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1. Introduction 

Ground penetrating radars (GPRs) are widely used for buried object search, ruin 
investigation, groundwater assessment, and other various applications (Sato & Takeshita, 
2000) (Moriyama et al., 1997). They are also expected to find nonmetallic landmines 
(Bourgeois & Smith, 1998) (Montoya & Smith, 1999) (Peters Jr. & Daniels, 1994) (Sato et al., 
2004) (Sato, 2005) (Sato et al., 2006). Figure 1 shows the size and the structure of a plastic 
antipersonnel landmine. A near future target is to find or visualize antipersonnel landmines 
with a high distinction rate between landmines and other objects. The conventional metal 
detectors, based on electromagnetic induction, use so low frequency that the 
electromagnetic field penetrates through the soil very deep, and the false negative 
probability is very small. However, because of its long wavelength, the resolution is limited, 
and they can tell just whether inductive material exists or not. They cannot distinguish 
landmines from other metal fragments. GPRs employ much higher frequency. Then the 
resulting higher resolution will be helpful to discriminate landmines. 
Currently, there are two methods to remove the plastic landmines. One is a metal detector, 
and the other is a rotary cutter. The former detects a blasting cap made of metal in the 
landmine. Because the cap is very small, we must set the sensitivity at a high level. Then, the 
positive fault rate is as high as about 99.9% (specificity=0.1%), resulting in a lot of time to 
remove the landmines. The latter, rotary cutter, looks like a bulldozer, bores the ground and 
tries to clear the landmines by exploding them. The problems in this method are necessity of 
additional removal by human because of impossibility of perfect clearance, necessity of 
sufficient areas for the approach of the rotary cutter, and land pollution by the exploded 
powder. 
Accordingly, though these methods have certain merits, they have also demerits. Therefore, 
new landmine detection systems based on GPRs attract attention and are studied by a dozen 
of researcher groups/laboratories presently to solve the problem. Most of the proposed 
methods employ high-frequency and wide-band electromagnetic wave to visualize a plastic 
landmine itself instead of the metallic blasting cap. There are two types among the  
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Fig. 1. The size and the structure of a plastic antipersonnel landmines. 

proposals. Some employ pulsed electromagnetic wave and others employ stepped-
frequency continuous wave. We explain these two measurement methods in detail in the 
next section. 
Unlike the metal detector which measures induced current, GPRs observe the reflected and 
scattered electromagnetic wave. In general, it is noted that the electromagnetic wave is 
reflected at boundaries between materials having different permittivity, and that the spatial 
resolution of the observation is almost the same as the wavelength. Therefore, it is possible 
to detect not only the metal but also the plastic body because the electromagnetic wave is 
reflected at the boundary of the soil and the plastic. In addition, the wide band 
electromagnetic wave has the possibility to observe the the accurate distance from the 
antenna to the target, physical property for electromagnetic wave and structural 
characteristics of the target. That is to say, a GPR system has a potential of detecting plastic 
landmines more strictly than the metal detector does. 
However, high-frequency wave also induce a lot of clutter, which is caused by the 
roughness of the earth’s surface and scattering substances other than the plastic landmines. 
Consequently, it is very difficult to extract significant features helpful for detecting the 
plastic landmines from the observed data by ignoring the clutter. Furthermore, it is also 
difficult to treat the extracted features effectively. A lot of processing methods were 
proposed so far. That is, we must resolve the following two steps to detect the plastic 
landmines. The first step is how to extract the features, and the second is how to treat the 
extracted features. To accomplish our goals, we must select or develop new effective methods. 
Previously we proposed an adaptive radar imaging system to visualize plastic landmines 
using complex-valued self-organizing map (CSOM) (Hara & Hirose, 2004) (Hara & Hirose, 
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2005). With the system, we observe reflection and scattering to obtain a complexamplitude 
two-dimensional image at multiple frequencies. In the resulting 3-dimensional (2-
dimensional (space) × frequency) data, we extract local texture information as a set of 
feature vectors, and feed them to a CSOM for adaptive classification of the 3-dimensional 
texture (Hirose, 2006) (Hirose, 2003). By using the system, we could visualize antipersonnel 
plastic landmines buried shallowly underground. We also constructed a preliminary object 
identifier, which is a type of associative memory that learns the feature of the plastic-
landmine class with adaptation ability to various ground conditions (Hirose et al., 2005). 
However, the system requires a long observation time because it employs mechanical scan. 
Long observation time is one of the most serious problems in high-resolution imaging 
systems. Some methods to overcome the problem have been investigated (Kobayashi et al., 
2004) (Shrestha et al., 2004). 
We then developed a portable visualization system with an antenna array to reduce the 
observation time (Masuyama & Hirose, 2007). The array has 12×12 antenna elements, 
resulting in about 144 pixels. The element aperture size is 28mm×14mm, which determines 
the spatial resolution. In texture evaluation and adaptive CSOM classification, a higher 
resolution leads to a better performance. We recently proposed a resolution enhancement 
method using a special antenna-selection manner in combination with elimination of direct 
coupling and calibration of propagation pathlength difference (Masuyama et al., 2007). 
However, even with such resolution enhancement, the visualization performance is still 
worse than that obtained with the first mechanical-scanning system. The resolution is still 
insufficient, and the mutual coupling between antenna elements are not completely 
ignorable. 
In this chapter, we propose two techniques to improve the visualization ability without 
mechanical scan, namely, the utilization of SOM-space topology in the CSOM adaptive 
classification and a feature extraction method based on local correlation in the frequency 
domain. In experimental results, we find that these two techniques improve the 
visualization performance significantly. The local-correlation method contributes also to the 
reduction of tuning parameters in the CSOM classification. 
The organization of this chapter is as follows. In Section 2, we explain the merits and 
demerits of three plastic landmine detection systems that utilize the electromagnetic 
technology. Then we show the processing flow of our plastic landmine detection system 
based on the CSOM and show the conventional and proposal methods in Section 3. In 
Section 4, we show the experimental results with the observed data. Finally, we summarize 
and conclude this chapter in Section 5. 

