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Chapter

Bayesian Inference of Gene
Regulatory Network
Xi Chen and Jianhua Xuan

Abstract

Gene regulatory networks (GRN) have been studied by computational scientists
and biologists over 20 years to gain a fine map of gene functions. With large-scale
genomic and epigenetic data generated under diverse cells, tissues, and diseases, the
integrative analysis of multi-omics data plays a key role in identifying casual genes
in human disease development. Bayesian inference (or integration) has been suc-
cessfully applied to inferring GRNs. Learning a posterior distribution than making a
single-value prediction of model parameter makes Bayesian inference a more robust
approach to identify GRN from noisy biomedical observations. Moreover, given
multi-omics data as input and a large number of model parameters to estimate, the
automatic preference of Bayesian inference for simple models that sufficiently
explain data without unnecessary complexity ensures fast convergence to reliable
results. In this chapter, we introduced GRN modeling using hierarchical Bayesian
network and then used Gibbs sampling to identify network variables. We applied
this model to breast cancer data and identified genes relevant to breast cancer
recurrence. In the end, we discussed the potential of Bayesian inference as well as
Bayesian deep learning for large-scale and complex GRN inference.

Keywords: gene regulatory network, data integration, Bayesian inference,
Gibbs sampling, breast cancer

1. Introduction

The era of “big data” has arrived to the field of computational biology [1].
Biological systems are so complex that in many situations, it is not feasible to
directly measure the target signals. Actually, most of biological measurements are
noisy and dependent to but not exactly about what we aim to find. This is where
probability theory comes to our aid: estimate the true signals from noisy measure-
ments in the presence of uncertainty. Bayesian inference has been widely applied in
computational biology field. In certain systems for which we have a good under-
standing, i.e., gene regulation, behind the observed signals, there exist multiple
hidden factors controlling how genes behave under a specific condition. As we are
lacking observations on those hidden factors, we model them as parameters in a
Bayesian framework, with or without informative prior. Then, for each parameter,
Bayesian inference learns a “posterior” distribution, through which we make a final
estimation with a confidence interval.

Bayesian inference can update the shape of the learned posterior distributions
for model parameters whenever new data observations arrive, providing enough
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flexibility for integrative analysis and model extension [2]. Although using more
data types means defining more model parameters, Bayesian inference automati-
cally prefers for simple models that sufficiently explain data without unnecessary
complexity. This is a very important property for biological data analysis because a
simple model is much easier to validate using lab-controlled experiments.

In this chapter, we introduce how to apply Bayesian inference to inferring gene
regulatory networks (GRN). GRN is a hierarchical network with regulatory pro-
teins, target genes, and interactions between them [3], playing a key role in medi-
ating cellular functions and signaling pathways in cells [4]. Accurate inference of
GRN using data specific for a disease returns disease-associated regulatory proteins
and genes, serving as potential targets for drug treatment [5]. In recent years,
noncoding DNA analysis reveals more and more noncoding regions with strong
regulatory effects on gene transcription [6], which greatly expands the scope of
GRN research.

GRN analysis requires an integration of multiple types of measurements includ-
ing but not limited to gene expression, chromatin accessibility, transcription factor
binding, methylation, and histone modification [7]. The challenge of GRN inference
is that there exit hundreds of proteins and tens of thousands of genes. One protein
can regulate hundreds of target genes, and their regulatory relationship (an inter-
action in GRN) may vary across different cell types, tissues, or diseases. Experi-
ments of high-throughput target gene measurements for one protein in one specific
condition are costive and noisy [8], let alone for hundreds of proteins under diverse
conditions. For many tissues or diseases, we need to integrate multiple relevant data
types and computationally infer GRNs specific for those conditions.

Bayesian inference is particularly suitable for GRN inference as it is very flexible
for large-scale data integration. Moreover, when we have multiple datasets gener-
ated from very similar conditions, estimating variables using distribution learning
than a single-value prediction makes the final estimation more robust and easier to
compare across multiple datasets. We demonstrated this using two breast cancer
datasets generated under very similar conditions, in which we also compared a
hierarchical Bayesian model with several competing methods. Moreover, using
patient data as model input, although they are noisy, we successfully identified a
GRN associated with breast cancer recurrence. Finally, we discussed the potential of
Bayesian deep learning for large-scale and complex GRN inference.

