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Chapter

Artificial Intelligence-Based Drug 
Design and Discovery
Yu-Chen Lo, Gui Ren, Hiroshi Honda and Kara L. Davis

Abstract

The drug discovery process from hit-to-lead has been a challenging task that 
requires simultaneously optimizing numerous factors from maximizing compound 
activity, efficacy to minimizing toxicity and adverse reactions. Recently, the 
advance of artificial intelligence technique enables drugs to be efficiently purposed 
in silico prior to chemical synthesis and experimental evaluation. In this chapter, we 
present fundamental concepts of artificial intelligence and their application in drug 
design and discovery. The emphasis will be on machine learning and deep learning, 
which demonstrated extensive utility in many branches of computer-aided drug 
discovery including de novo drug design, QSAR (Quantitative Structure–Activity 
Relationship) analysis, drug repurposing and chemical space visualization. We will 
demonstrate how artificial intelligence techniques can be leveraged for developing 
chemoinformatics pipelines and presented with real-world case studies and practi-
cal applications in drug design and discovery. Finally, we will discuss limitations 
and future direction to guide this rapidly evolving field.

Keywords: artificial intelligence, chemoinformatics, data mining, drug discovery

1. Introduction

The path of drug discovery from small molecule ligands to drugs that can be 
utilized clinically has been a long and arduous process. Starting with a hit com-
pound, the drugs need to be evaluated through multiple in vitro and cell-based 
assays to improve the mechanism of actions followed by mouse models to demon-
strate appropriate in vivo and transport properties. Mechanistically, the drugs not 
only need to exert enough binding affinity to the disease targets, but also neces-
sitate proper transport through multiple physiological barriers to enable access to 
these targets. Other problems like chemical toxicity, often induced by off-targets 
interactions with unintended proteins as well as pharmacogenetic, where genetic 
variation influences drug responses all need to be considered in drug design. 
Therefore, these multifaceted problems in drug discovery often posed significant 
challenges for drug designers. Recently, the rise of artificial intelligence approach 
saw potential solutions to these challenges. A sub-umbrella of artificial intelligence 
called machine-learning has taken a central stage in many R&D sectors of phar-
maceutical companies that allows drugs to be developed more efficiently and at the 
same time mitigate the cost associated with the required experiments [1]. Given 
some observations of chemical data, machine learning can be used to construct a 
predictor by learning compound properties from extracted features of compound 
structures and interactions. Because this approach does not require a mechanistic 
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understanding of how drugs behave, many compound properties like binding 
affinity and other transport and toxicity problems can be accurately forecasted in 
this way before they are synthesized [2]. Furthermore, by simultaneously tackling 
the Pharmacokinetics/Pharmacodynamics (PK/PD) problems using artificial intel-
ligence, we can expect that the effort and time required to bring a drug from bench 
to bedside can be substantially reduced. In this regard, the artificial intelligence 
approach has now become an essential tool to facilitate the drug discovery process.

2. Chemoinformatic for drug discovery

2.1 Chemical formats

To facilitate the discussion on artificial intelligence and machine learning in 
drug discovery and design, it is necessary to understand the type of format and 
data presentation commonly used for chemical compounds in chemoinformatics. 
Chemoinformatics is a broad field that studying the application of computers in 
storing, processing and analyzing chemical data. The field already has more than 
30 years of development with focuses on subjects such as chemical representation, 
chemical descriptors analysis, library design, QSAR analysis and computer-aided 
drug design [3]. Along with these developments, several popular chemical data 
formats for data processing has been proposed. Intuitively, the chemical compound 
is best represented by graphs, also known as “chemical graph” or “molecular graph” 
where nodes represent atoms and edges represent bonds. The molecular graph is 
useful for distinguishing different structural isomers but does not contain 3D con-
formation of the molecules. To store 2D or 3D coordinates of compounds, chemical 
file formats such as Structure Data Format (SDF), MDL (Molfile), and Protein Data 
Bank (PDB) formats can be used. In contrast to the PDB file that simply store struc-
tural data, the SDF format provides additional advantages of recording descriptors 
and other chemical properties thus offers better functionality for cheminformatics 
analysis. Due to the limited memory capacity for handling large compound data-
base, several chemical line notations have also been introduced. One such format is 
the simplified molecular-input line-entry system (SMILES) format pioneered by 
Weininger et al [4]. Other linear notations include Wiswesser line notation (WLN), 
ROSDAL, and SYBYL Line Notation (SLN). Instead of recording compound 
coordinates directly, the SMILES format store compound structure using simpler 
ASCII codes. While memory-efficient, there is no unique strings for representing 
chemical compound particularly for large and structurally complex molecules. To 
address this, canonical SMILES was proposed that applied the Morgan algorithm 
for consistent labeling and ordering of chemical structures [5]. Another limitation 
is the loss of coordinate information and necessitate structural generation programs 
like PRODRG to predict native molecular geometry [6]. Recently, the need to 
exchange chemical data over the world wide web (WWW) also saw the develop-
ment of chemical markup language (CML) similar to the XML format. Despite the 
development of multiple chemical file formats, many commercial and open source 
packages have allowed convenient file format conversion using Obabel and RDKit 
softwares [7, 8].

