar, hydrogen bonding, and ionic interactions) between 
these multifunctional PPY coatings and the analytes. Capillary tubes have been 
coated with MIP, consisting of cross-linked synthetic polymers produced by copo-
lymerizing a monomer with a cross-linker in the presence of a template molecule 
(Figure 4A), and PEEK tubes have been packed with MIP particles. By removing 
the template after polymerization, it is possible to leave open sites of a specific 
size and shape suitable for binding the same or similar chemicals in a sample. 

Figure 4. 
Novel extraction sorbent materials for in-tube SPME (eproduced from Ref. [37, 42, 84]). (A) Molecularly 
imprinted polymers, (B) restricted access media, (C) immunosorbents, (D) monolithic polymers, (E) carbon 
nanotubes, (F) silica-coated magnetite, and (G) temperature responsive polymers.
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MIPs recognize chemicals through combination of shape, hydrogen bonding, and 
hydrophobic and electrostatic interactions [16, 18, 31]. RAM materials possess defined 
diffusion barriers with small sized pores and biocompatible outer particle surfaces 
(Figure 4B). The bifunctionality of ADS particles used as a RAM SPME device can 
prevent fouling of the capillary by protein adsorption while simultaneously trapping 
the analytes in the hydrophobic porous interior. Furthermore, a simple SPME device 
has been fabricated for use in online immunoaffinity capillaries packed with immu-
nosorbent materials, consisting of covalently immobilized antibodies (Figure 4C).

An alternative approach consists of in-tube SPME using monolithic capillary 
columns comprised of one piece of organic polymer or silica rods with a unique 
flow-through double-pore structure (Figure 4D). Monoliths are also highly perme-
able to liquids and biological samples, enabling reduced solvent use, varied support 
formats, and/or automation. Monolithic capillaries are especially suitable for in-
tube SPME media due to the low pressure drop, allowing a high flow-rate to achieve 
high throughput and a total porosity greater than that of particle-packed capillaries. 
Hydrophobic main chains and acidic pendant groups of poly (methacrylic acid-
ethylene glycol dimethacrylate) enhance the ability to extract basic analytes from 
aqueous matrices. The physicochemical properties of graphene-based sorbents and 
carbon nanotubes (Figure 4E) enable their use in extraction, with these combina-
tions showing excellent results when used for in-tube SPME. In addition, various 
cationic, anionic and zwitterionic liquid-mediated sol–gel coatings have been 
developed for effective in-tube SPME.

Other innovative extractive phases that enhance the affinity of the analytes 
include silica magnetite (SiO2-Fe3O4; Figure 4F) and poly (N-isopropylacrylamide; 
Figure 4G), which have been used in new microextraction processes involving 
magnetism and thermal energy, respectively. Magnetic and temperature controlled 
in-tube SPME are performed using flow-through systems, due to the need for 
additional equipment providing a magnetic or thermal field, which is easier to 
implement using flow-through devices. Other techniques include wire-in-tube 
SPME, using modified capillary columns with inserted stainless steel wires, and 
fiber-in-tube SPME, using PEEK tubes packed with fibrous rigid-rod heterocyclic 
polymers. These methods increase extraction efficiency by reducing capillary 
volume or increasing the extracting surface and have shown improved extraction 
efficiency when extended to microscale applications.

3. Method development and characteristics of in-tube SPME

3.1 Optimization of in-tube SPME

In-tube SPME depends on the distribution coefficient of each analyte. 
Extraction conditions may be optimized by increasing the distribution factor in the 
stationary phase. The selectivity and efficiency of extraction depend on the type 
of stationary phase and on the internal diameter, length, and film thickness of the 
capillary column. Sorption equilibrium is attained by optimizing various extrac-
tion parameters for each type of analyte. These parameters include extraction rate, 
sample volume, sample pH, flow-rate, number of draw/eject cycles (only draw/
eject system), and desorption conditions. As described in the preceding section, the 
choice of capillary coating is important for optimizing extraction selectivity and 
efficiency. Generally, low and high polarity columns selectively retain hydrophobic 
and hydrophilic compounds, respectively. Stationary phase consisting of a thicker 
film and longer column can extract larger amounts of compound, but quantitative 
desorption of compounds from capillary columns may be difficult. PLOT-type 
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columns have a larger adsorption surface area and thicker film layer than liquid-
phase-type columns, enabling more analytes to be extracted [16, 18].

Generally, the optimal length and internal diameter of a capillary column 
used in combination with HPLC is 20–80 cm and 0.25 or 0.32 mm, respectively. 
Although thick-film capillaries often show higher sample capacity and extraction 
sensitivity, it is extremely difficult to reliably bind thicker chemical coatings to the 
inner surfaces of fused-silica capillary tubes using conventional approaches. In 
contrast, thin-film capillaries can minimize the time to reach extraction equilib-
rium due to their low sample capacity. Capillary columns with chemically bonded 
or cross-linked liquid phases are very stable in water and organic solvents and can 
prevent loss of phase by LC mobile phase [18].

The volume of sample passed through a capillary is usually 0.2–2 mL in flow-
through extraction systems, and their optimum extraction flow rates are 0.25–4 mL/
min depending on the volume of the column. Although increases in the number 
and volume of draw/eject cycles can enhance extraction efficiency in draw/ejection 
systems, peak broadening is often observed [16]. Optimal conditions for a capillary 
column of inner diameter 0.25 mm and length 60 cm include a draw/ejection volume 
of 30–40 μL, a draw/ejection flow rate of 50–100 μL/min and 10–15 draw/ejection 
cycles. Below this rate, extractions require an inconveniently long time, and above 
this rate, bubbles form on the inside of the capillary, reducing extraction efficiency. 
Furthermore, the extraction efficiency of the analyte to the stationary phase varies 
with the pH of the sample solution. The presence of hydrophilic solvents such as 
methanol in the sample reduces the extraction efficiency. The analyte extracted on cap-
illary coatings can be easily desorbed statically or dynamically without carryover [18].

