We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

6,900 185,000 200M

ailable International authors and editors Downloads

among the

154 TOP 1% 12.2%

Countries deliv most cited s Contributors from top 500 universities

Sa
S

BOOK
CITATION
INDEX

Selection of our books indexed in the Book Citation Index
in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com

Y

Chapter

Serialization in Object-Oriented
Programming Languages

Konrad Grochowski, Michat Breiter and Robert Nowak

Abstract

This chapter depicts the process of converting object state into a format that can
be transmitted or stored in currently used object-oriented programming languages.
This process is called serialization (marshaling); the opposite is called deserialization
(unmarshalling) processes. It is a low-level technique, and several technical issues
should be considered like endianness, size of memory representation, representation
of numbers, object references, recursive object connections and others. In this chap-
ter we discuss these issues and give them solutions. We also include a short review of
tools currently used, and we showed that meeting all requirements is not possible.
Finally, we presented a new C++ library that supports forward compatibility.

Keywords: serialization, marshaling, deserialization, unmarshalling, archive,
forward compatibility

1. Introduction

Serialization or marshaling is the process of converting object state into a format
that can be transmitted or stored. The serialization changes the object state into
series of bits. The object state could be reconstructed later in the opposite process,
called deserialization or unmarshalling. The reconstructed object is a semantically
identical clone to the original object. The object after serialization is called archive.
Serialization is a low-level technique that violates encapsulation and breaks the
opacity of an abstract data type.

Many popular programming languages have serialization support included in the
language core or in the standard library. In the optimal situation serialization (and
deserialization), the object does not require any additional development and code.
In other programming languages, serialization is supported partially, and the usage
needs some support in more advanced cases. In particular, C++ standard library
contains stream representation as well as conversions between a binary or text
streams and built-in data types. However there is no support for more advanced
constructions like pointers, references, variants, collections and objects. Developers
are required to rely on additional libraries or to manually write serialization code.

Manual creation of code to write and read object is time-consuming and liable to
mistakes. This is the reason why libraries supporting serialization are provided. The
other reason for use of external tool to serialization is their support to exchange of
information between modules developed in different programming languages or
executed on systems with different architectures. This functionality requires
language-independent description of the data structure. Serialization tools that
allow this data exchange are referred to as portable.

1 IntechOpen

Introduction to Data Science and Machine Learning

The portable serialization is not a straightforward process because:

* Different processor architectures (big-endian, little-endian) lead to a different
binary representation of numbers and other objects, which potentially hinders
portability.

* Objects accessed by reference should be properly restored in terms of
inheritance and multi-base inheritance.

* The support of variants (unions in C), where the same memory buffer is used
to store different objects.

* Complex structure, where single object could be referenced multiple times by
various pointers and references, needs to be restored properly.

* Various object collections should be supported, including lists and dictionaries.

The good serialization support tools give possibility to choose the so-called
archive type, i.e. the format used by serialization. Archive medium is a name for
file or stream. Serialization archive formats can be divided into two main
categories: text-based (stream of text characters) and binary format (stream of
bytes) [1]. Typical examples of text-based formats include raw text format,
JavaScript Object Notation (JSON) and Extensible Markup Language (XML).
Binary formats are more implementation-dependent and are not so standardized.
The stream of bytes is mostly memory- and time-efficient; therefore the serialized
buffer is the smallest and usually fastest to marshall and deserialize; however the
buffer is unreadable to developers and most susceptible for portability issues. Text
formats are human-readable, which allows developers to perform manual inspec-
tions of archives and usually means easier portability, even across languages, but
converting objects to text is usually more time-consuming, and memory footprint
highly depends on serialized data and object structure. Raw text format is the most
memory-efficient text format and is readable for developers if object structure is
simple. JSON is a text format that supports tree-like object structures and allows
simple validation; XML is also a text format that supports tree-like object structures
[2]; moreover it is self-descriptive and allows data validation; however it takes a lot
of memory.

As a result portability is used in at least two contexts:

* Portability across machines with different architecture but inside the same
language or framework (implementation can rely on language-specific
solutions, i.e. default character encoding)

* Portability across various languages and frameworks (usually that includes
portability across various platforms), which faces various issues and often
needs to introduce various constraints for possible serializable structures

During the software development process, it may be necessary to change the
object structure being serialized. If the newer version of software is able to read data
saved by the older version, the serialization mechanism has backward compatibility.
If, additionally, the older version of software is able to read data saved by newer
version, the serialization mechanism has forward compatibility.

Chapter 2 describes in more details common issues faced by serialization tool
developer, followed by examples of existing solutions in Chapter 3. Chapter 4

Serialization in Object-Oriented Programming Languages
DOI: http://dx.doi.org/10.5772/intechopen.86917

presents proposed extension to one of the existing tools targeting C++ language.
Conclusions are included in Chapter 5.

