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Chapter

Hemolysin of Vibrio Species
Tamaki Mizuno, Anusuya Debnath and Shin-ichi Miyoshi

Abstract

Hemolysin is one of the major pathogenic factors among Vibrio species, which 
shows hemolytic activity against erythrocytes. It is associated with different Vibrio 
spp. that manifest either wound infection or intestinal infection as their clinical 
symptom. V. vulnificus and V. alginolyticus are well-known causative organisms for 
wound infection, whereas the gastrointestinal infection is caused by V. cholerae, 
V. mimicus, and V. parahaemolyticus. There are two major groups of hemolysins in 
Vibrio spp.: the thermostable direct hemolysin (TDH) from V. parahaemolyticus and 
the HlyA (El Tor hemolysin) from V. cholerae. These hemolysins have homology 
in certain degrees; however, the essential amino acids for the activity are variable 
depending on the species. This chapter summarizes the functions and features of 
hemolysins from Vibrio species, which has been reported so far.

Keywords: thermostable direct hemolysin, El Tor hemolysin,  
Vibrio parahaemolyticus, vibrio cholerae, vibrio mimicus, vibrio vulnificus

1. Introduction

The genus Vibrio is comprised of facultative, anaerobic, Gram-negative, curved-
rod bacteria that are widely found in natural aquatic environments such as marine, 
estuarine, and freshwater [1]. More than 100 species have been currently described 
in this genus, and at least 12 species represented by V. cholerae, V. parahaemolyticus, 
and V. vulnificus cause a variety of clinical symptoms in human (Table) [1–5]. In 
addition, species such as V. metoecus and V. navarrensis are among the newly isolated 
species from human, and it is strongly suggested that they are human pathogens of 
Vibrio spp. [6, 7]. On the other hand, the major pathogenic Vibrio for aquatic verte-
brates or invertebrates are V. anguillarum, V. harveyi, V. ordalii etc., responsible for 
fatal hemorrhagic septicemic disease called vibriosis in marine animals [5, 8–10]. 
Vibrio spp. prefer warm water temperature (15–35°C), so they are likely to flourish 
more with rising environmental water temperature due to global warming and thus 
the probability of infections caused by them.

Human diseases caused by pathogenic Vibrio spp. can be divided into two 
major types based on symptoms: intestinal infection and non-intestinal infection 
[1, 3]. The intestinal infection includes gastroenteritis and cholera, whereas non-
intestinal infection includes septicemia and wound infection (Table 1). Cholera 
is caused by ingestion of food and drinking water contaminated with V. cholerae 
O1/O139 that produces cholera toxin (CT) as a major virulence determinant and 
characterized by severe diarrhea that rapidly leads to dehydration [11, 12]. Till 
date it remains a major public health disease with estimated 2.9 million cases and 
95,000 deaths annually worldwide [13]. There are many clinical cases of gastro-
enteritis by V. parahaemolyticus due to ingestion of raw fish and shellfish [14, 15]. 
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The other species such as V. cholerae non-O1/non-O139, V. mimicus, and V. fluvialis are 
known as agents of foodborne illness [3, 16–19]. On the other hand, V. vulnificus 
is the most studied among Vibrio spp. as a causative bacterium of wound infec-
tions, though the clinical cases by V. damsela and V. alginolyticus are also reported 
[3, 20–24]. V. vulnificus is an opportunistic pathogen and poses a threat to individu-
als with compromised immunity because it can also cause septicemia, which leads 
to high lethal rates [24–26].

These pathogenic Vibrio have been reported to produce various virulence fac-
tors, including enterotoxin such as CT produced by V. cholerae O1/O139 [12, 27], 
hemolysin, and Type III secretion system (T3SS) in V. parahaemolyticus [28, 29] 
and extracellular protease in V. vulnificus [30]. This chapter has mainly summarized 
how hemolysins play an important role in the pathogenicity of Vibrio spp. based on 
studies till date.