2. Conventional technology 

As mentioned before, there are three methods which utilize the electromagnetic technology 
to detect plastic landmines. One is the metal detector based on induction current, another is 
the pulse radar using the electromagnetic wave, the other is stepped-frequency radar using 
the electromagnetic wave. In the following subsections, we briefly explain the characteristics 
of these methods respectively. 

2.1 Metal detector 

The fundamental principle of the metal detector is to sense the mutual interaction between a 
coil of the detector and target conductors using low frequency electromagnetic field induced 
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by the coil. The used frequency is from about f = 100kHz to 1MHz. Because the frequency is 
very low, the metal detector is highly tolerant against inhomogeneous ground and the depth 
of the buried landmines. Additionally, it is very easy to manufacture a highly sensitive 
metal detector because it consists of some simple analog oscillation circuits. Consequently, 
the metal detector is very suitable for landmine detection, where we expect not to miss 
landmine at all, and this method is widely used for the current landmine detection. 
However, it is impossible for the metal detector to detect targets other than conductors and 
difficult to search a target with a high spatial resolution because of the long wavelength. In 
addition, we cannot obtain the time and/or frequency response which shows the features 
originating at the targets because the bandwidth is very narrow. The most critical problem is 
the very high probability of the positive fault which is caused by the metal scattering 
substance. In particular, as the landmines are buried in a field of combat, there are a large 
amount of metal fragments around buried landmines, and according to a report, the positive 
fault is about 99.9%. Therefore, it takes long time to remove landmines perfectly, which is a 
very big problem. In addition, when we use multiple metal detectors simultaneously, 
improper signals are often caused by the mutual coupling among closely located detectors. 

