
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



1

Chapter

Spaceflight-Associated Immune 
System Modifications
Jeremy Jeandel, Coralie Fonte, Gaetano Calcagno, 

Julie Bonnefoy, Stéphanie Ghislin, Sandra Kaminski  

and Jean-Pol Frippiat

Abstract

Spaceflight is an adverse environment characterized by a unique combination of 
stressors affecting almost all physiological systems, including the immune system. 
Indeed, several studies have shown that about 50% of the astronauts have faced 
immunological troubles. Here, we will review how spaceflight affects immune cell 
development, innate as well as adaptive immunity, required to ensure an efficient 
protection of the host, with a particular focus on T and B cells. Indeed, to bet-
ter appreciate the risks associated to future long-duration space missions and to 
develop pharmacologic or nutritional countermeasures allowing immune system 
protection, it is mandatory to fully understand how these cell types are affected by 
space conditions. Finally, we will compare immune changes observed in astronauts 
with those encountered in the elderly, thereby illustrating the societal interest of 
space research.
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1. Introduction

Since Yuri Gagarin became the first human to leave the Earth’s confines in 1961, 
more and more humans have traveled into space, and manned space stations have 
been built. During spaceflights, the organism is subjected to a variety of chronic 
and acute stressors. The first category comprises factors such as microgravity, 
confinement, isolation, radiation, and disturbed circadian rhythm. The second 
category covers periods of intense activity, such as spacewalks, but also hypergrav-
ity exposure during takeoff and landing. While acute stressors have been described 
as beneficial to the host as they can mobilize individual’s defense capacities, several 
studies have shown that chronic stress has deleterious effects, as it contributes to 
the weakening of the immune system and the development of pathologies such as 
inflammatory disease, infections, and cancers [1–5]. In that context, it is interesting 
to note that 15 of the 29 astronauts involved in the Apollo missions developed bacte-
rial or viral infections during, immediately after, or within a week of landing [6]. In 
addition, the very first epidemiological study based on medical data collected from 
46 astronauts who spent 6 months on the ISS showed that 46% of them exhibited 
significant immunological problems [7]. Among notable events, 40% were clas-
sified as rashes/hypersensitivities and 27% as infectious diseases. Taken together, 
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these data show that spaceflight-associated stressors affect, on average, the immune 
system of one out of two astronauts. Furthermore, these data demonstrate that 
immune system dysregulation occurs not only after landing but also during the 
flight [7].

In parallel of this immunological weakening, it is important to keep in mind 
that changes in microbial growth and pathogenicity have been observed [8, 9]. 
Depending on the bacteria studied, increased or decreased virulence [10, 11], altered 
sensitivity to antibiotics [12, 13], and/or increased biofilm formation [11, 13, 14] 
have been described as a result of the modulation of gene expression [9–11, 15, 16]. 
Moreover, there is some evidence to suggest that antibiotics may be less effective in 
space [12, 17, 18].

These microbial changes, combined with dysregulation of the immune system, 
certainly contribute to explain the increased susceptibility to infections observed 
in astronauts [19] (Figure 1). It is also noteworthy to keep in mind that, as the 
duration of space missions will increase, the potential for infectious diseases 
to arise during flight may become a critical issue because the probability of 

Figure 1. 
Environmental changes associated with spaceflight (stressors) such as gravity change, the perturbation of 
the circadian rhythm (every day the residents of the ISS witness 16 sunrises and 16 sunsets), confinement, 
increased radiation, sleep deprivation, and nutritional factors weaken the immune system of about 50% of the 
astronauts. Most frequent immune changes consist in viral reactivations and lower responses of T and natural 
killer (NK) cells. These changes could be due to changes in cytokine expression and increased levels of stress 
hormones. In parallel, spaceflight environment might increase the virulence, resistance, and proliferation of 
some pathogens.
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cross-contamination between crewmembers will increase. Additionally, microbial 
mutation rates may increase. Solar and cosmic radiation met during space missions, 
with a cumulative dose obviously increasing with mission duration, could contrib-
ute to the appearance of mutations potentially associated to resistance or diseases 
during such long and stressful endeavor as interplanetary missions.

Thus, caution should be paid to precisely understand how the immune system 
adapts, is modified/hampered, by unique environmental changes encountered dur-
ing spaceflight. This knowledge is mandatory to allow the development of efficient 
biomedical strategies to preserve astronauts’ heath during prolonged deep space 
exploration missions. In this chapter, we will review how spatial conditions affect 
the maturation of immune cells as well as the functions of mature immune cells 
required for the effective protection of the individual.