2. Hemolysins

Hemolysin is a toxin that attacks membranes of mammalian erythrocyte and 
causes cell lysis called hemolysis. It is reported that hemolysins are produced by 
different species of bacteria like Escherichia coli, Staphylococcus aureus, and Vibrio 
[31–34]. In most cases, the evidence based either on in vivo experiments or clinical 
reports that suggests the involvement of hemolysins in the pathogenicity is reported 
[33, 35]. This toxin plays certainly an important role in the infection process initi-
ated by Vibrio spp. Hemolysin from Vibrio spp. can be classified mainly into two 
groups, thermostable direct hemolysin (TDH) from V. parahaemolyticus and El Tor 
hemolysin (HlyA) from V. cholerae. Even though these toxins partially share the 
sequence homology, the essential amino acids for the activity, structural features, 
and function are different between TDH and HlyA.

Species Diseases Hemolysin family

V. alginolyticus Wound infection, otitis media TDH

V. carchariae Wound infection

V. cincinnatiensis Meningitis

V. cholerae

O1/O139 Cholera HlyA

non-O1/non-O139 Gastroenteritis, wound infection HlyA, TDH

V. damsela Wound infection HlyA

V. fluvialis Gastroenteritis HlyA

V. furnissii Gastroenteritis

V. hollisae Gastroenteritis, septicemia TDH

V. metschnikovii Cholecystitis

V. mimicus Gastroenteritis HlyA, TDH

V. parahaemolyticus Gastroenteritis, wound infection TDH

V. vulnificus Septicemia, wound infection HlyA

HlyA, El Tor hemolysin group; TDH, thermostable direct hemolysin family.

Table 1. 
Pathogenic Vibrio species for human and hemolysins produced by them [1, 3].
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2.1 Thermostable direct hemolysin (TDH), TRH, and others

2.1.1 Thermostable direct hemolysin (TDH)

V. parahaemolyticus was first isolated by Fujino et al. as a causative agent of 
food poisoning in Osaka, Japan [14]. The pathogenicity of V. parahaemolyticus is 
determined by multiple virulence factors including adhesins, thermostable direct 
hemolysin (Vp-TDH), TDH-related hemolysin (Vp-TRH), and two type III secre-
tion systems (T3SS), T3SS1 and T3SS2 [28]. It has been reported that the clinical 
isolates of V. parahaemolyticus show β-hemolysis activity on Wagatsuma blood 
agar medium [36], whereas almost all non-clinical isolates are non-hemolytic. 
This hemolytic activity has been given a specific term known as Kanagawa 
phenomenon (KP), and it is due to Vp-TDH encoded by the tdh gene [37, 38]. 
Thus, Vp-TDH has been considered as an important virulence factor in gastroen-
teritis cases and KP reaction as a good marker for the identification of pathogenic 
strains. Thermostable direct hemolysin, Vp-TDH, was named so because of 
its characteristics. These characters include persistence of activity even after 
heating at 100°C for 10 minutes and the ability to act directly on erythrocytes 
with no enhancement in activity level even by the addition of lecithin [39]. This 
purified toxin has numerous biological activities such as hemolytic activity for 
erythrocytes of various species, cytotoxic activity for some mammalian cells, and 
enterotoxic activity measured by fluid accumulation (FA) in the rabbit ileal loop 
test [33, 40–42].

The mature form of Vp-TDH consists of 165 amino acids and is approxi-
mately of 19 kDa. It exists as a tetramer in solution, which is responsible for 
the membrane disruption [43, 44]. This is a pore-forming toxin, but it has no 
similarities with other bacterial pore formers except Vp-TDH homologs like 
Vp-TRH and TDH-like toxins from V. cholerae non-O1/non-O139, V. mimicus, 
and V. hollisae [45–49]. Vp-TDH forms pores of approximately 2 nm in diameter 
on erythrocyte membrane that results into colloidal osmotic lysis [50]; however, 
the exact mechanism of pore formation is not yet identified. The reactivity of 
Vp-TDH against erythrocytes from various animal species showed variability; 
for example, it causes hemolysis of erythrocytes from rat, human, rabbit, and 
sheep but not horse [51]. It is reported that the amino acid residues, Arg46, 
Gly62, Trp65, and Gly90, are critical for the hemolysis; in fact, the substitution of 
residue Arg46 by site-directed mutagenesis inhibits the formation of  
tetramer [33, 44, 52].