2.2 Chemical representations

The ability to represent chemical compounds by machine-learning features that 
fully captured wide ranges of chemical and physical properties of the target mol-
ecule has been an active area of research in chemoinformatics and chemical biology 
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[9, 10]. These chemical features, also known as chemical descriptors, provide the 
ability to extract essential characteristic of the compound and offer the possibility 
of developing predictor that can classify novel structures with similar properties. 
Broadly speaking, the chemical descriptors can be classified as 0D, 1D, 2D, 3D, and 
4D [11]. 0D and 1D descriptors like molecular mass, atom number counts can be 
easily extracted from the molecular formula but does not provide much discrimina-
tory power for compound classification. In practice, 2D and 3D chemical descrip-
tors are the most commonly used molecular features for cheminformatics analysis 
[12]. Since chemical compound can be viewed as different arrangements of atoms 
and chemical bond, 2D descriptors can be generated from the molecular graph 
based on different connectivity of the molecules. Notable 2D descriptors include 
Weiner index, Balaban index, Randic index and others [1]. Beyond 2D descriptors, 
3D descriptors leverage information from molecular surfaces, volumes, and shapes 
to provide a higher level of chemical representation. The dependency of ligand 
conformations also prompts the development of 4D descriptors, which accounts 
for different conformations of the molecules generated over a trajectory from 
the molecular dynamics simulation [13]. However, the requirement of correct 3D 
conformation makes 3D and 4D descriptors limited in several aspects. Another type 
of high dimensional descriptors is molecular interaction field (MIF) developed by 
Goodford and colleagues [14]. The MIF aims to capture the molecular environment 
of the ligand based on several properties by placing probes in a rectangular grid 
surround the target compound. At each grid point, hypothetical probes corre-
sponding to different types of energetic interactions (hydrophobic, electrostatic) 
were evaluated. The comparison of MIF of compounds enables the identification 
of critical functional groups for kinase drug-target interactions and drug design 
[15]. Furthermore, correlating these field values to compound activity enable 
comparative molecular field analysis (CoMFA), an extended form of 3D-QSAR 
[16]. Altman’s group at Stanford University took a different approach by inspect-
ing ligand environment using amino acid microenvironment. This Feature-based 
approach lead to direct applications in pocket similarity comparison for identifying 
novel microtubule binding activity of several anti-estrogenic compounds as well 
as kinase off-target binding activity [17, 18]. Chemical descriptors can likewise be 
generated based on the biological phenotypes. For example, drug-induced cell cycle 
profile changes of compound have been recently utilized to identify DNA-targeting 
properties of several microtubule destabilizing agents [19].