2.2 Pulse GPR 

A pulse GPR observes the time response of the electromagnetic-wave pulse irradiated 
toward the ground. The time response represents the depth of a scatterer. When we sweep 
an antenna in two dimension horizontally, we can obtain the three dimensional data. 
Besides, as the electromagnetic wave is reflected at the boundary of materials that have 
different permittivity, it is possible to observe the reflection wave from the plastics that 
forms a landmine, not only the metal blasting cap. The pulse GPRs have another merit. As 
the pulse have a wide bandwidth, as wide as that of the stepped-frequency range mentioned 
below, we can observe not only the time response but also the frequency response through 
the Fourier transform, and these data may show characteristics of the target. Regarding the 
measuring time, we can conduct the measurement more speedily in comparison with the 
stepped-frequency GPRs. 
However, as a maximum frequency component of the pulse radar is usually about f = 6GHz 

at the most. That is, the shortest free-space wavelength is about 5cm. Then the pulse GPRs 

cannot observe sufficient amount of characteristics of plastic landmines whose size is 

typically the same as the wavelength. Besides, the ground surface is very rough, and the 

soil, including various scatterers, often causes serious clutter. Therefore, it is very difficult to 

obtain clear images. To solve this problem we need to utilize sharper pulse which consists of 

a wideband wave with a high power. However, as a high-peak pulse is distorted by the 

nonlinearity in transmitter circuits and switched antennas, the problem cannot be solved 

sufficiently. 

2.3 Stepped-frequency GPR 

Stepped-frequency GPRs observe the reflected continuous wave at a wide-range frequency 
points. This method does not need to output strong power instantaneously. Then, the 
electromagnetic wave has little influence on the nonlinearity of the circuits and the switches. 
As the results, stepped-frequency GPR accomplishes higher SN ratio than the pulse GPR. In 
addition, it is easier for the stepped-frequency radar to observe the high frequency wave 
and select bandwidth freely than a pulse radar system. Besides, we can obtain the time 
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response, like what pulse radar provide, through the inverse Fourier transform of the 
observed frequency domain data. 
As above, stepped-frequency GPRs enable to accomplish high SN ratio at the high frequency 
with a wide band, and obtain not only the time response but also frequency domain feature 
very effectively. It is true that even the stepped-frequency GPR has a drawback. Namely, it 
takes too long time to measure the scattering because of the time required for frequency 
sweeping. However, this problem will be solved by inventing new appropriate devices in 
the near future. 
Then we can expect a higher precision with the system utilizing the stepped-frequency GPR 
than the conventional systems. To achieve this purpose, there are two important points we 
should consider carefully. One is to extract useful features from the obtained data, and the 
other is to fully utilize the features. However, a perfect technique has not been suggested 
yet. 
In the next section, we show the details of our CSOM-based signal processing published in 
our previous paper (Nakano & Hirose, 2009). 

3. System construction 

3.1 Overall construction 

Figure 2 shows the processing flow in our plastic landmine visualization system. We 
describe the components briefly. 
 

 

Fig. 2. The overall processing flow (Nakano & Hirose, 2009). 

First, we operate our system at a stepped-frequency mode to obtain wideband 
electromagnetic reflection and/or scattering images at multiple frequency points. The 
details of the system is given in Ref.(Masuyama & Hirose, 2007). We acquire complex 
amplitude images at 10 observation frequency points from 8 to 11.6GHz at an interval of 
0.4GHz. 
Next, we generate a spatially segmented image by using a CSOM that classifies local texture 
adaptively. The classification consists of two steps. In the first step, we extract feature 
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vectors representing local complex-amplitude textural quantity in a local window that 
sweeps all over the image. As shown in Fig.3, we prepare a sweeping window in each 
frequency image at a synchronizing real-space location. We calculate correlations between 
pixel values in the window in terms of real-space relative distance and frequency-domain 
distance. We assume that the correlation values represent the texture at around the pixel at 
the window center, and we put the values at the center pixel as the textural feature. In the 
second step, we classify the extracted feature vectors adaptively by using a CSOM (Hara & 
Hirose, 2004). Then we color pixels correspondingly with the resulting classes to generate a 
segmented spatial image. 
 

 

Fig. 3. The scanning window for local textural feature extraction (Nakano & Hirose, 2009). 

Lastly, we identify landmine classes included in the segmented image. We use an 
associative memory that learns respective features of landmine classes and other objects 
such as metal fragments, stones and clods. We prepare a set of teacher features for the 
learning beforehand by observing land pieces where we know the landmine locations. 
In this paper, we propose two novel methods in the CSOM processing. One is a dynamics in 
the feature vector classification, and the other is a feature vector extraction method. The 
former is utilization of SOM-space topology in the CSOM adaptive classification by 
introducing a ring CSOM, and the latter is the extraction of local correlation in the frequency 
domain. 