2. Effects on the maturation of immune cells

Cells that make up our immune system are derived from hematopoietic stem 
cells (HSC). These HSC will give rise to common myeloid progenitors (CMPs) 
and common lymphoid progenitors (CLPs). After several differentiation steps, 
CMPs will give raise to myeloid cells (granulocytes, monocytes, macrophages, and 
dendritic cells) and CLPs to lymphoid cells (B and T lymphocytes and NK cells). All 
of these cells are involved in natural and/or specific immunity.

A number of studies have analyzed the impact of spaceflight on the develop-
ment of cells belonging to the myeloid lineage (or myelopoiesis). A decrease in 
the number of granulocyte and monocyte progenitors in rodents that have been in 
space or subjected to anti-orthostatic suspension (a model commonly used in the 
laboratory to reproduce many of the physiological changes observed in flight) has 
been demonstrated [20, 21]. The culture of human CD34+ progenitors in flight has 
confirmed the inhibitory effect of microgravity on erythropoiesis (red blood cell 
production) [22]. Other studies have shown that the stressors encountered during 
spaceflight impact lymphocyte development (or lymphopoiesis). Diverse animal 
models have been used to address this question, such as mouse or the Iberian ribbed 
newt (Pleurodeles waltl, a urodele amphibian). The latter lends itself well to the con-
straints associated with space experiments and has all the cardinal elements of the 
mammalian immune system [23]. It has notably been observed that P. waltl larvae 
developed on board the ISS exhibit changes in the expression of IgM heavy-chain 
transcripts as well as a disruption in the expression of the Ikaros gene encoding 
transcription factors required for lymphopoiesis, suggesting that the latter could 
be weakened under spatial conditions [24]. This hypothesis was then confirmed 
in mice subjected to 21 days of anti-orthostatic suspension, which corresponds to 
a long-term mission at the human scale. It has been shown that this model induces 
a decrease in the number of CLPs and cells at the pro-B, pre-B, immature B, and 
mature B stages in the femoral bone marrow of suspended mice compared to 
control mice [25]. Furthermore, various causes of this weakening have been identi-
fied, such as a decrease in signal transduction by the interleukin-7 receptor and a 
decrease in the expression of transcription factors essential for B-cell development 
within the bone marrow. It has also been noted that this decrease in B lymphopoi-
esis is coupled with the remodeling of the bone tissue induced by the suspension, 
thereby reminding that all physiological systems interact within an organism and 
that these interactions have to be taken into account when analyzing the impact of 
stressors such as modeled microgravity. Finally, this sensitivity of hematopoiesis 
and the link with bone remodeling was confirmed in mice embarked on board the 
BION-M1 satellite for 30 days [26]. A decrease by a factor of two in the number of 
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B lymphocytes present in the bone marrow and a statistically significant decrease 
in the expression of factors required for the development of immune and bone cells 
were observed 7 days after returning to Earth but not on landing (Figure 2). This 
time delay can be explained by the fact that bone loss worsens after landing [27].

Note that in addition to the explanations presented above, glucocorticoids 
produced in response to chronic stress may contribute to altering B lymphopoiesis. 
Indeed, it has been demonstrated that continuous administration of corticosterone, 
via a subcutaneous implant, induces reprogramming of lymphopoiesis in mice, with 
a reduction of 30–70% of pro-B, pre-B, and immature B cells after 24 hours and a 
drop of 70–80% of pro-B and pre-B cells after 36 hours of treatment [29].

T lymphopoiesis (T-cell development in the thymus) is also affected by micro-
gravity, as a decrease in T cells was observed in double-positive (CD4+CD8+) and 
single-positive (CD4+ or CD8+) maturation stages, when murine fetal thymuses 
were cultivated under simulated microgravity or spatial conditions [30]. This 
observation can be explained, at least in part, by the high sensitivity of thymocytes 
to stress [31]. Indeed, significant changes in mRNA expression from genes known 
to regulate stress and glucocorticoid receptors were observed in the thymus of mice 
subjected to a 13-day flight [32]. Another study did analyze the impact on murine 
T-cell antigen receptor (TCR) of being conceived and born under increased G force 
(2 G). This study revealed a disruption in TCR signaling and in the diversity of 
these receptor binding sites [33] (Figure 3) required for an individual to be able to 
specifically recognize peptides derived from the numerous antigens present in the 