Enterotoxicity, which is another feature of Vp-TDH, has been evaluated by 
increase of FA in the rabbit ileal loop due to intestinal Cl− secretion as a manifesta-
tion of diarrhea induced by V. parahaemolyticus. The Cl− secretion from human 
colonic epithelial cells by Vp-TDH is caused by stimulation of Ca2+-activated 
chloride ion channel not by pore formation on the cells [53]. Evidence suggests 
that Vp-TDH acts in three sequential steps: receptor binding on the epithelial cells, 
followed by increase in intracellular Ca2+ concentration due to protein kinase C 
activation, and finally, stimulation of Ca2+-activated Cl− channel. However, it is 
reported that the deletion of tdh only leads to partial decrease in enterotoxicity 
against rabbit intestinal cells, whereas cytotoxicity to Hela cells was not affected 
at all [54]. Moreover, a recent study provides a new evidence that Vp-TDH can also 
engage as an effector of T3SS and implicated to elevate FA in animal model [55]. 
Therefore, the reason behind pathogenicity of V. parahaemolyticus is perhaps not 
only because of Vp-TDH but also because it involves a synergistic action of multiple 
virulence factors including T3SS.
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2.1.2 TDH-related hemolysin (Vp-TRH) and others

Vp-TRH is identified as a new hemolysin found in KP-negative strains from 
clinical samples, named TDH-related hemolysin (Vp-TRH) [45]. Vp-TRH protein 
has a conserved domain of Vp-TDH and immunologically similar to Vp-TDH. But 
unlike Vp-TDH, it is heat-labile and lost its activity when heated at 60°C for 10 min-
utes. It is reported that there are significant nucleotide differences that exist within 
the trh family of two subgroups (trh1 and trh2), sharing 84% sequence identity, as 
opposed to the less diversity (<3.3%) of five tdh genes (tdh1 to tdh5) [38, 56–58]. 
Vp-TRH also induces chloride ion secretion in human colonic epithelial cells like 
Vp-TDH; therefore, it is considered as one of the important virulence factors among 
KP-negative strains of V. parahaemolyticus [59].

TDH-like toxins have also been found in V. cholerae non-O1/non-O139, V. 
mimicus, and V. hollisae known as NAG-TDH, Vm-TDH, and Vh-TDH, respectively 
[47–49]. It is reported that all clinical isolates of V. hollisae possess tdh gene [60], 
whereas only some clinical strains of V. cholerae non-O1/non-O139 and V. mimicus 
contain tdh gene [46, 61]. The molecular weight of these toxins is similar to Vp-TDH 
and shows immunological cross-reactivity with Vp-TDH. Both NAG-TDH and 
Vm-TDH are stable on heating at 100°C for 10 minutes, and the hemolytic activity 
against erythrocytes of most animals is almost similar to Vp-TDH [47, 48]. On the 
other hand, Vh-TDH is a heat-labile toxin that gets inactivated by heating at 70°C 
for 10 minutes, unlike Vp-TDH [49]. Moreover, it is reported that V. alginolyticus 
also produce TDH-like toxin, and it shows toxicity for mouse and fish [62].

2.2 HlyA (El Tor hemolysin) and related toxins

2.2.1 HlyA of V. cholerae

V. cholerae O1/O139 is the causative agent of cholera, and its main virulence fac-
tors are cholera toxin (CT) and toxin-coregulated pilus (TcpA) [11, 12]. V. cholerae 
produces some other virulence factors such as hemolysin, hemagglutinin/protease 
(HA/protease), T3SS, etc., which can also serve as important elements for the 
pathogenesis, especially in the strains devoid of CT and TcpA [63–65]. The water-
soluble cytolytic toxin produced by V. cholerae El Tor O1 and non-O1/non-O139 
strains is known as El Tor hemolysin (HlyA)/V. cholerae cytolysin (VCC) [66, 67]. 
HlyA can facilitate lysis of erythrocytes from various animals and other mammalian 
cells [66, 68]. It can also exhibit potent enterotoxicity as measured by fluid accumu-
lation in the rabbit ileal loop test. Thus, HlyA has been considered to play a crucial 
role in the pathogenesis of gastroenteritis caused by V. cholerae strains [63].