2. Gene regulatory networks

Human genome can be simply divided into coding (exomes) and noncoding
regions. The process of producing an RNA copy from exomes is called transcription,
which can be quantitatively measured usingmicroarray or RNA-seq technics [9, 10],
producing gene expression data of�30,000 genes simultaneously. The transcription
process is mediated by regulatory regions located in the noncoding genome, includ-
ing promoters and enhancers [11]. Promoters are proximal to gene transcription
starting sites (TSS), usually within 3 kbps (Figure 1A), while enhancers are usually
located distantly, i.e., 200 kbps (Figure 1B), and can be up to 1 Mbps. In general,
each gene could be associated with one promoter and multiple enhancers.

Transcription factors (TFs), a special category of proteins, often coordinate with
each other as cis-regulatory modules (CRMs) [12] and co-bind at regulatory regions
[13]. For example, in Figure 1A or B, there are three TFs binding at promoter or
enhancer regions and functioning together as one CRM to mediate the transcription
process of their target genes. It has been known that the association relationships of
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TFs are not random [14, 15]. Some TFs tend to co-bind at the same regions more
often than with others, i.e. MYC and MAX. One TF can regulate multiple genes, and
a target gene can also be regulated by multiple TFs considering the existence of
CRMs (Figure 1C). For each specific TF-gene interaction in Figure 1C, its regula-
tory effect can be either positive (activating gene expression) or negative (depress-
ing gene expression), as shown in Figure 1D. The protein activities of TFs are
therefore connected to the dynamic changes of gene expression across multiple
samples [13]. To accurately identify GRNs, we need quantitative measures of all
types of signals in Figure 1D–F. However, due to technical limitations, we can
obtain good quality measurements of gene expression, binary measurements
(existence or not) of individual TF-gene interactions yet with a high false positive
rate, but no measurements of TF activities. To infer GRNs, we must jointly estimate
TF activities, TF-gene regulation strengths, and CRMs (TF associations) given gene
expression observations.

Figure 1.
Illustration of gene regulation: (A) transcription factor (TF)-gene regulation through proximal promoter
regions; (B) TF-gene regulation through distal enhancer regions; (C) a gene regulatory network (GRN)
including TFs, genes, and their interactions; (D) regulatory effects of TFs on individual genes with “red” as
activation, “blue” as depression, and “white” as no regulatory effects; (E) a heatmap of TF protein activities
across biological samples of multiple conditions with “red” as enhanced activity, “green” as reduced activity,
“black” as no activity; and (F) a heatmap of gene expression across multiple samples, with “red” as
up-regulated, “green” as down-regulated, “back” as no change.
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3. Bayesian inference

Bayesian inference is particularly suitable for inferring GRN as it will learn a
posterior distribution for each variable, with a high tolerance on the noise existing
in the gene expression data or caused by non-perfect prior assumptions.

3.1 A hierarchical Bayesian model

Given gene expression data under multiple biological samples (conditions), we
focus on the expression variation of each gene from its baseline expression because
such variation reflects the effects of condition changes. For a specific disease, only
genes showing significant expression changes between disease cells and normal cells
are interesting candidates. Thus, for gene n, we calculate the log fold change of gene
expression under each sample (1,2,3,…,M) to that of baseline condition (0). To
model gene expression data of hundreds of genes in the same framework, for genen,
we normalize its M log fold change values (indexed by m) to values with 0-mean
and 1-standard deviation, denoted by yn,m. Then, a linear model is applied to
modeling yn,m as follows [16, 17]:

yn,m ¼
X

t

an, tbn, txt,m þ εn, (1)

where variable an,t denotes the regulation strength of TF t on gene n; bn,t is a
binary variable denoting the regulation occurrence of TF t on gene n; TF protein
activity variable xt,m under condition (sample) m directly connects to gene expres-
sion yn,m under the same condition [16]; and the noise variable εn denotes inaccu-
racy of gene expression marvelments.

Given protein-DNA binding measurements of T TFs and N genes (i.e., ENCODE
database), we are able to identify TF binding sites at promoter or enhancer regions
within 1 Mbps around individual target genes [18]. Each gene can be associated with
several regulatory regions, and at each region, there exit a subset of TFs, as a
candidate CRM. Then, we may observe multiple candidate CRMs (in total Kn) for
gene n, indexed by cn ¼ 1, 2, 3,…, k,…, Kn. Each cn is associated with a unique set of
TF-gene binding events (bcn, t ¼ 1 or bcn, t ¼ 0). We assume cn a hidden variable
controlling how binding variables are associated with each other, with candidate
space defined from existing databases.