2. Technical issues for serialization

While designing serialization library, developers face various technical issues
like different binary representation of numbers, different encoding of letters, object
references, and inheritance. Those issues become especially troublesome when try-
ing to create portable archive. Some of the most common issues related to creation
of portable binary archives are depicted below together with possible solutions.

2.1 Numbers

There are two main issues with making archive portable between platforms
when storing numbers—endianness and size of memory representation.

Two incompatible formats are in common use to represent larger than 1 byte
numerical values when stored into memory: a big-endian, where the most signifi-
cant byte (i.e. byte containing the most significant bit) is stored first (has the lowest
address), and little-endian, where the most significant byte is stored last, has the
highest address, as depicted in Figure 1. Big-endian is the most common format in
data networking (e.g. IPv4, IPv6, TCP and UDP are transmitted in big-endian
order), and little-endian is popular for microprocessors (Intel x86 and successors
are little-endian, but Motorola 68,000 store numbers in big-endian; PowerPC and
ARM support both).

Additionally various languages differently define their ‘basic integer type’. For
example, languages like Java or C# define int. as 32-bit variable, disregarding
execution platform architecture. C and C++ use the platform-dependent definition
of int—it has to be at least 16-bit, usually 32-bit on modern architectures, but can
be anything bigger. Python (since version 3) can serve as the most extreme exam-
ple, where built-in type int. is defined as unbounded. As a result saving types such as
C++°s std.zsize_t or long directly, without additional size information, may pro-
duce data which may not be readable on other platforms.

Some common solutions include number size as part of serialized data or user
forced to explicitly state size of data during serialization and deserialization, for
example, by using a method named writeIntl16 or by using types like C++‘s std.:
uint64_t. Potentially a more portable but possible less-efficient way is based on
variable-length integer encoding, as described in the next section as solution for
strings and array length encoding.

BIG-ENDIAN
memory
1A | 2B | 3C| 4D | 5| 6F | 70 | 80
address 0 1 2 3 4 5 6 7
LITTLE-ENDIAN
memory
80| 70 | 6F | 5E | 4D| 3C | 2B | 1A
address 0 1 2 3 4 5 6 7

Figure 1.
Representation of 0x1A2B3CADSE6F7080 in big-endian and little-endian.

Introduction to Data Science and Machine Learning

Floating-point number is more standardized across platforms. The IEEE Stan-
dard for Floating-Point Arithmetic (IEEE-754) [3] describes, among others, binary
representation of floating-point numbers. It is implemented by most of platforms
used today. But that does not necessary solve floating-point numbers’ portability
issues—for example, the first version of the standard allowed different representa-
tions of quiet Not a Number (NaN). For example, Intel x86 and MIPS architecture
can use different binary representations for it. Most serialization libraries support
only platforms supporting IEEE-754 standard but still need to include their own
representation of those NaNs and provide proper conversions.

Handling long double type, which is present on some platforms, is especially
difficult as it is not standardized, and 64-bit, 80-bit or 128-bit types can be found.
Usually portable serialization either does not support that type or defines it by itself,
requiring proper conversions to be executed during serialization.

IEEE-754 does not specify endianness used to represent floating-point numbers;
in most implementations endianness of floating-point numbers is assumed to be the
same as endianness of integers.

2.2 String serialization

The biggest problems with string serialization lie in character encoding and
variable-length optimization. Some languages or libraries (C#, Java, C++ Qt) force
default encoding of character string in memory (usually from UTF [4] encoding
family); others (C, C++) rely on platform or user settings. Serialization tool either
forces its chosen encoding, which might lead to both time- and memory-inefficient
encoding, or leaves character encoding unchanged and requires users to handle the
issue using other means. The latter is usually chosen, as sheer amount of possible
combinations of available encoding on various platforms is just enormous.

In most languages character strings can have variable length. This forces serial-
ization process to store length somehow, which raises the question on the type used
to store length. Choosing some arbitrary large integer type might be excessive for
short strings; choosing too small type might result in problems with serializing huge
data chunks. A good solution, which trades some processing time for memory
usage, is to use variable-length integer encoding—then, for example, for small
arrays, the size of the array is stored using only 1 byte.

The example of variable-length integer encoding is variable-length quantity
(VLQ), where 8-bit bytes are used for storing integer and 7-bit types starting from
the lowest significant bit are used for coding value, while the most significant bit is
used to mark the next byte as part of the encoded integer. The examples are shown
in Figure 2.

0x04 (0o|0|0|0|0O|1|0]|0O

OXx7F (0|1|1|1|1|1|1|1

0x80 (1|0|[0|/0|0|0O|0 |1 ojojo|jojojo0|0|O0

Ox408F 1| 0|0 |0[0|0|0 |1 1{0{0|0|0|0f0]1 0|0|j0|O0O|1(1 |11

Figure 2.
Unsigned integer numbers varviable-length encoded.