The HlyA encoded by hlyA gene is produced in the form of 82 kDa inactive 
precursor, termed pre-pro-HlyA [69, 70]. This 82 kDa precursor consists of 25 
amino acid long signal peptide at the N-terminal, a pro-region of 14 kDa and 
mature region of 65 kDa at the C-terminal. The mature form of HlyA is generated 
via a two-step process [71]. In the first step, the 82 kDa precursor is converted 
to 79 kDa pro-HlyA by cleavage of the signal peptide during its translocation 
through the inner membrane and then secreted extracellularly in an inactive form. 
In the second step, the inactive pro-HlyA is converted to active HlyA through the 
proteolytic removal of pro-region, usually at the bond between Ala157 and Asn158 
(Figure 1; Proteolytic cleavage site). It has been found that the pro-HlyA can be 
activated by extracellular metalloprotease (HA/protease), a major protease of V. 
cholerae and also by other exogenous or endogenous proteases. However, the exact 
proteolytic cleavage site depends on the specificity of the protease, which is differ-
ent compared to native processing [72]. Moreover, it is reported that pro-HlyA can 
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bind as a monomer to eukaryotic cell membrane, and then this bound pro-HlyA 
can be activated by exogenous, endogenous, extracellular, and even by cell-bound 
proteases [73]. It is well known that the pro-region can act as an intramolecular 
chaperone, an essential role of pro-region that governs the proper folding of HlyA 
pro-toxin [74].

HlyA belongs to bacterial β-barrel pore-forming toxins (β-PFTs) family 
that includes α-hemolysin of Staphylococcus aureus and aerolysin of Aeromonas 
hydrophila [75–77]. Consistent with generalized mode of action by β-PFT, the pore 
formation mechanism of HlyA has been proposed to follow three distinct steps 
(Figure 2); binding as a water-soluble monomer onto the target cell membrane, 
formation of pre-pore oligomeric intermediates by the self-assembly of toxin 
monomer, and finally insertion of the pore-forming stem-loop into the membrane, 
resulting into the formation transmembrane heptameric β-barrel pores on the 
cell membrane [78–80]. HlyA causes colloid osmotic lysis of mammalian cells by 
forming transmembrane pores on the target cell membranes [81, 82], which causes 
not only hemolysis but also potent cytotoxic effect such as vacuolation [83] and 
apoptosis [84, 85] of epithelial and immune cells.

The PFTs show affinity for a wide range of cell surface molecules such as 
cholesterol [86], glycosylphosphatidylinositol-anchored glycoproteins [87], 
and the human complement receptor CD59 [88]. In case of human erythrocyte 
membrane, glycophorin B has been reported to be a receptor for HlyA [89]. The 
hemolysis of rabbit erythrocytes by HlyA is competitively inhibited by asialofe-
tuin and glycoproteins with multiple β1-galactosyl residues [90]; this provides an 
evidence that cell surface carbohydrates are acting as functional receptors.  
V. cholerae cytolysin also shows strong preference for cholesterol- and sphin-
golipid-rich vesicles [91]. So, it can be said like other PFTs, HlyA also shows 
affinity for multiple cell surface receptor.

The mature HlyA is composed of three distinct domains: a central cytolysin 
domain and two lectin-like domains with β-trefoil and β-prism folds. The β-trefoil 
and β-prism domains exhibit structural homology to the carbohydrate-binding 