To estimate the abovementioned variables, we develop a hierarchical Bayesian
network to model their internal dependency and associations with gene expression,
as shown in Figure 2. CRM variable c controls the state of each binding variable b.
For b ¼ 1, regulation strength a can be either positive or negative denoting gene
activation or depression by the binding TF. In the meanwhile, through TF-gene
regulation, the protein activities of TFs are directly connected to target gene
expression, with ε denoting the measurement noise in gene expression data.
With Eq. (1) and Figure 2, we aim to estimate all these variables using Bayesian
inference, which requires a prior assumption (not necessary to be informative) on
the distribution of each variable.

Based on prior binding observations from public database, the candidate space
of CRM is known, denoted by C. Given a gene expression dataset generated from a
specific condition, for gene n, we need to estimate which CRM cn is regulating its
gene expression. As the prior data does not tell which CRM is more likely to be true
under a specific condition, we assume a discrete uniform prior on c.

Based on data observation, y has a Gaussian-like distribution with 0-mean and
1-standard deviation. The gene expression noise component ε can be assumed to
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follow a 0-mean Gaussian distribution as well, denoted by N 0; σ
2
ε

� �

. Although the

variance of noise is hard to determine, it should fall in the same scale as gene
expression measurements. Therefore, we set σ2

ε
¼ 1.

The regulation strength variable a is conditional on the state of b (as shown in
Figure 2): for b ¼ 0, we set a ¼ 0, denoting the nonexistence of TF-gene regula-
tion; for b ¼ 1, a can be either positive or negative so that we assume a 0-mean

Gaussian prior on a, as N 0; σ
2
a,prior

� �

(the variance σ2a,prior is a hyperparameter).

As GRN is a sparse network, most a values would be 0.
We model TF activity x under multiple biological samples using Gaussian ran-

dom processes. As baseline expression is largely removed from gene expression data
during the data normalization process, ideally the baseline activity of each TF is 0.
In each sample, x can be either enhanced or reduced with respect to its baseline

activity. Thus, we assume a 0-mean Gaussian prior for x, as N 0; σ
2
x,prior

� �

(the

variance σ2x,prior is also a hyperparameter).

Regarding hyperparameters of the prior mean and variance for a or x, a benefit
of assuming 0-mean prior is to control model overfitting. Only when the posterior
distribution has a significant non-zero mean value that we will accept that estima-
tion. It is hard to determine the scale of variable values without direct measure-
ments. A conservative way is to assume non-informative prior on them and let the
algorithm determine the final posterior distribution, although the non-informative
prior will lead to a stickier chain and a posterior with potential multiple modes.
Exploring such a posterior is certainly more challenging than exploring a well-
behaved unimodal posterior. However, there is really no need to trouble with this
multimodal posterior on a or x, as the inferential values of the whole framework are:
the discrete posterior distributions of CRMs. For each gene, the posterior distribu-
tion of CRMs learned from a data reveals which CRM(s) are regulating this gene.
If there are more than one mode in the CRM posterior distribution, this gene will
be associated with two or three CRMs. This is quite common in gene regulatory
networks as one gene can be regulated by CRMs at multiple regulatory regions
simultaneously. σ2a,prior and σ

2
x,prior should be significantly larger than the variance of

Figure 2.
A hierarchical Bayesian framework for GRN modeling. The number of variables in this framework depends on
the numbers of biological samples,TFs, genes, and candidate CRMs. Given gene expression data under different
conditions, for the same TF and same gene, their regulatory relationship (variable b) may have very different
regulatory strength (variable a). And the TF activity (variable x) can be significantly different as well.
Therefore, GRNs are highly context-specific.
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gene expression data to allow a “large” space for the algorithm to generate posterior
distributions. As y is already normalized with variance of 1, we set σ2a,prior ¼ 10 and

σ
2
x,prior ¼ 100.