3.2 Utilization of SOM-space topology in the CSOM adaptive classification 

As the first proposal, instead of the conventional K-mean algorithm, we employ a SOM 
dynamics that utilizes SOM-space topology in the CSOM adaptive classification. Figure 4 
shows the CSOM structure, which forms a ring in the CSOM space. 
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Fig. 4. The ring-CSOM structure. Balls represent reference vectors in the CSOM, and the 
directions of the arrows show the vector values, among which the winner  and the two 
neighbors  change in the self-organization. 

In the CSOM in our previous system, we classified the feature vectors by using the K-mean 
clustering algorithm, which is the simplest SOM dynamics, as (Hara & Hirose, 2004) 

 (1) 

 
(2) 

 : reference vector of the winner 
K : input feature vector 
t : iteration number in self-organization 
TMAX : maximum iteration number 
(t) : self-organization coefficient 
where the winner  is the reference vector nearest to K among all the reference vectors 

W1, W2, . . . , Wc, . . . , WC. We update  iteratively by presenting K sequentially. In the new 
system, we also introduce the self-organization of reference vectors at the winner neighbors 
(c ± 1) in the SOM space shown in Fig.4 as 

 (3) 

 
(4) 

where β(t) is another self-organization coefficient for the neighboring classes, which is 
usually smaller than (t). The classes  ± 1 are neighbors of the winner class  in the CSOM 
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space. The CSOM space is used only to determine the winner neighbors, whereas the winner 
is determined in the K space. 
The reason of the modification is as follows. In the previous method, we used the K-means 
algorithm (1), which is the simplest dynamics in the SOM. Because we have only about 10 
classes in the adaptive vector quantization in the landmine visualization system, we paid 
less attention to the SOM-space topology. Nevertheless, we could obtain sufficiently 
meaningful classification results (Hara & Hirose, 2004). 
However, with the present portable visualization system with a lower spatial resolution at 
the antenna array (Masuyama & Hirose, 2007), the failure probability in the classification 
became slightly higher than the first laboratory system. We sometimes fail to extract texture 
features sufficiently because of the decrease in resolution. As described later, in such an 
insufficient extraction case, we found that only a small number of classes were used in the 
vector quantization. 
We therefore propose the utilization of the SOM-space topology in the CSOM adaptive 
classification, to activate most of the prepared reference vectors, by introducing additional 
self-organization at neighbor class vectors. In this paper, we change the values of only the 
two adjacent-class vectors Wc ± 1 as shown in (3). The neighbor vector number is small 
because the number of the totally prepared classes is small, i.e., only about 10. The structure 
of the CSOM should also be suitable for the small size, namely, one-dimensional as shown 
in Fig.4. 

3.3 Frequency-domain local correlation method 

The second proposal is to adopt frequency-domain local correlation in the texture feature 
extraction. We modify the point on which we put stress based on a new concept in 
extracting features in the frequency domain. 
Figure 5(a) illustrates the conventional method, in which the feature vector K is calculated 
for complex pixel values z(lx, ly, f ) as 

 (5) 

 
(6) 

 (7) 

 
(8) 

 (9) 

 
(10)

where M, Ks, and Kf are the mean, real-space-domain correlations, and frequency-domain 
correlations, respectively. Real-space discrete coordinate lx and ly determine pixel positions 
in the local window as shown in Fig.3. 

www.intechopen.com



Adaptive Ground Penetrating Radar Systems to Visualize Antipersonnel Plastic Landmines  
Based on Local Texture in Scattering / Reflection Data in Space and Frequency Domains 

 

135 

 

Fig. 5. (a)Conventional and (b)proposed textural feature extraction methods based on 
correlation in real-space and frequency domains (Nakano & Hirose, 2009). 