Besides chemical descriptors, the chemical fingerprint is another important 
chemical representation where the compounds are represented by a binary vector 
indicating the presence or absence of chemical features [20]. Common 2D chemi-
cal fingerprints include path-based fingerprint which detected all possible linear 
paths consisting of bonds and atoms of a structure given certain bond lengths. For 
a given pattern, several bits in a bit string is set. While path-based fingerprints like 
ECFP (Extended Connectivity Fingerprint) have a higher specificity, the potential 
limitation is “bit collision” where the number of possible patterns exceeds the bit 
capacity resulting in multiple patterns mapped to the same set of bits. Another 
type of fingerprint is substructure fingerprints. In the substructure fingerprint like 
(Molecular ACCess System) MACCS keys, the substructures are predefined and 
each bit in a bit string is set for specific chemical patterns. Although bit collision is 
less of an issue, the requirement to encompass all fragment space within a bit string 
often demands a larger memory size. Recently, the proposal of circular fingerprints 
represents the state-of-the-art in chemical fingerprint development [21]. In the 
circular fingerprint, each layer’s feature is constructed by applying a fixed hash 
function to the concatenated features of the neighborhood in the previous layer 
and the results from the hashed function were mapped to bit string representing 
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specific substructures. A modified version of the circular fingerprint, known as 
graph convolution fingerprint, has recently been proposed where the hashed func-
tion is replaced by a differential neural network and a local filter is applied to each 
atom and neighborhoods similar to that of a convolution neural network. Many of 
the mentioned fingerprints has been implemented by several open source chemoin-
formatics package such as Chemoinformatics Development Kit (CDK) and RDKit 
and saw wide applications in compound database search and other computer-aided 
drug discovery tasks [22].

3. Artificial intelligence in drug discovery

The rise of artificial intelligence and, in particular, machine learning and deep 
learning has given rise to a tsunami of applications in drug discovery and design 
[23, 24]. Here, we provide an overview of machine learning concepts and tech-
niques commonly applied for chemoinformatics analysis. In a nutshell, machine 
learning aims to build predictive models based on several features derived from the 
chemical data, many of which are measured experimentally, such as lipophilicity, 
water solubility while others are purely theoretical, such as chemical descriptors 
and molecular fields derived from the chemical graph or 3D structure data. With 
chemical features on one hand, on the other hand of the equation is the proper-
ties that the model intended to learn, which can take on categorical or continuous 
values and usually pertaining to compound activity in question. Given every pair 
of features and labels, the model can be trained by identifying an optimal set of 
parameters that minimizes certain objective functions. Following the training 
phase, the best model can then be applied to predict the properties of new com-
pounds (Figure 1).

Although machine learning has just recently gained in popularity, its applica-
tion in chemistry is not new. The pioneering work of Alexander Crum-Brown and 
Thomas Fraser in elucidating the effects of different alkaloids on muscle paralysis 
results in the proposal of the first general equation for a structure–activity rela-
tionship, which intended to bridge biological activity as a function of chemical 
structure [25]. Early QSAR models such as Hansch analysis were mostly linear or 
quadratic model of physicochemical parameters that required extensive experi-
mental measurement. This model was succeeded by the Free-Wilson model, which 
considers the parameters generated from the chemical structure and is more closely 
resemble the QSAR model in use today. Machine learning techniques in chemin-
formatics analysis can be broadly classified as supervised learning, unsupervised 
learning, and reinforcement learning. However, new learning algorithms through 
a combination of these approaches are continuing being developed. Many of these 
approaches have already found wide application in QSAR/QSPR prediction, de novo 
drug design, drug repurposing, and retrosynthetic planning [26–28].

3.1 Supervised learning

3.1.1 Linear regression analysis

Supervised learning has a long history of development in QSAR analysis [29]. 
The supervised learning task can include classification, to determine whether a 
compound class belong to a certain class label, or regression, to predict the bioactiv-
ity of a compound over a continuous range of values. A well-known supervised 
learning approach is the linear regression model, and often the first-line method for 
exploratory data analysis among statistician. The goal of linear regression is to find 
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a linear function such that a fitted line that minimizes the distance to the outcome 
variables. When the logistic function is applied to the linear model, the model can 
also be applicable for binary classification. A direct extension of linear regression is 
polynomial regression that model relationships between independent and indepen-
dent variable as high-degree polynomial of the same or different combination of 
chemical features. In the case of model underfitting, polynomial regression pro-
vides a useful alternative for feature augmentation for the linear model. Both linear 
and polynomial regression formed the basis of classical Hansch and Free-Wilson 
analysis [30]. Interestingly, today’s situation is completely reversed. With the rapid 
explosion of chemical descriptors and fingerprints available at chemoinformati-
cian’s disposal, twin curse of dimensionality and collinearity has now become a 
significant issue.