Serialization in Object-Oriented Programming Languages
DOI: http://dx.doi.org/10.5772/intechopen.86917

2.3 Object representation in memory

Potentially the fastest and easiest way to serialize an object would be to copy
contents of memory where that object is stored. Even putting endianness issues
aside and focusing on objects composed of only basic types (without pointers or
references), this approach just cannot work in a portable way, due to differences in
how an object is represented in memory. For efficiency some platforms might
enforce specific memory alignment of fields, which introduces padding—empty
‘unused ‘bytes between fields. Various platforms can have distinct memory align-
ments, which in turn can make the same object occupy different amounts of bytes
on other systems. Some languages, like C++, give the user partial control over the
object’s memory layout, but even those features would not help in creating fully
portable object representation.

2.4 Constant members and enumeration values

Serialization is a low-level technique, which violates encapsulation and breaks
the opacity of an abstract data type. Object deserialization from this point of view is
object creation using stream of bytes representing object state. Therefore the
deserialization (unmarshalling) ignores constness, for example, by applying
const_cast in C++. Users should either avoid serializing objects with constant
values or provide proper constructors. Otherwise encapsulation has to be broken by
serialization tool.

Popular languages provide ‘enumeration types’—list of constants. Usually enu-
meration values are serialized using their integer representation. Serialization pro-
cess has to ensure cohesion of those integer representations. The deserialization
usually requires to create enumeration value from its integer representation; there-
fore, as for the constant, it acts as a low-level technique that breaks the rules of
encapsulation.

2.5 Object references

A proper complete serialization should follow all references used in the object.
Otherwise deserialized object would not be a semantic copy of its source. This
means serializing or deserializing pointer or reference should act on pointed data. In
other words serialization should do deep pointer (references) save and restore.

This is simple only when each reference is used only once—when object con-
nections are tree-like. Then serialization could just ‘flatten’ such structure, serializ-
ing referenced objects as parts of holder objects. Problem arises, when multiple
references point to the same object and uniqueness of referenced object is important
for proper semantics of the whole structure.

Consider situation depicted in Figure 3, where object B is a ‘shallow copy’ of
object A (it points to the same data—object C). In such situations only one copy of
data should be saved into the stream, as depicted in Figure 4. To achieve that
serialization tool must introduce some portable object identifiers and reference
tracing. The latter might be difficult, depending on the language and its features
used—for example, array of elements in C++, where each of the elements could be
referenced by its direct address.

The issue becomes even more difficult in case of recursive object connections,
depicted in Figure 5. The serialization tool has to detect such structures using
reference tracing.

Introduction to Data Science and Machine Learning

object A object B (shallow copy)
\\ //
pointer pointer

object C

Figure 3.

An example of a shallow copy.
object A objectB object C
id id id

A B C

Figure 4.
Shallow copy serialization example.

object A object B
|

[

Figure 5.
Recursive object connection.

2.6 Inheritance and polymorphism

The object-oriented languages allow to reference an object by parent class
pointer. During marshaling the complete object referenced by pointer should be
stored, not the base class used as type of the pointer. This requires access to
complete class inheritance hierarchy and runtime type information. The issue here
is to retrieve and store unique and portable type identifier (e.g. C++ runtime type
information is not portable) and use it to choose proper marshaling and
unmarshalling procedures.

Inheritance becomes more troublesome when multiple inheritance is allowed,
like in C++, in contrast to languages that permit only multiple interfaces (C#, Java).
In such case the so-called diamond inheritance could be created, as depicted in
Figure 6, where the class inherits from at least two different classes that have the
same base class.

If virtual inheritance is used, only one instance of base class data is part of the
final object; otherwise base class data is present multiple times as part of each class’

Serialization in Object-Oriented Programming Languages
DOI: http://dx.doi.org/10.5772/intechopen.86917

Base

D1 D2

Figure 6.

Diamond inheritance class diagram.

Multi

class Base {};

class D1 : virtual public Base { };
class D2 : virtual public Base { };
class Multi: public D1, public D2 { };

id| Base

D1 D2

Figure 7.
Virtual diamond inheritance object serialization.

class Base {}; Multi

class D1 : public Base { }; id Base Base
class D2 : public Base { };
D1 D2

class Multi: public D1, public D2 {3}

Figure 8.
Non-virtual diamond inheritance object serialization.

parents. The mechanism of serialization must detect which form of inheritance is
used and serialize only one copy of the base class in case of virtual inheritance, as
depicted in Figure 7, or save as many distinct versions of base class data as neces-
sary, as shown in Figure 8.