We prepare a local observation window of L × L pixels to extract the local textural feature in 
the window by calculating correlations between pixel values. In (6)–(10), M is the average of 
pixel values in the window at a base frequency fb, which we select among the 10- frequency 
observation points in advance. The vector Ks in (7) is the local correlations in the L × L real-
space window at fb, while Kf is the correlations between pixel values at fb and other 
frequencies fn at identical positions. 
The effectiveness of Kf ( fn) in (10) as a feature vector was suggested by the following 
frequency-dependent interference. A plastic landmine usually has parallelism among its 
ceiling, bottom, and air gap inside, if any, which causes interference, whose spectral profile 
is periodic in the frequency domain. That is to say, we will observe a resonance at integral 
multiple of a certain frequency periodically in the frequency domain, resulting in a specific 
peak at certain fn in Kf ( fn). We intended to capture this phenomenon in (10). However, we 
found in our series of experiments that we normally observe only a single peak in the 8–
12GHz band. If we expect multiple frequency peaks, we have to expand the observation 
bandwidth. However, very high-frequency electromagnetic wave cannot penetrate ground 
so deep. 
Then we have changed our direction. Note that, in the spatial texture case described above, 
we paid attention to local correlation caused by the Markovian property. In the same way, 
also in the frequency domain, we decided to calculate the local correlation to observe the 
frequency space texture in a simple manner. 
Figure 5(b) illustrates our proposal, namely the frequency-domain local correlation method, 
to extract the frequency-domain feature. We define our new Kf as 

 (11)
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(12)

where Kf is the feature vector representing the correlation coefficients between the data at 
adjoining frequency points. This method enables us to eliminate the base frequency fb, which 
means that we do not need to choose a special frequency. To extend this fb-free advantage 
further, we also modify M and Ks(i, j) slightly as 

 
(13)

 
(14)

That is, M and Ks are averaged for the all used frequency data. 
The frequency-domain local correlation method is suitable for the processing in this system. 

Instead of the radar cross section, we use the texture of complex amplitude when we 

distinguish plastic landmines and other objects such as metal fragments and stones. If we 

can obtain a sufficiently high resolution in real-space and frequency domains, we should 

take into account the correlation between one pixel and another at a certain distance. 

However, when the system has only a low resolution, it is more effective to concentrate on 

the correlation between neighboring pixels, in which we can expect useful correlation 

information. 

Additionally, in the proposed method, it is a great merit that we do not need the base 
frequency fb, which was required in the conventional method. Previously we have a number 
of possible fb. As presented below, it is a problem that a different fb results in a different 
segmentation image. The new method is free from this problem because we have only one 
way to construct K. 

4. Experiments and results 

Table 1 shows the parameters used in the following experiments. We have determined the 
values of (0) and β(0) empirically. We bury a mock plastic landmine under ground 
iteratively. We change the burial situation every time, including the ground surface and 
underground. The surface-roughness amplitude is about 2cm peak-to-peak. In any case, the 
landmine is buried at around the center of the observation area. 
Figure 6(a) shows an experimental result (Result 1). The numbers show the observation 
frequencies. The upper blue maps show the amplitude data, while the lower color maps 
show the phase data. Scales of amplitude and phase are shown at the top. The position in 
every map corresponds to the position in real space. As mentioned above, we use these 
complex amplitude data obtained at the 10 frequency points. 
Figure 6 (b) shows segmented images generated with the previous method. The numbers 
are base frequencies fb used respectively. We can choose feature vectors K in 10 ways 
because there are 10 possible fb. Each gray level indicates one of the 10 classes. We can find a 
segmented area at the buried plastic landmine position at fb=8GHz and 8.8GHz. However, 
we cannot at other fb. 
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Table 1. Parameters of target and system (Nakano & Hirose, 2009). 

Figure 6 (c) shows the result of segmentation by utilizing the SOM-space topology in the 

CSOM adaptive classification. We find that there are more classes used in the classification, 

i.e., 10 classes in most cases, than that in the case of the previous method. We can confirm 

that we can classify the landmine area appropriately at most fb. For example, also at 8.4GHz 

and 9.2GHz, we are successful in the segmentation this time. These results reveal that we 

can improve the performance of classification by the utilization of the SOM-space topology 

in the CSOM. 

Figure 6 (d) shows the segmentation result obtained by the frequency-domain local 

correlation method as well as the utilization of SOM-space topology. As mentioned before, 

there is only one manner to extract feature vectors K in this proposed method because we 

have no fb. Here we show four result examples for various initial reference vectors in the 

CSOM since the result of the CSOM may depend on the initial reference-vector values. In all 

the cases, the landmine area is segmented correctly. We confirm a high robustness of the 

present method with the two proposal. 