Several approaches have been developed to tackle high dimensional data. One 
potential solution is to exhaustively explore all the possible combination of features 
to identify the best subset of predictors. However, this approach is inevitably 

Figure 1. 
Chemoinformatics prediction using artificial intelligence. Starting with a compound, the chemical feature is 
extracted from the compound 2D graph. The chemical features then serve as input for the machine learning 
model and trained based on the compound activity. The trained model with fitted parameters can then be used 
to predict activity of new compounds.
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computationally infeasible for large feature space. To solve this, heuristic approach 
like forward and backward feature selection were developed where each feature 
was added to the predictors in a stepwise manner and only features that contribute 
greatest to the fit are kept [31]. An alternative approach for feature selection is 
dimensional reduction where a smaller set of uncorrelated features can be cre-
ated as a combination of a larger set of correlated variables. One commonly used 
dimensional reduction technique is principal component analysis (PCA) that 
identifies new variables with the largest variances in the dataset [32]. Recently, 
variable shrinkage method like regularization and evolutionary algorithm has 
allowed feature selection during the model fitting phase. In the model regulariza-
tion step, a penalty term is introduced to the objective function to control model 
complexity. The lasso regularization is one such approach that used an L1 penalty 
term to constraint objective function along the parameter axis, thus enable effec-
tive elimination of redundant features [33]. The evolutionary algorithm is another 
feature selection approach that encodes features as genes and through successive 
combination, the algorithm identifies the best set of features measured by a fitness 
score. Recently, elastic net combines penalties of the lasso and ridge regression 
and shows promise in variable selection when the number of predictors (p) is 
much bigger than the number of observations (n) [34]. Although linear regression 
analysis formed the backbone of early QSAR analysis, the simple linear assumption 
of feature vector space is a major limitation for modeling more complex system.

3.1.2 Artificial neural network and deep learning

The requirement to parameterize the QSAR model in a non-linear way saw the 
widespread application of artificial neural network (ANN) in the chemoinformatic 
analysis. The ANN, first developed by Bernard Widrow of Stanford University in 
the 1950s, is inspired by the architecture of a human brain, which consisting of 
multiple layers of interconnecting nodes analogous to biological neurons. The early 
neural network model is called “perceptron” that consists of a single layer of inputs 
and a single layer of output neurons connected by different weights and activation 
functions [35]. However, it was soon recognized that the one-layer perceptron 
cannot correctly solve the XOR logical relationship [36]. This limitation prompts 
the development of multi-layer perceptron, where additional hidden layers were 
introduced into the model and the weights were estimated using the backpropaga-
tion algorithm [37]. As a direct extension of ANN, several deep learning techniques 
like deep neural network (DNN) has been introduced to process high dimensional 
data as well as unstructured data for machine vision and natural language process-
ing (NLP). In multiple studies, DNN outperformed several classical machine 
learning methods in predicting biological activity, solubility, ADMET properties 
and compound toxicity [38, 39].

To handle high-dimensional data, several feature extraction and dimension 
reduction mechanisms has been integrated into diverse deep learning frameworks 
(Figure 2). In particular, the convolution neural network is a popular deep learning 
framework for imaging analysis [40]. A convolution neural network consists of 
convolution layers, max-pooling layers, and fully connected multilayer perceptron. 
The purpose of the convolution and max-pooling layer is to extracted local recur-
ring patterns from the image data to fit the input dimension of the fully connected 
layers. This utility has recently been extended for protein structure analysis in the 
3D-CNN approach where protein structures are treated as 3D images [41]. Other 
deep learning approaches include autoencoder and embedding representation. 
Autoencoder (AE) is a data-driven approach to obtain a latent presentation of high 
dimensional data using a smaller set of hidden neurons [42, 43]. An autoencoder 
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consists of encoder and decoder. In the encoding step, the input signal is forward 
propagated to smaller and smaller sets of hidden layers thus effective map the data 
to low dimensional space. The training is achieved so that the hidden layers can 
propagate back to a larger set of output nodes to recover the original signal. A spe-
cific form of AE called variational AE (VAE) has recently been applied to de-novo 
drug design application where latent space was first constructed from the ZINC 
database from which novel compounds can be recovered by sampling such subspace 
[44]. In the context of NLP, word embedding such as word2vec implementation is 
a dimensional reduction technique to learn word presentation that preserves the 
similarity between data in low-dimension. This formulation has been extended 
to identify chemical representation in the analogous mol2vec program [45]. The 
requirement to model sequential data also prompted the development of recurrent 
neural networks (RNN). The RNN is a variant of artificial neural network where 
the output from the previous state is used as input for the current state. Therefore, 
this formulation has a classical analogy to the hidden Markov model (HMM), a type 
of belief network. RNN has been applied for de novo molecule design by “memo-
rizing” from SMILES string in sequential order and generated novel SMILES by 
sampling from the underlying probability distribution [46]. By tuning the sampling 
parameters, it is found that RNN can oftentimes generated valid SMILES string not 
found in the original training set.