2.7 Collections

It is quite common for serializable structures to contain some sort of data col-
lections, like lists, dictionaries or sets. They do not provide much new issues for
serialization process—at least when previously mentioned, serialization problems
are solved in the given solution, but they might introduce discrepancies on semantic
levels when porting data to different platforms. For example, default standard
dictionaries in Java, C# and Python are hash-based, but in C++, before C++11
standard, only std.:map, an ordered dictionary was available. In some extreme
situations, it could lead to data that could not be unmarshalled on C++ side, when
dictionary keys did not have natural ordering. On the other hand, data serialized in
C++ could lose some of its information on transition to Python or would require
usage of non-standard structures. Although most popular languages have similar set
of basic collections, some subtle differences might lead to some semantics being
‘lost in translation’. Either serialization tool provides its own implementation of
common collections for each supported language, which might prove inconvenient
for users as it creates impact on existing code of the applications, or serialization

Introduction to Data Science and Machine Learning

library has to introduce some common subset of requirements for collections and
somehow verify those requirements before serializing data, which still might
introduce some inconvenience for the users, but at least they can still use default
collection types in their languages.

2.8 Backward compatibility

The software is constantly modified, and it is useful if the new version of
software is able to read data saved by the older version. The backward compatibility
can be achieved by storing archive version into stream and keeping deserializing
code responsible for handling older versions. That leads to the newest code being
the most littered with code for supporting previous versions, but such solution is
probably the least memory consuming. Another approach is to use tagged fields,
which also help with forward compatibility, as described below.

2.9 Forward compatibility

Forward compatibility allows to use older version of modules when new version
of data format is introduced. Supporting forward compatibility requires ability to
skip unknown fields in input data. It is usually achieved by adding tags—unique
identifiers and type information—to each field. This way during deserialization the
software can read only those fields it is aware of. Such approach provides some
additional memory footprint, but helps to maintain software in live environment
where upgrades are not possible to be performed at once or at all on some instances.
Still this solution does not fix all issues—not every type of change in future data
format can be made. For example, consider removing field—question arises how
older software will interpret missing data, which it still expects. Adding new field
should always work, but adding a new type might be troublesome in languages
which do not have runtime reflection and type definition capabilities (like C++).
Keeping software forward compatible remains mostly the developer’s responsibility.

3. Overview of the existing tools
3.1 Java object serialization

One of the probably most known examples of serialization support built-in into
language is Java object serialization [5]. Thanks to additional abstraction layer
provided by Java virtual machine (JVM), serialization procedures do not need to be
concerned with execution environment architecture—memory model, including
endianness and object representation, is fixed by virtual machine. That solves some
problems with portability of the archive between various real machines. The user
only has to mark object using Serializable interface and pass object instance to
data stream, which uses runtime object reflection to determine object’s contents and
properly serialize them.

Unfortunately such solution requires all applications involved in marshaling and
unmarshalling to be running in JVM, so it is not a real cross-platform portability,
but one limited to Java-related ecosystem. Additionally definition of objects has to
be shared as parts of the code between applications, with limited support for
forward and backward compatibility. Yet out-of-the-box availability and simplicity
of use make such solution a good option for the homogeneous systems. Various
other platforms implement similar solutions, including. NET BinaryFormatter [6]
and Python pickle [7].

Serialization in Object-Oriented Programming Languages
DOI: http://dx.doi.org/10.5772/intechopen.86917

3.2 Google protocol buffers and apache thrift

The common approach for solving platform dependency issues is to introduce
interface description language (IDL) which allows users to describe data using gener-
alized rules. Such language usually provides limited capabilities, but it makes possi-
ble to generate proper code for various platforms. For example, both Google
Protocol Buffers [8] and Apache Thrift [9] allow basic numeric types, enumera-
tions, lists, and dictionaries, but no polymorphism or object references. In return
those tools can generate serializers and deserializers for significant range of lan-
guages, starting with C++, through C# and Java, to Python and JavaScript. Users
gain portability in exchange for enforced data structures.

Apache Thrift can serialize objects described with common IDL using various
target methods, including human-readable JSON, but for highest efficiency the so-
called Compact Protocol should be used, which is similar to the serializer present in
Protocol Buffer. Using overhead of field identifier and type encoded before each
value, those encoders ensure good forward and backward compatibility. Archive
users still need to share part of the code, in the form of the IDL files, but can be
implemented in various technologies. Due to built-in forward compatibility sup-
port, there is also a smaller chance that change in the IDL would need to propagate
to all involved parties than previous solutions.

Some solutions try to remove field identifier overhead from archive and keep
forward compatibility support by including whole schema (IDL) inside archive
[10, 11]. It can significantly reduce archive size when storing multiple items of the
same type. Initial parsing of the schema can introduce some processing overhead,
but more importantly such solution might be inconvenient for languages with static
typing, where using types created in runtime might be tiresome for developers.

3.3 C++ dedicated solutions

Although C++ is usually supported by cross-language solutions, like Apache
Thrift or Google Protocol Buffers, it lacks its own in-language serialization support
[12], like Java, C# or Python. Using IDL-based serialization is not always an option
for C++ project, as it can be less efficient or too limited than language-specific
solution. It is also required to generate all data structures from IDL, so it is not
suitable to use in existing project, where serialization should be added to legacy
code. As C++ is often used in big legacy projects, the need for language-specific
serialization library is justified.