Figure 7(a) shows a measurement result (Result 2) in a different situation from that of 

Fig.6(a). The landmine classification seems more difficult in this case than that of Fig.6 

because the calibration of direct coupling components (Masuyama et al., 2007) is somewhat 

sensitive to noise, occasionally resulting in insufficient compensation of antenna-selection-

mode dependent amplitude. 

Figure 7(b) shows the segmented images obtained with the previous method. We can 

classify the landmine area only when fb=9.2GHz. We completely failed in the segmentation 

at other fb.  Figure 7(c) shows a result by utilizing the SOM-space topology in the CSOM. We 

can segment the landmine area only at 9.2GHz again. 

Figure 7 (d) shows the results obtained by employing the two proposed methods. It is 

confirmed that we can classify the landmine area perfectly. We show four results for various 

initialization again. The results indicate that we can segment landmine areas stably. 

In addition, we recognize that more classes are used for the classification in Fig.7(d) than in 

Fig.7(c) despite we use the same dynamics for the classification in the CSOM. For this 

reason, we can extract more characteristic feature quantities with the frequency-domain 

local correlation method than that with the previous one. 
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Fig. 6. Experimental results 1. (a)Amplitude and phase images at 10 frequency points, 
(b)classification results with the previous method. Numbers denote base frequency fb, 
(c)classification results with utilization of SOM-space topology in the CSOM. Numbers 
denote base frequency. (d)Classification results with utilization of SOM-space topology in 
the CSOM and frequency-domain local correlation method. The four images show the 
results with various initial reference vectors in the CSOM (Nakano & Hirose, 2009). 

5. Summary 

In this chapter, first we explained the ground-penetrating radars (GPRs) which are studied 
currently as a new technology for the antipersonnel plastic landmine detection. In this field, 
researchers usually choose a measurement type from the pulse GPR or the stepped 
frequency GPR. Though both of these methods have merits and demerits, a stepped-
frequency GPR has an advantage in the high ability to extract features over a pulse GPR. 
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Fig. 7. Experimental results 2. (a)Amplitude and phase images at 10 frequency points, 
(b)classification results with the previous method. Numbers denote base frequency fb, 
(c)classification results with utilization of SOM-space topology in the CSOM. Numbers 
denote base frequency. (d)Classification results with utilization of SOM-space topology in 
the CSOM and frequency-domain local correlation method. The four images show the 
results with various initial reference vectors in the CSOM (Nakano & Hirose, 2009). 

Next, we described two techniques, which is based on the stepped-frequency GPR, to 
improve the performance of the GPR system to visualize plastic landmines. One is to utilize 
SOM-space topology in the CSOM adaptive classification to stabilize the classification 
process. Unlike the K-means algorithm, we can use most of the prepared classes in the 
learning vector quantization. The other technique is to employ local correlation as the 
feature vector components in the frequency domain. It extracts complex texture information 
better and, at the same time, eliminates the base frequency, which had to be chosen by the 
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user as one of the tuning parameters. Experimental results demonstrated better and stable 
visualization of the plastic landmine. 

6. References 

Bourgeois, J. M. & Smith, G. S. (1998). A complete electromagnetic simulation of the 
separatedaperture sensor for detecting buried land mines, IEEE Trans. Antenna and 
Propagation 46(10): 1419–1426. 

Hara, T. & Hirose, A. (2004). Plastic mine detecting radar system using complex-valued 
selforganizing map that deals with multiple-frequency interferometric images, 
Neural Networks 17(8-9): 1201–1210. 

Hara, T. & Hirose, A. (2005). Adaptive plastic-landmine visualizing radar system: effects of 
aperture synthesis and feature-vector dimension reduction, IEICE Transactions on 
Electronics E88-C(12): 2282–2288. 

Hirose, A. (ed.) (2003). Complex-Valued Neural Networks: Theories and Applications, World 
Scientific Publishing Co. Pte. Ltd. 