3.1.3 Instance-based learning

In contrast to parametrized learning that required extensive efforts in model 
tuning and parameter estimation, instance-based learning, also known as memory-
based learning, is a different type of machine learning strategy that generates 
hypothesis from the training data directly [47]. Therefore, the model complexity 

Figure 2. 
Deep learning architectures for drug discovery. Four common types of deep learning network for supervised 
and supervised learning including deep neural network (DNN), convolutional neural network (CNN), 
autoencoder (AE) and recurrent neural network (RNN).
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is highly dependent on the size and quality of the dataset. Notable instance-based 
learning method includes the k-Nearest Neighbor (kNN) prediction, commonly 
known as “guilt-by-association” or “like-predicts-like”. In the kNN algorithm, a 
majority voting rule is applied to predict the properties of a given data, based on 
the k nearest neighbor within certain metric distance [48]. Using this approach, the 
properties of the data can be inferred from the dominant properties shared among 
its nearest neighbors. In the field cheminformatics, chemical similarity principle is 
a direct application of kNN where the similarity between chemical structures can 
be used to infer similar biological activity [49]. For analyzing large compound set, 
chemical similarity networks, or chemical space networks, can be used to identify 
chemical subtypes and estimate chemical diversity [50, 51]. Furthermore, the 
similarity concept is commonly applied in computational chemical database search 
to identify similar compounds from a lead series [52]. A major limitation of kNN is 
the correct determination of the number of nearest neighbors since that too high or 
low of such parameter can lead to either high false positive and false negative rates.

In the case of binary classification, such as compound activity discrimination, 
support vector machine (SVM) is a popular non-parametrized machine learning 
model [53]. For given binary data labels, SVM intended to find a hyperplane such 
that it has the largest distance (margin) to the nearest training data point of two 
classes. Furthermore, kernel trick allows mapping data points to high dimensional 
feature space that are linearly inseparable. For multilabel classification problems, 
other instance-learning models such as radial basis neural network (RBNN), deci-
sion trees and Bayesian learning are generally applicable [54]. In RBNN, several 
radial basis functions, which often depict as bell shape regions over the feature 
space, are used to approximate the distribution of the data set. Other approaches 
like decision tree, such as the Classification And Regression Tree (CART) algo-
rithm, can also be applied for multi-variable classification and regression and has 
been used to differentiate active estrogen compound from inactives [55]. In the 
decision tree model, the algorithm provides explanations for the observed pattern 
by identifying predictors that maximize the homogeneity of the dataset through 
successive binary partitions (splits). The Bayesian classifier is yet another powerful 
supervised learning approach that predicts future events based on past observations 
known as prior. In essence, Bayes’ theorem allows the incorporation of prior prob-
ability distributions to generate posterior probabilities. In the case of multi-variable 
classification, a special form of Bayesian learner known as the naïve Bayes learner 
greatly simplify the computational complexity with independence assumption 
between features. PASS Online is an example of a Bayesian approach to predict over 
4000 kinds of biological activity, including pharmacological effects, mechanisms of 
action, toxic and adverse effects [56]. In another study, DRABAL, a novel multiple 
label classification method that incorporates structure learning of a Bayesian 
network, was developed for processing more than 1.4 million interactions of over 
400,000 compounds and analyze the existing relationships between five large HTS 
assays from the PubChem BioAssay Database [57].

While instance-based learning encompasses a diverse set of methodology 
and present unique advantages in constantly adapting to new data, this approach 
is nevertheless limited by the memory storage requirement and, as the dataset 
grows, data navigation becomes increasingly inefficient. To address this, data 
pre-segmentation technique such as KD tree is a common approach for instance 
reduction and memory complexity improvement [58]. In another aspect, the 
ability to assemble different classifiers into a meta-classifier that will potentially 
have superior generalization performance than individual classifier also led to the 
development of ensemble learning. The ensemble learning algorithm can include 
models that combine multiple types of classifier or sub-sample data from a single 
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model. A notable example of ensemble learning is the random forest algorithm, 
which combines multiple decision trees and makes predictions via a majority voting 
rule for compound activity classification and QSAR modeling [59].