3.3.1 C++ Boost.Serialization

Boost.Serialization [13] is a widely used C++ serialization library. This library
makes reversible deconstruction of an arbitrary set of C++ data structures possible.
It uses only C++03 facilities [14] and therefore could be used in a wide spectrum of
C++ compilers, even on the tools that do not support newer C++11 standard [15].
The archive could be binary or raw text or XML. The serialization does not require
external record description; additionally the user types to be serialized do not need
to derive from a specific base class.

The library supports writing and reading of built-in types (numbers) and most
classes from the standard library, like std.::string and other containers. Enumera-
tions are saved as numeric values. Boost.Serialization supports pointer and refer-
ence marshaling and demarshaling, i.e. the serialization acts also for the data
pointed to. Additionally this library has support for shared pointers (only one copy
of data pointed to is saved) and objects with multiple inheritance (also virtual

Introduction to Data Science and Machine Learning

inheritance). Unfortunately, the Boost.Serialization has no forward compatibil-
ity. Portability between platforms is achieved only for text formats. In binary
format only the data is stored, without additional information that allows the type
identification. The numbers are stored as their memory image. The archive is very
efficient in terms of size; processes of reading and writing are fast. Unfortunately,
there is a lack of portability of binary format.

The backward compatibility is achieved by adding the versioning; therefore the
library user can provide different solutions for each version.

To add the serialization for user type, the programmer should implement
method serialize, where one of its argument is archive and the second is the
version number.

3.3.2 C++ cereal

Similarly to Boost.Serialization, cereal library [16] provides language-
specific serialization capabilities. It too makes developer responsible for writing
explicit marshaling procedures and supports only backward compatibility. Because
it requires serialized structures to use C++11 smart pointers instead of raw pointers
and references, library’s code can be much simplified, and object tracking becomes
easier. Additionally cereal provides support for most of C++ standard library,
making it more convenient than Boost.Serialization.

Library contains similar archive types as Boost.Serialization including JSON,
XML and binary formats. The major advantage of cereal is the presence of
PortableBinary archive, which allows to store data efficiently in binary format in a
cross-platform way—Boost.Serialization does not support moving archive across
platforms with various endianness, although it is currently being developed by
Boost team.

4. cereal_fwd: New serialization library for C++
4.1 Motivation

Currently C++ ecosystem seems to lack efficient and convenient serializing tool
supporting portability and forward compatibility. Developers can use some of
cross-language tools, like Apache Thrift or Protocol Buffers, but those enforce data
types used in application. Users that want to add serialization to existing code base,
with already defined C++ classes, are usually left with Boost.Serialization (as part
of the most popular Boost library), whose binary archives are not portable. Other
solutions, like cereal, do not provide forward compatibility support. The lack of
desired tool was a motivation to create new library for serialization of C++ objects.

The main goals for the new C++ library were:

* Support backward and forward compatibility.

* Use minimal size of saved data without hindering ability to evolve structure of
serialized data.

* Support streaming for saving and loading operations.

Minimize allocations during saving and loading process.

Support portability between different platforms.

10

Serialization in Object-Oriented Programming Languages
DOI: http://dx.doi.org/10.5772/intechopen.86917

* Do not break compatibility for existing archives in library.

* Loading data from unknown source cannot result in undefined behaviour.

4.2 Implementation

New cereal_fwd library was based on cereal as it already provides some of the
required features, and thanks to relying on C++11 language features, it has much
simpler implementation than popular Boost.Serialization. It might be trouble-
some for some users, as it requires code to be C++11 compliant, but it helps keep
library code simple, and transition towards C++11 should be desired by most
existing code’s maintainers anyway.

Users of both cereal and cereal_fwd are required to explicitly list serializable
structure’s fields in a dedicated method, as shown in Figure 9. This is a similar
solution to the Boost.Serialization, as as of the moment C++ lacks any reflection
support, which could help automate the process. Ongoing work [17] suggests that in
the future such code could be significantly simplified.

Figure 10 shows how structure can be serialized using selected archive type. In
the example BinaryArchive is used; cereal provides few more archive types, each
with the same interface—choosing different archives does not require any changes
on structure side. One of the existing archives—PortableBinary—provides support
for platform portability and was used as a starting point for cereal_fwd extension
in the form of the ExtendableBinary archive. The new archive type is responsible
for supporting forward compatibility in cereal _fwd.