Then, the problem of GRN inference is Bayesian formed as estimating posterior
probabilistic distributions of A ¼ acn, tf g, B ¼ bcn, tjbcn, t ¼ 0 or 1f g, and X ¼ xt,mf g

given Y ¼ yn,m

n o

. Considering the dependence relationship of all variables in

Figure 2, we define a joint posterior probability as follow:

P A;B;X Yjð Þ∝P Y A;B;Xjð Þ � P Að Þ � P Cð Þ � P Xð Þ

∝
Y

n

Y

m

σ
�1
ε

� �

exp �
1

2σ2
ε

yn,m �
X

t

acn, tbcn, txt,m

 !2
0

@

1

A

�
Y

n

Y

t

σ
�1
a,prior

� �

exp �
a2cn, t

2σ2a,prior

 !

�
Y

n

Y

cn

1

Kn

�
Y

t

Y

m

σ
�1
x,prior

� �

exp �
x2t,m

2σ2x,prior

 !

:

(2)

Estimating the joint distribution of above-mentioned variables is difficult.
Alternatively, we can approximate the joint posterior distribution by estimating the
marginal distribution of each variable. To do that, we iteratively calculate each
variable’s conditional probability and perform Bayesian estimation using Gibbs
sampling. The advantage of using Gibbs sampling is that it is theoretically
guaranteed to converge to the posterior distribution [2, 19–21].

3.2 Gibbs sampling

We first sample TF activity variable xt,m for the TF t and sample m, according to
its conditional probability (based on Eq. (2)) as follows (Figure 3):

P xt,m Y;A;Bjð Þ∝
Y

n

exp �
1

2σ2
ε

yn,m �
X

t

acn, tbcn, txt,m

 !2

�
x2t,m

2σ2x,prior

0

@

1

A

: (3)

P xt,m Y;A;Bjð Þ is a Gaussian distribution with mean and variance as follows:

μx ¼
σ
2
x,prior

P

n yn,m �
P

j 6¼t acn, jbcn, jxj,m
� �

acn, tbcn, t

σ
2
x,prior

P

na
2
cn, tb

2
cn, t þ σ2

ε
N

σ
2
x ¼

σ
2
ε
Nσ

2
x,prior

σ
2
x,prior

P

na
2
cn, tb

2
cn, t þ σ2

ε
N

8

>

>

>

>

>

<

>

>

>

>

>

:

(4)

As shown in Eq. (4), the estimation of distribution of xt,m is conditional on other
TF activities xj,m j 6¼ tð Þ. Therefore, we iteratively sample xt,m as xt,m∣xj,m j 6¼ tð Þ one
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by one for t ¼ 1 � T according to each individual posterior Gaussian distribution

N μx; σ
2
x

� �

.
Secondly, for gene n, for each bcn, t ¼ 1, we estimate the associated regulation

strength acn, t according to the following conditional probability:

P acn, t Y;X;Bjð Þ∝
Y

m

exp �
1

2σ2
ε

yn,m �
X

t

acn, txt,m

 !2

�
a2cn, t

2σ2a,prior

0

@

1

A

: (5)

P acn, t Y;X;Bjð Þ is a Gaussian distribution, too, with mean and variance calculated
as follows:

μa ¼
σ
2
a,prior

P

m yn,m �
P

j 6¼tacn, jxj,m
� �

xt,m

σ
2
a,prior

P

m x2t,m þMσ2
ε

σ
2
a ¼

σ
2
a,priorMσ

2
ε

σ
2
a,prior

P

m x2t,m þ σ2
ε
M

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

(6)

Similar to the estimation process of TF activity variables, the posterior distribu-
tion of each acn, t also depends on the values of the other acn, j j 6¼ tð Þ. Thus, we
iteratively sample acn, t for TFs in module cn one by one according to each individual

posterior Gaussian distribution N μa; σ
2
a

� �

.