3.2 Characteristics of the in-tube SPME technique

Table 1 summarizes the characteristics of in-tube SPME. The main advantage is 
that the series of processes can be automated, which enables continuous extraction, 

Advantage Disadvantage

• Minimal sample adjustment

• Large injection volume (flow-through system)

• Applicable to polar and thermolabile liquid samples

• Low solvent consumption

• Decreased handling of biohazardous samples

• Less sample loss due to online closed system

• Lower likelihood of carryover

• Higher mechanical stability of capillaries

• Reusability of capillaries without plugging or breaking

• Commercially available GC capillary columns

• Applicability of various unique adsorbents to specific 

and efficient extraction

• Easy on-line coupling with liquid chromatography

• Enabling of full automation by column switching

• Commercially available autosamplers

• Improvements in selectivity and sensitivity

• Better precision and accuracy

• Tendency of the capillary to clog

• Limited to particulate-free samples

• Stripping of non-bonding thick-film 

coatings

• Possible peak broadening

• Switching of valves, extraction columns, 

and pumps required

• Complicated switching system

• Relatively low enrichment factor

• Relatively long extraction time

Table 1. 
Advantages and disadvantages of in-tube SPME.
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desorption and injection with column switching using a standard autosampler, 
and online coupling with the LC system [16, 18, 31]. In-tube SPME may be suit-
able for the determination of polar and thermolabile compounds. Compared with 
manual techniques, automated sample-handling procedures not only shorten the 
total analysis time but are more accurate and precise. Automated techniques are 
also suitable for miniaturization, high-throughput performance, and online cou-
pling with analytical instruments, and reduce the consumption of solvent. Online 
procedures can limit contact with dirty and hazardous samples, reducing sample 
contamination and loss. Online column-switching systems are highly sensitive 
due to pre-concentration resulting from the injection of large sample volumes into 
the extraction support without loss of chromatographic performance. The main 
disadvantage is that the capillaries tend to clog, which may be avoided by removing 
interfering phases such as particles or macromolecules by filtration or centrifuga-
tion before extraction. Although the absolute recovery rate of the in-tube SPME 
method is generally low, it can be extracted and concentrated reproducibly using an 
autosampler, and all extracts can be introduced into the LC column [16, 18, 31].

The online in-tube SPME method can be applied to polar and nonpolar com-
pounds in liquid samples, and can be coupled with various analytical methods, 
such as HPLC and LC–MS. Early applications of online in-tube SPME have involved 
draw/eject extraction systems and commercially available open-tubular GC capil-
laries such as Supel Q PLOT and Carboxen 1006 PLOT capillaries. The subsequent 
development of various operating systems and new sorbent materials improved 
extraction efficiency, such as sorption capacity and selectivity, and extended the 
range of applications. Last decade, numerous applications of online in-tube SPME 
methods have been reported to many types of pharmaceutical and biomedical [86, 
89–124], food [125–137], and environmental [138–178] analyses.

4. Conclusions and future directions

The online in-tube SPME techniques described in this chapter have many 
desirable features for automated separation of analytes, using column-switching 
techniques. These methods are especially well suited to the analysis of samples 
requiring significant cleanup and concentration to improve their selectivity and 
sensitivity, as well as being useful for high-throughput sampling. Since the in-tube 
SPME method using capillaries as an extraction device is useful for online sample 
preparation to extract and concentrate polar and non-polar compounds from aque-
ous solution, it has become an effective technique for convenient analysis of a wide 
variety of compounds in complex matrices such as biological, pharmaceutical, food 
and environmental samples [31]. Furthermore, various operating systems and new 
sorbent materials have been developed to improve extraction efficiency and sorp-
tion capacity and selectivity, and to extend the range of applications. These include 
MIPs, RAM, immunosorbents, monolithic materials, carbon nanoparticles, ionic 
liquids, temperature responsive polymers and magnetic hybrid adsorbents.

The main future direction in sample preparation is the development of more 
sensitive and selective extraction sorbents [31]. Chiral active phases, ionic liquids, 
dendrimers, aptamer modified sorbents, magnetic materials, temperature respon-
sive materials may be available as new polymer devices for effective sample prepara-
tion. Furthermore, biomimetic coating materials including ultrasound and light 
responsive polymers may be available as a selective extraction device in the future. 
These customized coating materials, differing in type, shape, and size, are expected 
to result in highly efficient extraction of various samples. Biocompatible RAM and 
monolithic sorbents are useful for direct analysis, without pre-treatment other than 
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dilution and centrifugation of biological samples. As another future direction, bet-
ter integration of sampling/sample preparation and instrumental analysis will allow 
wider use of automated online analysis. Especially, the use of column-switching 
systems involving microextraction techniques and/or microdevices will offer conve-
nient integration of sample preparation with various analytical instruments such as 
HPLC as well as other chromatographic systems, electrophoresis, direct MS, etc.

Finally, this chapter provides an overview of the configurations and characteris-
tics of in-tube SPME technology for online automated micro sample preparation for 
HPLC. We hope that this chapter will serve as a guide to choosing the most effective 
sample preparation techniques for the analysis of various complex samples.
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