3.2 Unsupervised learning

Given a compound dataset, unsupervised learning can include tasks such as 
detecting subpopulation to determine the number of chemotypes to estimate 
chemical diversity and chemical space visualization. Putting in a broader perspec-
tive, the purpose of unsupervised learning is to understand the underlying pattern 
of the datasets. Another important problem stem from unsupervised learning is the 
ability to define appropriate metrics that can be used to quantify the similarity of 
data distributed over feature space. These metrics can be useful for chemometrics 
application including measuring the similarity between pairs of compounds.

3.2.1 Clustering

For unsupervised clustering, one popular approach is K-means clustering [60]. 
K-means clustering aims to partition the dataset into K-centroid. This is achieved 
by constantly minimizing the within-cluster distances and updating new centroids 
until the location of the K-centroids converges. K-means clustering has the advan-
tage of operating at linear time but does not guarantee convergence to a global 
minimum. Another limitation is the requirement of a pre-determined number of 
clusters, which may not correspond to the optimal clusters for the data. To identify 
the optimal k values, one solution is called the “elbow method”, which determine 
a k value with the largest change in the sum of distances as the k value increases. 
One study applied K-means clustering to estimate the diversity of compounds that 
inhibit cytochrome 3A4 activity [61]. Besides K-mean clustering, conventional 
clustering like hierarchical clustering is also commonly used. Hierarchical cluster-
ing can include agglomerative clustering, which merges smaller data objects to form 
larger clusters or divisive clustering, which generate smaller clusters by splitting 
from a large cluster. The hierarchical clustering has been demonstrated for their 
ability to classify large compound and enrich ICE inhibitors from specific clusters as 
well as for virtual screening application [62, 63].

Although hierarchical clustering is suitable for initial exploratory analysis, it is 
limited by several shortcomings such as high space and time complexity and lack 
of robustness to noise. Supervised clustering using artificial networks include the 
self-organization map (SOM), also known as Kohonen network [64]. The purpose 
of SOM is to transform the input signal into a two-dimensional map (topological 
map) where input features that are similar to each other are mapped to similar 
regions of the map. The learning algorithm is achieved by competitive learning 
through a discriminant function that determines the closest (winning) neuron. 
During each training iteration, the winning neuron has its weight updated such that 
it moves closer to the corresponding input vector until the position of each neuron 
converges. The advantages of SOM are the ability to directly visualize the high-
dimensional data on low dimensional grid. Furthermore, the neural network makes 
SOM more robust to the noisy data and reduces the time complexity to the linear 
range. SOMs cover such diverse fields of drug discovery as screening library design, 
scaffold-hopping, and repurposing [65].

Recently, manifold learning has gained tremendous traction due to the ability 
to perform dimensional reduction while preserving inter-point distances in lower 
dimension space for large-scale data visualization. Manifold learning algorithm 
includes ISOMAP, which build a sparse graph for high dimensional data and 
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identify the shortest distance that best preserves the original distance matrix in 
low dimensional space [66]. While ISOMAP requires very few parameters, the 
approach is nevertheless computational expensive due to an expensive dense 
matrix eigen-reduction process. More efficient approaches such as Locally Linear 
Embedding (LLE) has been proposed for QSAR analysis [67]. LLE assumes that the 
high dimensional structure can be approximated by a linear structure that preserves 
the local relationship with neighbors. A related approach is t-distributed stochastic 
neighbor embedding (tSNE), which relies on the pair-wise probability distribution 
of data points to preserve local distance [68].