Figure 2. 
Analysis of the femur from mice flown for 1 month on board the BION-M1 biosatellite revealed a decrease 
in the expression of 10 out of 11 proteins involved in immune cell and skeletal development, a decrease of the 
expression of 17 other immune-related proteins, and a 50% decrease in the number of B cells present in the bone 
marrow. Furthermore, this study showed that spaceflight effects were aggravated 1 week after landing [26]. 
Picture of mice in BION-M1 habitat from [28].
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environment; 85% of the TCR repertoire was different in 2 G pups compared to 
control pups. Thus, the diversity of T-cell antigen receptor repertoire is significantly 
altered by 2 G exposure, which will likely affect host defense.

The impact of a model aiming at mimicking socio-environmental stresses expe-
rienced by astronauts [34] was then studied. This model involves the chronic expo-
sure of mice to unpredictable socio-environmental stresses of various types (e.g., 
confinement, isolation, cage tilt, paired housing, perturbed circadian rhythm) 
and moderate intensity. It was demonstrated that this type of stressors only modi-
fies 25% of the TCR repertoire [35]. Consequently, it appears that a change in the 
gravitational force has a much greater impact than socio-environmental stresses on 
the T-cell antigen receptor repertoire.

3. Effects on phagocytic and NK cells

Natural or innate immunity is the body’s first line of defense against a pathogen 
after the skin and epithelial surfaces. It enables a non-specific response to be imple-
mented, involving various types of immune cells such as neutrophils, monocytes, 

Figure 3. 
Exposure to hypergravity during pregnancy affects TCR binding sites, thereby suggesting that the protection of 
the host might be affected [33]. T cells recognize an antigenic peptide on an MHC molecule at the surface of 
an antigen-presenting cell (APC) (dendritic cell, monocyte, macrophage, B cell). This recognition is ensured 
by the T-cell receptor (TCR) whose binding site is composed of six small polypeptide loops: two CDR1 loops, 
two CDR2 loops, and two CDR3 loops. CDR1 and CDR2 loops bind the MHC molecule. CDR3 loops bind the 
peptide. This figure presents the frequency of hydrophobic, acid, basic and polar amino acids at each position 
within TCR CDR3 loops from murine pups conceived and born at 1 or 2 G.
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and macrophages, to destroy pathogens by phagocytosis and the release of microbi-
cide substances.

Several studies have been conducted to understand how the space environment 
affects this immunity. For instance, an increase in the level of blood neutrophils 
in both humans and animals has often been observed after landing and can be 
attributed to the stresses encountered during this phase. Indeed, stress can induce 
the mobilization of these cells stored in the bone marrow [36, 37]. However, other 
explanations are also possible, such as changes in the expression of adhesion mol-
ecules [38]. It has also been shown that spatial conditions decrease the phagocytic 
and oxidative functions of neutrophils [39, 40] and induce, in monocytes, dys-
regulation in cytokine production, a reduced capacity to engulf Escherichia coli as 
well as lower reactive oxygen species (ROS) production and degranulation [41, 42]. 
Lower cytotoxicity of natural killer cells that provide immunological resistance and 
defense against foreign microorganisms but also against cells transformed because 
of, for example, a viral infection was observed [43, 44]. In addition, the reactivation 
of latent herpes viruses has frequently been reported. For example, Varicella-zoster 
virus (VZV) DNA has been detected in the saliva of astronauts during and immedi-
ately after a flight, while no VZV DNA was detected before launch [45]. Additional 
studies have revealed the presence of VZV in the saliva of 50% of astronauts during 
short spaceflights [46] and have shown that this percentage can increase up to 
65% during long-duration missions [47]. Significantly, a few cases resulted in the 
development of shingles [45]. These viral reactivations are frequently coupled with 

Figure 4. 
Stressors encountered during space missions can induce the production of glucocorticoids, catecholamine, 
and endocannabinoids. Numerous immune cell types have receptors for these molecules. Their functions can 
therefore be directly affected by the binding of these molecules on these receptors. GR, glucocorticoid receptor; 
ADRB2, beta-2 adrenergic receptor; CNR2, cannabinoid receptor type 2.
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a decrease in the production of interferons (cytokines constituting a first response 
in the event of viral infection) and to a higher level of stress hormones known to be 
able to regulate immune functions. Indeed, a variety of immune cells expresses glu-
cocorticoid receptors, cannabinoid receptors, and adrenergic receptors (Figure 4). 
Thus, molecules produced in response to stressing events can directly affect 
immune cells and can be responsible for the reactivation of latent viruses [48–53].