Figure 1. 
Comparison between V. cholerae hemolysin (HlyA) and other Vibrio spp. hemolysins. HlyA of V. cholerae 
consists of pro-region (light blue), cytolysin domain (blue), β-trefoil lectin domain (pink), and β-prism lectin 
domain (yellow). There is a proteolytic cleavage site (gray) between pro-region and cytolysin domain for the 
conversion of pro-HlyA to mature HlyA. The hemolysins from V. mimicus and V. fluvialis have no significant 
differences in domain construction. V. vulnificus hemolysin lacks β-prism lectin domain and pro-region; 
instead, V. vulnificus produces VvhB that might act as chaperon-like pro-region. V. damsela produces HlyA-like 
hemolysin without β-prism lectin domain.
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domain of the plant lectin ricin and jacalin, respectively [78]. In fact, the 15 kDa 
β-prism lectin domain has carbohydrate-binding activity [92], and the deletion 
of 15 kDa β-prism lectin domain generates a 50 kDa variant (HlyA50) with no 
effect on the global conformation of the monomer, but the hemolytic activity 
reduced by approximately 1000-fold [93, 94]. The β-prism domain has been shown 
to promote self-assembly of the toxin monomer in carbohydrate-independent 
manner, suggesting the hemolytic activity of HlyA50 is compromised due to 
reduction in pre-pore oligomeric intermediates [95]. Another study proposed the 
role of β-trefoil domain and showed that it is critical for the folding of cytolysin 
domain to its active conformation [96]. Recently, it is reported that the three loop 
sequences located in the bottom tip of the cytolysin domain play a critical role in 
the initial interaction with membrane lipid bilayer. This study showed that the 
replacement of the amino acid residues in the three loop sequences designated as 
“rim region” compromises the specific interaction of HlyA monomer with mem-
brane lipid bilayer and blocks the pore formation process. Thus, it leads to repres-
sion in the lysis of human erythrocytes and reduced cytotoxic activity for HT-29 
human colorectal adenocarcinoma cells [97]. In the next step that is pre-pore 
oligomerization, it has been shown that alteration of key amino acids affects not 
only the formation of oligomeric intermediates but also the subsequent formation 
of functional transmembrane pore [98]. Finally, pre-pore oligomeric intermedi-
ates lead to the formation of transmembrane β-barrel pore. Paul et al. confirmed 
that the transmembrane stem region plays a significant role in the functional pore 
formation. However, the deletion of “pre-stem” loop of cytolysin domain does not 
affect the membrane binding and pre-pore heptamer formation [99]. Therefore, 
it is considered that each step of HlyA pore formation mechanism plays an indis-
pensable role in the generation of functional transmembrane pore in the target cell 
and thus enhances the virulence of V. cholerae.

Figure 2. 
Mechanism of transmembrane heptameric pore formation by HlyA. (a) Pro-HlyA structure. (b) Secreted 
pro-HlyA is activated through the removal of pro-region by protease. (c) HlyA monomer binds to the target 
membrane by using a rim region and/or β-prism lectin domain with membrane component such as cholesterol 
and carbohydrate receptor, respectively. (d) HlyA monomer assembles to heptameric pre-pore oligomeric 
intermediates. (e) The pre-stem of HlyA is inserted into the membrane, resulting into the formation of 
transmembrane heptameric β-barrel pores.
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2.2.2 Other related El Tor hemolysin of Vibrio species

Several studies have reported that other Vibrio species such as V. mimicus, V. 
vulnificus, and V. fluvialis also produce hemolysin that shares some common struc-
tural features with HlyA [100–102].

V. mimicus, a species closely related to V. cholerae, is a causative agent of human 
gastroenteritis [103]. Pathogenic strains of V. mimicus exhibit various clinical symp-
toms from watery to dysentery-like diarrhea [104]. This pathogen produces many 
kinds of virulence factors such as CT-like enterotoxin and heat-stable enterotoxin 
[105–108], with Vm-TDH as a causative factor in some clinical strains. However, 
most clinical strains lack the ability to produce any of these toxins. The heat-labile 
hemolysin/cytolysin (V. mimicus hemolysin; VMH) is thought to be the most 
common virulent enteropathogenic factor [109, 110]. In fact, VMH induces FA in a 
ligated rabbit ileal loop in dose-dependent manner, and the antibody against VMH 
apparently reduces enterotoxicity by V. mimicus in the living cells [100, 111]. These 
findings indicate that VMH is potently related to pathogenesis of this pathogen. The 
enterotoxic activity of VMH might be due to intestinal Cl− secretion caused by the 
activation of both Ca2+-dependent and cyclic AMP-dependent Cl− secretion systems 
[111, 112]. Similar to HlyA, it has been indicated that VMH is also a pore-forming 
toxin. This toxin can disrupt various mammalian erythrocytes including bovine, 
rabbit, sheep, human, and mouse in colloid osmotic manner, and it shows the high-
est sensitivity for the horse erythrocytes [100].