Finally, with sampled TF activity and regulation strength variables, we sample
CRM variable cn for the gene n. It is hard to assume a prior probabilistic distribution
shape on the joint distribution of multiple binding variables in cn. In practice, cn has
a finite number of states as Kn. Therefore we can directly calculate a discrete
discrete conditional probability for each cn ¼ k as follows:

Figure 3.
Gibbs sampling of CRMs,TF activities, and regulation strengths with prior TF-gene regulation and gene
expression observations as input.
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P cn yn;A;X
�

�

� �

∝
Y

t

P yn acn, t;xtj
� �

P acn, t cnjð ÞP xtð Þ

∝
Y

t

exp �
1

2σ2
ε

X

m

yn,m �
X

t

acn, tbcn, txt,m

 !2

�
a2cn, t

2σ2a,prior
�

P

mx
2
m, t

2σ2x,prior

0

@

1

A

(7)

After calculating Eq. (7) for all possible values of cn, we sample one value
according to the following discrete probability density function:

p cn ¼ kð Þ ¼
P cn ¼ k yn;X;A

�

�

� �

P

p P cn ¼ p yn;X;A
�

�

� � (8)

After sampling TFA, TF-gene regulation strength, and cis-regulatory module
variables for all N genes, we update binding states in matrix B according to the
sampled CRMs for individual genes and start the next round of sampling.

Convergence of Gibbs sampling can be monitored based on the ratio (R) of
within-variance and between-variance using multiple sequences with different ini-
tial states [22]. In each application, we ran five sequences of sampling in parallel. In
the i-th round of sampling, for each variable we calculated the within-variance
using samples from 1 to i in each sequence and then take the mean value of
variances from five sequences. In the meanwhile, we calculate the between-
variance of the same variable using its sampled values in the i-th round but from
five sequences. For each catalog of variables, the distribution of ratio (R) between
within-variance and between-variance is used to monitor the overall sampling
convergence. When the sampler converges, values of R would be around “1.” We,
respectively, monitor the sampling convergence for regulation strengths and TF
activities. Once both of them converge, we start to accumulate samples on TF-gene
binding variables. As each TF-gene binding variable is binary, its sampling fre-
quency represents the posterior probability of binding occurrence. In the mean-
while, for each gene, a discrete posterior probability distribution of all associated
candidate CRMs is inferred, the mode of which reveals the most likely regulatory
region associated with current gene.

4. Inferring GRNs for breast cancer

4.1 Application to in vitro breast cancer cell line data

We first applied the hierarchical Bayesian model to gene expression data mea-
sured from in vitro breast cancer cell lines. We chose to use cell line data mainly
because such data is usually clean and good for validating computational models.
Here, we carefully selected two public available breast cancer cell line datasets
measured independently but under the same condition (downloadable from the
GEO database https://www.ncbi.nlm.nih.gov/geo/, with accession number
GSE62789 for Data #1 and accession number GSE51403 for Data #2, both treated by
24 hours of 17b-estradiol (E2) to stimulate breast cancer cells proliferation). The
similarity between the two inferred GRNs can be used to evaluate the robustness of
GRN inference methods.

For prior TF-gene collection, we checked the ENCODE database (https://www.
encodeproject.org/) and selected genome-wide binding profiles of 39 TFs, measured
from the same breast cancer cell line. We collected candidate binding events by
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examining TF binding signals at promoter and distantly associated enhancers asso-
ciated with each gene. In total we collected 2,319 candidate TF-gene interactions
(Figure 4A) between 39 TFs and 275 genes, whose gene expression is consistently
upregulated in both datasets when breast cancer cells are stimulated to fast prolif-
erate (Figure 4B and C). We, respectively, applied the hierarchical Bayesian model
to the two gene expression datasets with the same prior settings. To monitor the
convergence of the sampling process, we ran five sequences with different initial
states and sampled 1000 times in each. As shown in Figure 4C andD (for Data #1),
after 100 rounds of sampling, the model started to converge. The sampling fre-
quency on each TF-gene interaction was calculated as the posterior probabilistic
weight. We extracted top �500 most confident TF-gene interactions as the final
GRN estimation for each data set and then focused on common interactions
between two relevant GRNs.

Here, we specifically compared our approach with three competing methods
(COGRIM [20], LASSO [23], and NARROMI [24]). COGRIM was a Bayesian infer-
ence approach without modeling on CRMs. It treated individual TF-gene binding
events independently. Although such an assumption lowered the model complexity,
it made the model less robust against the inaccuracy in the TF-gene binding prior.
Moreover, for the TF activity, COGRIM simply treated it as an observed value by
directly using TF mRNA expression. Although ideally the variation of mRNA tran-
scription is proportional to the activity change of mRNA-translated protein, cur-
rently this correlation is very low in most studies using gene expression. These
inaccurate assumptions brought a lot of uncertainty to modeling gene expression
data. LASSO used a linear regression model to integrate prior TF-gene interactions
and gene expression data and predicted one value for each TF-gene interaction.
The NARROMI approach inferred GRNs using gene expression data only without
any prior on TF-gene interactions, and also, it made single-value prediction for each
interaction based on the mutual information between gene and TF expression
values. Theoretically, the Bayesian approach described in this chapter should be