Furthermore, virus reactivation could be a good biomarker of immunity weak-
ening [54]. In support of this neuromodulation of the immune system, studies 
conducted on humans subjected to acute- (parabolic flight), medium- (1–2 weeks 
on board the ISS), or long-duration (4–7 months on board the ISS) gravitational 
stress demonstrated that there is a shift from an alert state of natural immune 
cells after acute gravitational stress to a decrease of their activity after spaceflight 
[55–57]. These changes were associated with changes in stress response, with a 
predominance of sympathetic nervous system responses after short flights, whereas 
long flights were characterized by glucocorticoid-induced changes. These data dem-
onstrate that beside gravity change, stress responses are an important contributor 
to spaceflight-associated immune changes and once again highlight the importance 
of taking into account interconnections between physiological systems (here the 
nervous and immune systems).

4. Effects on antigen-presenting cells and lymphocytes

Specific or adaptive immunity is the second line of defense against the entry 
of foreign substances, particles, or cells into the organism. It involves natural and 
specific immune cells (antigen-presenting cells and lymphocytes) that will cooper-
ate to develop a response specifically directed against the intruder.

APCs are a heterogeneous group that treat and present antigens in the form 
of peptides to CD4+ T lymphocytes unable to recognize a native antigen via their 
TCR. These cells are crucial in triggering an immune response. This group includes 
dendritic cells, monocytes/macrophages, and B lymphocytes.

Even though the antigen presentation function is an essential immune process, 
very little information is available on the impact that environmental conditions 
encountered during spaceflights could have on this function. Only one study has 
been published on dendritic cells and revealed that microgravity reduces their pro-
duction, their phagocytic capacities, and the surface expression of costimulatory/
adhesion molecules involved in the presentation of antigenic peptides [58]. These 
data suggest that certain functions of antigen-presenting cells, required for the 
development of an effective immune response, may be disrupted in microgravity.

On the other hand, numerous studies have shown a significant reduction in 
T-cell activity under both real and simulated microgravity. This lower activity [59] 
results from spaceflight-induced modifications of the expression of genes essential 
for the proper functioning of T cells such as those encoding interleukin-2 and its 
receptor [60], translation of mRNAs [61], cell-cell interactions [62], alterations 
of the structure of the cytoskeleton [63–66], signal transduction enabling T-cell 
activation [67–69], and cell cycle regulation [70].

B lymphocytes are another cell type that acts in synergy with T lymphocytes 
to ensure optimal protection of the individual. These cells, at the maturation stage 
called plasmocyte, produce large quantities of antibodies, which, by binding 
specifically to the antigen, contribute to its elimination. Antibodies and B lympho-
cytes constitute humoral immunity whose modulation by spatial conditions has 
been much less studied than that of T lymphocytes. For many years, researchers 
have been satisfied with the quantification of antibodies present in the serum/
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plasma of astronauts, but these studies generated conflicting results. For example, 
Konstantinova et al. [71] reported increased levels of serum IgA and IgM, while 
Rykova et al. [40] indicated that the amounts of serum IgA, IgG, and IgM were not 
affected after prolonged space missions. Subsequently, further studies were con-
ducted to determine how changes in gravity affect humoral immunity and demon-
strated that stresses encountered during spaceflight quantitatively and qualitatively 
affect the production of antibodies in response to antigenic stimulation. Changes in 
the expression of VH gene segments, encoding a large part of the antibody binding 
sites, have been observed in adult P. waltl immunized on board the Mir space station 
[72, 73] as well as a twofold decrease in the frequency of somatic hypermuta-
tions (SHM) that enable the diversification of antibody binding sites, in order to 
improve their affinity for the antigen [74] (Figure 5). Very recently, changes in the 
use of the gene segments required to create the antibody repertoire have also been 
observed in immunized mice subjected to anti-orthostatic suspension [75]. The 
antibody repertoire is therefore most likely modified under either real or simulated 
microgravity. In addition, a decrease in the expression of several effectors involved 
in immunity was observed 7 days after landing in mice that had been on board 
the BION-M1 biosatellite for 30 days [26]. This observation confirms the negative 
effect of spaceflight on the immune system and demonstrates that this impairment 
persists for at least 7 days after the return to Earth. This conclusion is in line with 
the studies that revealed disruptions in the production of antibodies in P. waltl still 
visible 10 days after landing [72–74].