3.2.2 Similarity

The ability to measure data similarity is as important as the ability to discern the 
number of categories from a dataset. One approach for measuring data similarity 
is by determining the distance of two data points in the high-dimensional feature 
space. Intuitively, the similarity between two data points is inversely related to 
the measured distance between them. Commonly used distance metrics include 
Euclidean distance, Manhattan distance, Chebyshev distance [60]. All of these 
metrics is a specialized form of Minkowski distance, a generalized distance metrics 
defined in the norm space. Other important similarity measures such as the cosine 
similarity and Pearson’s correlation coefficient, are commonly used to measure gene 
expression data or word embedding vector, when the magnitude of the vector is not 
essential. For binary features, metrics that measured shared bits between vectors 
can be used. For example, Tanimoto index, also known as the Jaccard coefficient, 
is one of the most commonly used metrics to measuring the similarity between 
two fingerprints in many cheminformatics applications. Tanimoto index has been 
extended to measure the similarity of 3D molecular volume and pharmacophore, 
such as those generated from the ligand structural alignment [69]. A generalized 
form of similarity metric is the kernel such as RBF or Gaussian kernel, which is a 
function that maps a pair of input vectors to high dimensional space and is an effec-
tive approach to tackle non-linearly separable case for discriminating analysis. The 
selection of an optimal similarity metrics can be achieved by clustering analysis, 
including comparing the clustering result and assess the quality of the clusters by 
different similarity measures.

3.3 Reinforcement learning

Reinforcement Learning came into the spotlight from the famous chess competi-
tion between professional chess player and AlphaGo that demonstrated the ability 
of AI to outcompete human intelligence [70]. Differ from supervised and unsuper-
vised learning, the reinforcement learning focused on optimization of rewards and 
the output is dependent on the sequence of input. A basic reinforcement learning 
is modeled based on the Markov decision process and consists of a set of environ-
ment and agent state, a set of actions and transitional probability between states. At 
each time step, the agent interacts with the environment with a chosen action and a 
given reward. Several learning strategies have been developed to guide the action in 
each state. The most well-known algorithm is called the Q-learning algorithm [71]. 
The Q-learning predicts an expected reward of an action in a given state and as the 
agent interacts with the environment, the Q value function becomes progressively 
better at approximate the value of an action in a given state. Another approach for 
guiding the action for reinforcement learning is called policy learning, which aims 
to create a map that suggests the best action for a given state. The policy can be con-
structed using a deep neural network. Recently, deep Q-network (DQN) has been 
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constructed that approximate the Q value-functions using a deep neural network 
[72]. One recent example of using deep reinforcement learning in de novo design is 
demonstrated by the ReLeaSE (Reinforcement Learning for Structural Evolution), 
which integrates both predictive and generative model for targeted library design 
based on SMILES string. The generative model is used to generate chemically 
feasible compound while the predictive model is then used to forecast the desired 
properties. The ReLeaSE method can be used to design chemical libraries with a 
bias toward structural complexity or toward compounds with a specific range of 
physical properties as well as inhibitory activity against Janus protein kinase 2 [73].

4. Conclusion

The path of drug discovery from small molecule ligand to drug that can be 
utilized clinically is a long and arduous process. The fundamental concept of arti-
ficial intelligence and the application in drug design and discovery presented will 
facilitate this process. In particular, the machine learning and deep learning, which 
demonstrated great utility in many branches of computer-aided drug discovery like 
de novo drug design, QSAR analysis, chemical space visualization.

In this chapter, we presented the fundamental concept of artificial intelligence 
and their application in drug design and discovery. We first focused on chemoin-
formatics, a broad field that studying the application of computers in storing, 
processing, and analyzing chemical data. This field already has more than 30 years 
of development with focuses on subjects ranging from chemical representation, 
chemical descriptors analysis, library design, QSAR analysis, and retrosynthetic 
planning. We then discussed how artificial intelligence techniques can be leveraged 
for developing more effective chemoinformatics pipelines and presented with real-
world case studies. From the algorithmic aspects, we mentioned three major class of 
machine learning algorithms including supervised learning, unsupervised learning, 
and reinforcement learning, each with their own strength and weakness as well as 
cover different areas of chemoinformatic applications.

As AI techniques gradually become indispensable tools for drug designer to solve 
their day-to-day problems, an emerging trend is to learn how to flexibly integrate 
these algorithms in the computational pipelines suitable for the problem at hand. 
For example, the process can start with an unsupervised learning to discerning 
the number of chemotypes followed by a supervised learning approach to predict 
multi-target activities. Furthermore, with the increasing computational power, 
deep learning network with increasing number layers and complexity will be also 
developed. Another potential development is the marriage between chemical big 
data and AI to mine the chemical “universe” for drug screening applications. The 
potential extensibility of AI in drug discovery and design is virtually boundless and 
awaits drug designer to further explore this exciting field.
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