4.2.1 Numbers

Numbers in cereal _fwd are serialized and deserialized similar to cereal, but to
ensure forward compatibility, all integer type fields are saved with size information
attached. This makes it possible to load integers which have different sizes on
writing and reading side. The attempt to load integer that cannot fit into type used
for loading will result in thrown exception. For space-saving purpose, the size of the
saved integer is determined as the minimal number of bytes needed to represent the
number being stored.

struct Example

{
std::uint8_t x;
float y;

template <class Archive>
void serialize(Archive& ar)
{
ar(x, y);
}
+;

Figure 9.
Basic cereal serialization procedure.

11

Introduction to Data Science and Machine Learning

int main()

{
std::ofstream os("out", std::ios::binary);
cereal: :BinaryOutputArchive archive (os);

Example data;
archive (data) ;

return O;

}

Figure 10.
Serializing structuve in cereal.

4.2.2 Arrays and strings

The size of array or string is saved using variable-length integer encoding—the
most significant bit is used to indicate if the next byte is part of stored number. This
way for small arrays size is stored using only 1 byte. To speed up serialization and
save archive space, all items in the array are assumed to have the same size—size
information is stored only once per array.

4.2.3 Polymorphic types

To properly read object stored using polymorphic pointer, identifier of the
object’s most derived type is needed. In cereal_fwd library, as well as in Boost.
Serialization, for polymorphic pointers a unique type of identifier is saved to
stream. Identifier can be any string; by default fully qualified name of the type is
used. During reading process identifier is a key in factory which helps in creating
correct object and selecting proper deserialization function.

Identifier for specific class is saved only once in stream, for the first occurrence
of given type, accompanied with corresponding ordinal number. For every next
instance, just the ordinal number is saved. While reading data saved by newer
application, it may happen that identifier of polymorphic type will be connected to
field which is unknown and will not be normally read. For that reason logic to
process every occurrence of type identifier was added.

During code evolution new derived types for existing base classes may be added
and saved as polymorphic pointers in archive. In the original version of cereal
library, the attempt to read unknown polymorphic type results in exception being
thrown, consequently stopping reading process. In cereal_fwd library an option
was added which changes that behaviour. For pointers of unknown type, nullptr
value is set, and reading process is continued without interruption.

4.2.4 Shared pointers

Existing cereal library supports saving several pointers pointing to the same
object. In this situation only one copy of the data is saved into the stream. For every
other occurrence of the same object, only numerical identifier of previously saved
data is stored. For saving process a dictionary of stored pointers and their identifiers
is maintained. If address is found in the dictionary, only identifier is saved. For
loading process similar mapping between identifiers and shared pointers is

12

Serialization in Object-Oriented Programming Languages
DOI: http://dx.doi.org/10.5772/intechopen.86917

maintained. If during loading pointer identifier is already in the map, data is not
loaded, and pointer is returned directly from the map.

4.3 Forward compatibility

Forward compatibility was a desired important new feature of cereal_fwd, yet
implementing it proved to be a demanding task. Some initial assumptions and
design decisions were challenged during implementation and are described below.

4.3.1 Adding fields

Supporting possibility for adding fields in newer versions of application should
be straightforward—old version of application should just ignore unknown fields. It
is true, as long as shared objects are not concerned. Class modification may lead to a
new shared pointer field being added, which points to an object which is already
used by a different class in the older version of the application. If the first occur-
rence of shared pointer is saved by field which is present only in the new version
and the older version used for reading, reading such shared pointer may be difficult.
An example of such situation is depicted in Figure 11. Object saved in the archive is
A class. In the first version of the application, only one pointer to C class object is
saved. In the second version, B::c field pointing to C class object is added. Fields A::c
and B::c point to the same object. In the second version, B::c pointer, being part of b
field of class A, is saved first. Next, c field of A class is saved. When data is read by
the first version of the application, during reading of the B::c, the type of that field is
not known, and the whole field could be skipped in basic situation. However, data
has to be read in some way to be available for A:c field restoration.

One of the solutions to the described problem is saving stream position of each
occurrence of shared pointers and restoring it in case data is needed to read the
object by other pointers. This solution was rejected because it would introduce
additional requirement on streams supported by the library, to handle rewinding
reading position. Such operation is not supported by all streams, i.e. streams formed
using network sockets. Another rejected solution was partial interpretation of data
and storing it in temporary objects of basic types supported by archive. If the object
pointed by shared pointer from unknown field needs to be read by other pointers,
instead of using main stream, data would be copied from temporary objects. This

Version 1 J Version 2 J

A A

+b:B +b:B

+ c: std::shared_ptr<C> ¢ = = = + c: std::shared_ptr<C>
B Same B

- object -

+ a:int + a:int

C C

Figure 11.
Example of class evolution showing problem with saving shared pointers.

13

Introduction to Data Science and Machine Learning

approach would introduce computational overhead even if no other pointer to the
same object was saved.