Hirose, A. (ed.) (2006). Complex-Valued Neural Network, Heidelberg: Springer-Verlag.  
Hirose, A., Toh Jiayun, A. & Hara, T. (2005). Plastic landmine identification by multistage 

association, IEICE Tech. Rep. (NC2004-156). 
Kobayashi, T., Feng, X.&Sato, M. (2004). Agpr for landmine detection using an array 

antenna, International Symposium on Antennas and Propagation (ISAP) Sendai. 
Masuyama, S. & Hirose, A. (2007). Walled LTSA array for rapid, high spatial resolution, and 

phase sensitive imaging to visualize plastic landmines, IEEE Transactions on 
Geoscience and Remote Sensing 45(8): 2536–2543. 

Masuyama, S., Yasuda, K. & Hirose, A. (2007). Removal of direct coupling in a walled-LTSA 
array for visualizing plastic landmines, International Symposium on Antennas and 
Propagation (ISAP) 2007 Niigata, pp. 1238–1241. 

Montoya, T. P. & Smith, G. S. (1999). Land mine detection using a ground-penetrating radar based 
on resistively loaded vee dipoles, IEEE Trans. Antenna and Propagation 47(12): 1795–1806. 

Moriyama, T., Nakamura, M., Yamaguchi, Y. & Yamada, H. (1997). Radar polarimetry 
applied to the classification of target buried in the underground,Wideband 
Interferometric Sensing and Imaging Polarimetry, Vol. 3210 of Proc. of SPIE, pp. 182–189. 

Nakano, Y. & Hirose, A. (2009). Improvement of plastic landmine visualization performance 
by use of ring-csom and frequency-domain local correlation, IEICE Transactions on 
Electronics E92-C(1): 102–108. 

Peters Jr., L. & Daniels, J. J. (1994). Ground penetrationg radar as a surface environmental 
sensing tool, Proceedings of the IEEE, Vol. 82,No.12, pp. 1802–1822. 

Sato, M. (2005). Dual sensor alis evaluation test in afghanistan, IEEE Geoscience and Remote 
Sensing Society Newsletter pp. 22–24. 

Sato, M., Hamada, Y., Feng, X., Kong, F.-N., Zeng, Z. & Fang, G. (2004). GPR using an array 
antenna for landmine detection, Near Subsurface Geophysics 2: 7–13. 

Sato, M., Takahashi, K., Feng, X. & Kobayashi, T. (2006). Stepped-frequency handheld 
demining dual sensor alis, Proceeding of 11th International Conference on Ground 
Penetrating Radar, p. UXO.10. 

Sato, M. & Takeshita, M. (2000). Estimation of subsurface fracture roughness by polarimetric 
borehole radar, IEICE Trans. Electron. E83-C(12): 1881–1888. 

Shrestha, S. M., Arai, I. & Tomizawa, Y. (2004). Landmine detection using impulse ground 
penetrating radar, Internationall Symposium on Antennas and Propagation (ISAP) 
Sendai. 

www.intechopen.com



Radar Technology

Edited by Guy Kouemou

ISBN 978-953-307-029-2

Hard cover, 410 pages

Publisher InTech

Published online 01, January, 2010

Published in print edition January, 2010

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

In this book “Radar Technology”, the chapters are divided into four main topic areas: Topic area 1: “Radar

Systems” consists of chapters which treat whole radar systems, environment and target functional chain. Topic

area 2: “Radar Applications” shows various applications of radar systems, including meteorological radars,

ground penetrating radars and glaciology. Topic area 3: “Radar Functional Chain and Signal Processing”

describes several aspects of the radar signal processing. From parameter extraction, target detection over

tracking and classification technologies. Topic area 4: “Radar Subsystems and Components” consists of

design technology of radar subsystem components like antenna design or waveform design.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Yukimasa Nakano and Akira Hirose (2010). Adaptive Ground Penetrating Radar Systems to Visualize

Antipersonnel Plastic Landmines Based on Local Texture in Scattering / Reflection Data in Space and

Frequency Domains, Radar Technology, Guy Kouemou (Ed.), ISBN: 978-953-307-029-2, InTech, Available

from: http://www.intechopen.com/books/radar-technology/adaptive-ground-penetrating-radar-systems-to-

visualize-antipersonnel-plastic-landmines-based-on-loca



© 2010 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.