VMH encoded by vmhA gene is predicted to be of 83 kDa with 82% similarity 
with V. cholerae HlyA. VMH is also secreted as 80 kDa precursor known as pro-
VMH [113], which is then converted to 66 kDa mature toxin through the removal 
of N-terminal propeptide by trypsin-like protease of V. mimicus between the amino 
acid residues Arg151 and Ser152 [114, 115]. It has been assumed that VMH might be 
processed in a two-step reaction just like HlyA and pro-toxin can be activated by 
various proteases such as trypsin, chymotrypsin, and metalloprotease [115, 116]. 
Similar to 50 kDa variant of HlyA, mature VMH can be converted to 51 kDa of 
VMH (designated VMH51) through the removal of 15 kDa from C-terminal end by 
metalloprotease of V. mimicus. VMH51 almost showed no lytic activity toward horse 
erythrocytes because it lost the binding affinity toward erythrocyte membrane 
[116]. However, the VMH51 can associate with sheep erythrocyte membranes 
though the affinity is reduced as compared with intact VMH, suggesting that the 
truncated toxin interacts with other components in sheep erythrocyte membrane. 
It might be concluded that the 15 kDa C-terminal domain of VMH is functionally 
similar to β-prism lectin domain of HlyA.

V. fluvialis is one of the foodborne pathogens which can cause clinical symptoms 
similar to V. cholerae [117–119]. V. fluvialis secrets El Tor-like hemolysin, designed 
as V. fluvialis hemolysin (VFH), which can elicit lysis of erythrocytes from various 
animal. In addition to hemolytic activity, VFH can also trigger cytotoxicity toward 
Chinese hamster ovary (CHO) cells and induction of fluid accumulation in suckling 
mouse [102]. The purified VFH has molecular weight of 63 kDa, whose N-terminal 
amino acid sequence shares homology to HlyA from V. cholerae and VMH from V. 
mimicus [102]. It is suspected that VFH might play an important role in V. fluvialis 
pathogenicity.

V. vulnificus was first isolated from a leg ulcer, and it was wrongly reported as 
V. parahaemolyticus [120]. Later, it was found that some characters were different 
from V. parahaemolyticus such as positive lactose fermentation, so subsequently 
it was termed as V. vulnificus [20]. V. vulnificus can cause two types of illness, the 
primary septicemia and the wound infection [24]. The former is remarkable for its 
high fatality rate (over 50%). The primary septicemia is caused by the consumption 
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of raw seafood, especially shellfish such as oyster contaminated by V. vulnificus, and 
it is reported that 95% of all seafood-related deaths are caused by V. vulnificus in 
the United States [121, 122]. Because most septicemia patients have an underlying 
disease such as hepatic cirrhosis, hepatitis, or diabetes, the septicemia by V. vulnifi-
cus is considered as an opportunistic infection [24]. Wound infections characterized 
clinical symptoms are edema, erythema, or necrosis and occurred after exposure 
to contaminated seawater or marine products. However, gastrointestinal symptom 
like diarrhea is very rare due to V. vulnificus infection [25, 26]. V. vulnificus produces 
various extracellular virulence factors such as hemolysin or protease [123, 124]. 
Hemolysin secreted by V. vulnificus called as V. vulnificus hemolysin (VVH) is also 
a toxin that can form pore on the target membranes of various mammalian cells. 
Purified VVH exhibits lytic activity against erythrocytes of various mammals and 
cultured cells such as CHO, mast, and pulmonary endothelial cells [101, 125–127]. 
In addition, it is reported that the sublytic doses of hemolysin can trigger apoptotic 
signaling pathway in human vascular endothelial cell line, ECV304 cells [128], and 
oligomerization of VVH is essential for the apoptotic activity in CHO cells [129].