The chosen solution copies binary data of pointed object of unknown field type
to a temporary buffer, by default allocated on heap. In case data needs to be read for
earlier omitted pointer, it is read from helper stream created from buffer. Apart
from additional stream, stack of reading positions is maintained. It is needed in case
omitted object contains additional pointers which were also omitted. An example of
this case can be seen in Figure 12. The main saved class is Outer. In the first version
of application, two shared pointers Outer:q and Q::z are saved. In the second
version, pointers are saved in the following order: Inner::z, Inner:q, Q:z, Outer:q,
Q::z. Only single object instances of Q and Z classes are stored; pointers point to the
same objects. When data saved by the second version is read by the first one, data
needed by Outer:q field can be found in Inner:q position. Data for Q::z field can be
found in Inner:z position.

Making copy of data may require a lot of memory. In a worst case size of copied
data may be close to the size of all data being read. Such memory allocations may
not be acceptable in some applications. Because of that, option to limit maximal size
of helper buffer has been added. Trying to use more memory will result in exception
being thrown.

4.3.2 Removing fields

Apart from adding new fields, at some point of application evolution, it might be
justified to remove no longer needed fields. Saving unnecessary fields results in size
and computational overhead. Because in cereal order of saving fields is used for
field identification, it is forbidden in that library to erase fields from saving and
reading methods.

To circumvent this problem, cereal_fwd adds ability to change field’s type to
OmittedFieldTag. Using this type indicates position where there was a field but it
is no longer used. The older version of application, when trying to read field, which
in archive is marked using this tag, will just leave field value in the object
unchanged. In most situations it will leave that field with default value assigned in
object constructor. It is the responsibility of the developer to erase only such fields

Version 1 J Version 1 J
Outer Outer
+ inner: Inner + inner: Inner
+ q: std::shared_ptr<Q> » = - + q: std::shared_ptr<Q>
1
1
Same
Inner object Inner
1
1 1
1 N
' +q: std::shared_ptr<Q>
Same
object
Q , Q
+ z: std::shared_ptr<Z> e + z: std::shared_ptr<Z>
A Z
Figure 12.

Example of nested shaved pointers.

14

Serialization in Object-Oriented Programming Languages
DOI: http://dx.doi.org/10.5772/intechopen.86917

in the newer application, where default values will still make older versions of the
application work correctly. To help the developer create a robust code, method

Archive:wasSerialized was added. Result of this method indicates if the field
being read was really saved or if OmittedFieldTag was used in the archive.

4.3.3 cereal_fwd forward compatibility summary

The cereal_fwd supports forward and backward compatibility. The forward
compatibility is available, for the following changes:

* Introducing version parameter in serialize method, which can be used for
conditional serialization code.

* Adding new fields at the end of the object’s serialization code; new fields have
to be loaded conditionally using class version stored in archive.

* Removing fields from the end of class/struct is permitted.

* Changing the size of integers, as long as stored value is not bigger than target
field size; exception is thrown otherwise.

* Renaming structures or classes; the exceptions, caused by storing fully
qualified type name in the archive:

* Renamed class cannot be stored using shared pointer.

* Renamed class cannot be saved using pointer to the base class.

 Changing type of serialized field to OmittedFieldTag; this change can be done
even without changing class version number and introducing conditionals to

serialization procedure.

* This leaves some changes in the data structure layout to be still forward
incompatible.

* Removing fields without adding OmittedFieldTag—trying to load more fields
than were saved will result in exception.

* Changing the sign of an integer and loading number that does not fit into a new
type, e.g. loading negative number to unsigned integer type.

* Changing the size of floating-point types (e.g. from float into double).
* Changing order in which fields are serialized.

* Adding field for serialization without updating class version and loading it
without checking version.

* Adding field for serialization not as the last field.

It is still the developer’s responsibility to introduce changes in such a way that
archives will be forward compatible.

15

Introduction to Data Science and Machine Learning

4.4 Library benchmarks

Performance and memory consumption of newly created cereal_fwd was com-
pared against original cereal, Boost.Serialization, as similar library, and Protocol
Buffers as popular non-C++-dedicated solution. The time taken to serialize and
deserialize data was comparable; however the fastest for numbers and collection of
numbers was Protocol Buffers; the slowest turned out to be Boost.Serialization.
For pointers the fastest was cereal or cereal_fwd, the slowest was Boost.Serial-
ization, and Protocol Buffers does not support deep pointers serialization.

Usage of memory allocated on heap was measured using total number of alloca-
tions (number of calls to memory manager) and maximal size of the heap. All
libraries (Boost.Serialization, Protocol Buffers, cereal and our cereal_fwd) had
similar usage of the memory when serializing numbers, collections and pointers; all
differences were not statistically significant.

Size of created executable was 30% bigger for our cereal_fwd than for cereal
and comparable with Boost.Serialization. Protocol Buffers had the smallest code
size for serializing numbers, but in the case of collections, code size was the biggest.

The benchmark results are available at project web site.