Figure 4.
Input breast cancer cell line data for GRN inference: (A) prior TF-gene interactions (“black” denotes binding
occurrence); (B) heatmap of time-course gene expression data; (C) heatmap of steady-state gene expression, all
data are from the same breast cancer cell line; (D) convergence of regulatory strength estimation using time-
course gene expression data; and (E) convergence of TF activity estimation using time-course gene expression
data.
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more robust to identify GRNs. We applied the four competing methods to the above
two datasets. Indeed, GRNs identified using our Bayesian model were more consis-
tent between two related datasets (Table 1).

By analyzing the common 306 TF-gene interactions in Table 1, we identified
two functional CRMs. The first CRM had five TFs including POL2A, TDRD3, MYC,
MAX, and E2F1 (Figure 5A). The activities of these TFs, as inferred from both
datasets, were shown in Figure 5B and C, respectively. In total there were 100
genes regulated by this module, and 60 of them were associated with breast cancer
through literature survey (selected genes shown in Figure 5D). The second CRM
had six TFs including ELF1, JUND, JUN, FOXA1, CTCF, and HDAC1. In total, there
were 89 genes regulated by this module, and 51 of them were associated with breast
cancer (selected genes shown in Figure 5E). COGRIM identified fewer genes for the
first CRM and failed to identify the second CRM. For the other non-Bayesian
approaches, as the number of common TF-gene interactions inferred from two

Methods GRN edges

in Data #1

Similarity with

other methods

GRN edges

in Data #2

Similarity with

other methods

Common GRN for

Data #1 and #2

Bayesian 500 0.878*** 413 0.822*** 306***

COGRIM 516 0.798 457 0.696 239

LASSO 565 0.486 510 0.533 74

NARROMI 514 0.519 591 0.516 44

***denotes hypergeometric p-value < 0.001.

Table 1.
Comparison of methods for robust GRN inference.

Figure 5.
Key CRMs inferred from breast cancer cell line data: (A) CRM #1 and their TF components; (B) estimated TF
activities from Data #1 (time-course); (C) estimated TF activities from Data #2 (steady state); (D) target
genes regulated by CRM with MAX, MYC, E2F1, POL2A and TDRD3; (E) target genes regulated by CRM
with ELF1, JUND, JUN, FOXA1, CTCF, and HDAC2. Target genes in D and E are associated with breast
cancer as supported by literature survey. “Blue” block represents genes showing up in at least two literatures,
while “green” block represents genes with one literature support.
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datasets was small, size reduced by over 75%. We did not identify the two key
CRMs using either approach.

4.2 Application to breast cancer patient data

We finally applied the Bayesian approach to breast cancer patient data
downloaded from the TCGA database (https://portal.gdc.cancer.gov/). Survival
time distribution of 93 breast cancer patients treated by tamoxifen revealed two
modes with 5-year survival as division. Accordingly, we defined an “Early recur-
rence” group including patients with survival time <5 years and a “Late recur-
rence” group including patients with survival time longer than 5 years.
Differentially expressed genes between two groups (t-test p-value <0.05) were
selected for further GRN analysis. It can be seen from Figure 6B that the gene
expression data of breast cancer patient is quite noisy. To increase the robustness of
GRN results, we used another cell line dataset. Specifically, gene expression data
was generated from four cell lines including MCF7, MIII, LCC1, and LCC9, with
three replicates for each. MCF7 cells were sensitive to tamoxifen treatment, while
LCC9 cells were drug-resistant. One hypothesis is that breast cancer recurrence is
associated with drug resistance. Thus, we expected that the overexpressed genes in
the “Early recurrence” group were also overexpressed in LCC9 cells. For 431 genes
with such expression pattern in both patient and cell line data, we collected prior
TF-gene interactions from 39 TF binding profiles used in previous sections. We,
respectively, inferred GRNs using both datasets and identified a common GRN
including interactions between 25 proteins and 161 genes. Analysis of this common
CRN revealed 5 key CRMs with 11 proteins and 32 target genes highly relevant to
breast cancer recurrence (Figure 6).