Finally, it has been shown that the proliferative responses of B and T lympho-
cytes are reduced when mice are subjected to gravity changes (anti-orthostatic 

Figure 5. 
Somatic hypermutations (SHM) are nucleotide substitutions whose purpose is to improve the affinity of 
antibody binding sites. The frequency of these mutations was determined in adult P. waltl immunized on board 
the Mir space station and in adult P. waltl immunized with the same antigen on Earth. This study showed that 
the frequency of these mutations is two times lower when animals are immunized on board the space station 
[74]. IE, P. waltl immunized on Earth; IS, P. waltl immunized in space; NI, not immunized.
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suspension or 2 G hypergravity) for 3 weeks [76, 77]. However, the responses from 
these lymphocytes were not altered after 3 weeks of exposure to the model mimick-
ing socio-environmental stressors encountered in flight [34]. These data suggest 
that the lower reactivity in lymphocytes induced by spaceflight is mainly due to 
gravity change.

Note that there is a break in the adaptation of mice at 3 G, which results in an 
increase in the serum corticosterone concentration and the level of anxiety [76]. 
These changes persist beyond 2 weeks after the return to normal gravity. This 
demonstrates that the hypergravity model should be used with caution if the effects 
of hypergravity are to be distinguished from those of a stress response. From 3 G, 
these two variables are cumulative.

5. Spaceflight as a model of accelerated immunosenescence

Certain immunological changes observed in astronauts or rodents on space mis-
sions can also be found in the elderly. For example, thymus involution, increased 
susceptibility to infections, and decreased response to vaccines may be correlated 
with impaired development of B- and T-lymphocyte function in the elderly [78, 79]. 
This thymus involution and changes in the development and response of immune 
cells are also observed when the gravitational force is altered, as illustrated by the 
reactivation of latent viruses in astronauts and the elderly. In addition, a recent 
study suggests that long-term spaceflight could induce an increase in inflamma-
tion as in the elderly (inflammaging), which could increase the risk of allergies or 
autoimmune diseases in astronauts [80]. Finally, aging is accompanied by changes 
in antibody production similar to those observed in flight. There is a decrease in 
antibody affinity [78] and a change in the use of antibody VH gene segments [81] 
as observed in P. waltl immunized in flight [73, 74], which affects the diversity of 
the antibody repertoire. It therefore appears that stresses encountered during space 
missions could lead to premature aging of the immune system.

6. Conclusion and perspectives

Studies conducted so far show that on average one out of two astronauts encoun-
ters immunological problems and that stressors encountered during spaceflights 
can affect all components of the immune system. It is therefore mandatory to 
understand in details how all immune cell types are affected by space conditions 
by unraveling the cellular and molecular mechanisms modified within these cells. 
Indeed, the impact of spatial conditions on certain cells and functions of the 
immune system have not yet been precisely determined. Furthermore, the impact 
of long-term missions is largely under-investigated. This is because, up to now, 
most scientific data are derived from space missions not exceeding 6 months in 
duration. In addition, the impact of spatial conditions on interconnections between 
the immune and other systems (such as the musculoskeletal, nervous, respiratory, 
and cardiovascular systems) should be studied using interdisciplinary approaches. 
All this knowledge is required (i) to gain a better understanding of the risks 
incurred during future long-duration space missions (such as planned mission to 
Mars), where the crew will be left to their own with no possibility of a rapid return 
to Earth, and (ii) to develop nutritional, psychosocial, and/or pharmacological 
countermeasures to reduce stress, preserve the immune system, and prevent the 
development or aggravation of diseases [82]. Another aspect that should be taken 
into account is in-flight monitoring of astronaut’s health and diagnostic data using 
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miniature and autonomous biosensors to help establish personalized treatments. 
This corresponds to a new field of research, space biotechnology, which aims to 
use advanced techniques (“omics” techniques) for the quantitative detection of 
proteins, nucleic acids, and metabolites in situ [83–86]. Such biosensors capable of 
analyzing minimum quantities of body fluids and of generating semiquantitative 
or quantitative results in a few minutes and with minimal resource consumption 
in terms of weight, volume, reagent storage, and energy will be required to allow 
deep space exploration. These researches and technological developments could 
also improve health on Earth as they could led to new therapeutic strategies to treat 
age- and stress-related immunosuppression and could likely contribute to improve 
point-of-care diagnostics at a patient’s bedside, in a doctor’s office, or hospital.
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