5. Discussion and conclusion

The support for serialization is required in all currently used programming
languages, because there still a growing need to exchange information [18]. The
perfect solution, meeting all requirements, does not exist, because the requirements
are contradictory:

* The fastest serialization/deserialization process is achieved for binary format,
but it is not portable between platforms.

* The most compact is also binary format (without included data description),
but such archive is hard to use to exchange information between modules
written in different programming languages.

* The text formats, like JSON or XML, are portable and self-descriptive, but
serialization/deserialization needs additional data processing, and archive takes
significantly more space than the binary one and in result might be slower to
transmit if needed.

The programming languages that support reflection have simplified serialize/
deserialize process, but other environments needing several technical issues should be
resolved, as depicted in Section 2. The existing libraries to serialization require con-
stant development and modernization; because the programming languages are
modernized, new standards are implemented, and additional new programming lan-
guages are being developed and become used. Our new cereal_fwd library addressed
the forward compatibility problem for C++ serialization. The library is publicly
accessible at https://github.com/breiker/cereal_fwd under BSD-like licence.

Acknowledgements

This work was supported by the Statutory Founds of Institute of Computer
Science.

16

Serialization in Object-Oriented Programming Languages
DOI: http://dx.doi.org/10.5772 /intechopen.86917

Competing interests

The authors declare that they have no competing interests.

Availability of supporting data

Supporting data, including examples of use and source codes, is available in the
project repository https://github.com/breiker/cereal _fwd.

Author details

Konrad Grochowski, Michal Breiter and Robert Nowak*
Institute of Computer Science, Warsaw University of Technology, Poland

*Address all correspondence to: robert.nowak@pw.edu.pl

IntechOpen

© 2019 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium,

provided the original work is properly cited.

17

Introduction to Data Science and Machine Learning

References

[1] Sumaray A, Kami Makki S. A
comparison of data serialization formats
for optimal efficiency on a mobile
platform. In: Proceedings of the 6th
International Conference on Ubiquitous
Information Management and
Communication. ACM; 2012. p. 48

[2] Keith W Ballinger, Erik B
Christensen, and Stefan H Pharies. Xml
serialization and deserialization. US
Patent 6,898,604; 2005

[3] IEEE. IEEE Standard for Floating-
Point Arithmetic. IEEE Std
754-20082008. pp. 1-70

[4] International Organization for
Standardization. Unicode. ISO/IEC
10646; 2008

[5] Oracle. Java Object Serialization
Specification. 2019. Available from: h
ttps://docs.oracle.com/en/java/javase/
12/docs/specs/serialization [Accessed:
April 15, 2019]

[6] Microsoft. BinaryFormatter Class.
2019. Available from: https://docs.mic
rosoft.com/en-us/dotnet/api/system.
runtime.serialization.formatters.binary.
binaryformatter?view=netframework-
4.7.2 [Accessed: April 15, 2019]

[7] Python Software Foundation. Pickle
—Python Object Serialization. 2019.
Available from: https://docs.python.org/
3/library/pickle.html [Accessed: April
15, 2019]

[8] Google Inc. Protocol Buffers—
Google’s Data Interchange Format. 2019.
Available from: https://github.com/
protocolbuffers/protobuf [Accessed:
April 15, 2019]

[9] Apache Foundation. Apache Thrift.

2019. Available from: https://thrift.a
pache.org [Accessed: April 15, 2019]

18

[10] Apache Foundation. Apache Avro.
2019. Avaliable from: https://thrift.a
pache.org [Accessed: April 15, 2019]

[11] Huang AS, Olson E, Moore DC. Lem:
Lightweight communications and
marshalling. In: 2010 IEEE/RS]
International Conference on Intelligent
Robots and Systems. IEEE; 2010.

pp. 4057-4062

[12] Nowak R, Pajak A. C++ Language:
Mechanisms, Design Patterns, Libraries.
BTC, Legionowo. ISBN: 978-83-
60233-66-5; 2010

[13] Boost Community. Boost.
Serialization. 2019. Available from:
https://www.boost.org [Accessed: April
15, 2019]

[14] International Organization for
Standardization. Programming
Languages—C++. ISO/IEC 14882:2003,
2003

[15] International Organization for
Standardization. Programming
Languages—C++. ISO/IEC 14882:2011,
2011.

[16] Shane Grant W, Voorhies R. Cereal.
2019. Available from: http://uscilab.gith
ub.io/cereal/ [Accessed: April 15, 2019]

[17] International Organization for
Standardization. Working Draft, C++
Extensions for Reflection. 2019.
Available from: http://www.open-std.
org/jtcl/sc22/wg21/docs/papers/2018/
n4766.pdf [Accessed: April 15, 2019]

[18] Malladi SK, Murphy RF, and Deng
W. System and method for processing
messages using native data serialization/
deserialization in a service-oriented

pipeline architecture. US Patent
8,763,008; 2014