VVH (VvhA) precursor has molecular weight of 51 kDa encoded by the struc-
ture gene vvhA, which constitutes an operon with vvhB gene. The vvhB gene is 
present upstream of vvhA and encodes 18 kDa protein VvhB. The VvhA precursor 
is composed of a signal peptide (20 amino acid residues) and cytolysin domain 
(Gln1to Arg318) including a putative pre-stem and β-trefoil lectin-like domain (His319 
to Leu451) (Figure 1); the pro-region and β-prism lectin domain are absent as com-
pared with HlyA precursor [78, 130]. Although the function of VvhB is unknown, 
it might act as a chaperon in the absence of the pro-region like HlyA. This specula-
tion is supported by the fact that even though VvhA is expressed in the absence of 
vvhB in vitro, the hemolytic activity cannot be detected [131]. Although VVH lacks 
β-prism lectin domain, the β-trefoil lectin domain has displayed binding capability 
for glycerol, N-acetyl-D-galactosamine, and N-acetyl-D-lactosamine unlike HlyA 
[92, 130]. In fact, VVH exhibits decreased ability to bind CHO cells when prein-
cubated with methyl-beta-cyclodextrin, an oligosaccharide, and, thus, inhibition 
of its cytotoxic effect [132]. Similar to HlyA, it is believed that the VVH monomer 
binds to the cell membrane and forms oligomers [101, 133, 134] and the crystal 
structure of β-trefoil lectin domain of VVH reveals a heptameric ring arrangement 
[130]. It is strongly suggested that cholesterol is the receptor for VVH and facilitates 
conversion of monomer to oligomer [133, 135]. In addition, it is reported that Thr438 
in the β-trefoil lectin domain is responsible for binding to cholesterol [131]. On the 
other hand, Phe334 in cytolysin domain that is located near the joint of two domains 
is essential for oligomerization of toxin monomer [136]. Moreover, it is shown that 
the mutation of Leu451 causes inhibition of hemolytic activity without reducing the 
membrane binding ability; this suggests that the Leu451 is essential for the oligomer 
formation [137]. Recently, a study showed that properties such as polarity and 
indole ring of amino acid Trp246 are essential for the binding of toxin to the target 
membrane [138]. It is assumed that hemolytic process of VVH is almost similar to 
HlyA though there are some differences in the function and structure of VVH.

It has been reported that a heat-labile hemolysin purified from V. tubiashii, a 
pathogen of juvenile bivalve, is similar to VVH [139]. Like VVH, this toxin has 
showed competitive inhibition by cholesterol and can lyse erythrocytes. In addition, 
the toxin exhibits cytotoxicity to CHO, Caco-2, and Atlantic menhaden liver cells in 
tissue culture.

V. damsela has been reported to cause wound infection by handling of fish, expo-
sure to seawater and marine animals, and ingestion of raw seafood [21, 140–143]. 
It has been considered that there is not any other hemolysin in this bacterium, 
except of a hemolysin with phospholipase D activity known as damselysin [144]. 
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Recently, it is reported that this bacterium possesses HlyA-like hemolysin encoded 
within a new virulence plasmid pPHDD1. The characteristics of this new HlyA-like 
hemolysin from V. damsela are not yet identified, but the predicted amino acid 
sequences show 69% similarity with HlyA of V. cholerae, missing the β-prism lectin-
like domain (Figure 1) [145].

3. Conclusion

This chapter is focused on the hemolysins produced by Vibrio species, especially 
the human pathogens. Hemolysins are classified into two groups, namely, thermo-
stable direct hemolysin (TDH) and El Tor hemolysin (HlyA). This chapter pays 
attention to Vp-TDH (V. parahaemolyticus), HlyA (V. cholerae), VMH (V. mimicus), 
and VVH (V. vulnificus) because these are well studied in terms of the toxin struc-
ture and their relation with the pathogenesis. The mechanism of action by HlyA and 
the essential amino acid residues have been clarified through the crystal structure of 
HlyA pro-toxin and the transmembrane heptameric oligomer over the past decade. 
Although the crystal structure has revealed the structural information about 
Vp-TDH and VVH, the exact mechanism of pore formation in the target membrane 
is yet to be studied. Several studies have indicated the involvement of novel viru-
lence factors in pathogenesis like T3SS, but still Vp-TDH and Vp-TRH are consid-
ered to be the major virulence factors of V. parahaemolyticus, one of the important 
food poisoning bacteria in Japan and other eastern and Southeast Asian countries. 
HlyA is thought to be a major factor in CT-negative strains (e.g., V. cholerae non-O1/
non-O139) that can cause diarrhea because it can induce enterotoxicity as well as 
apoptosis. V. mimicus hemolysin, VMH, is just one of the many enterotoxic factors. 
Even though there is detailed information about structural composition and mode 
of action of some of the hemolysin such as Vp-TDH and HlyA, still there is a lack of 
information about other hemolysins. Therefore, it is necessary to further enhance 
our knowledge regarding these toxins in order to thoroughly understand the mecha-
nism of pathogenesis for the prevention of endemic infectious diseases associated 
with these pathogens.
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