5. Discussion

5.1 Gene regulatory networks in different cell states

Recent technology advance in single-cell gene transcription makes it feasible to
study TF-gene regulation during the cell differentiation process [25]. In sections

Figure 6.
Breast cancer recurrence-associated GRN: (A) heatmap of gene expression in breast cancer cell lines including
MCF7, MIII, LCC1, and LCC9, where “red” represents overexpression and “green” represents lower expression;
(B) heatmap of gene expression of breast cancer patients in “Early recurrence” and “Late recurrence” groups,
divided by 5-year survival; (C) binding sites of 11 TFs on 32 target genes; and (D) association of 5 CRMs and
32 target genes.
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above, across multiple samples, TF-gene interactions are assumed to hold, and the
gene expression change is connected to the dynamic variation of TF activities
across samples. Yet, at the single-cell level, gene expression measurements are
very noisy, whose variation across cells may be partially disconnected from the
dynamic changes of TF activities [26]. In that situation, the linear model in Eq. (1)
will not work with such gene expression input. Moreover, during the cell
differentiation process, in fact we do not have prior knowledge on whether GRNs
will hold or change between individual cell states. That means TF-gene interaction
change can be another causal factor on gene expression variation across different
cell states, too. To model GRNs individually for cell states, we need to define more
binding variables, which will definitely make the estimation process more
complex.

Those cell state-specific GRNs will uncover the regulatory mechanism that
drives cell differentiation. This would be particularly useful for cancer treatment. If
any regulation changes at a very early cell state eventually lead to cancer cell fast
proliferation, we can engineeringly target those TFs, binding regions, or genes for
cancer prevention. Currently inference of cell-state-specific GRN is either through
enrichment analysis of TF binding signals in each cell state [27] or regression
modeling of gene expression using the matched measurements of regulatory region
activities [28]. When the single-cell expression measurements become more
accurate, we hope the connection between gene expression and TF activities still
holds. Then, the model in Eq. (1) with proper improvement can be used to infer
cell-state-specific GRNs.

5.2 Bayesian neural network

Although theoretically there is no upper limit on the number of model para-
meters in the Bayesian framework (Figure 2), the more variables we have, the
slower the convergence will be. Moreover, given a complex network with many
states, the dependence of different variables will be hard to model, and the estima-
tion process is more easily to stuck into a local state. In recent years, neural network
is widely applied to variable estimation in complex systems. Neural network is an
end-to-end system that mimics the human brain and tries to learn complex repre-
sentation within the dataset to provide an output. Similar to conventional machine
learning, deep neural networks make a single-value prediction for each model
parameter, without measuring uncertainty. That means the model performance
relies heavily on the prediction accuracy, and even one overconfident decision can
result in a big problem. A Bayesian approach to neural networks can naturally solve
this problem by learning a distribution accounting for the uncertainty in parameter
estimates [29].

Unlike Bayesian inference discussed in previous sections, inferring model pos-
terior in a Bayesian neural network is much more difficult as there are many
parameters to estimate in neural networks. Direct inference of variable posterior
distribution is hard so that approximations to the posterior are often used, i.e., the
variational inference. The posterior can be modelled using a simple variational
distribution such as a Gaussian distribution, and the distribution’s parameters are
fitted to approximate the true posterior as close as possible by minimizing the
Kullback-Leibler divergence between this simple variational distribution and the
true posterior. In earlier sections, we have demonstrated that modeling variables in
GRN using Gaussian distribution provided robust performance. To infer large-scale
GRN with thousands of genes and hundreds of TFs, Bayesian neural network can be
a solution in which posterior distributions of all variables can be approximated by
Gaussian distribution.
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6. Conclusion

In this chapter, we mathematically illustrated how Bayesian inference can be
used to infer gene regulatory networks. Using several breast cancer-specific
datasets, we demonstrated the effectiveness of Bayesian network modeling in
biological meaningful signal discovery, in comparison with methods of linear
regression. Potentially, Bayesian inference can be used to infer dynamic GRN
during cell differentiation using new types of gene expression data. For very
large-scale GRN inference in complex systems, the big number of variables may
degrade conventional Bayesian inference performance. Bayesian neural networks
using variational inference can be a good solution.
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