
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



Chapter

Pedometric Tools Applied to
Zoning Management of Areas in
Brazilian Semiarid Region
Helena Saraiva Koenow Pinheiro,

Pedro Armentano Mudado Xavier,

Lúcia Helena Cunha dos Anjos, Cesar da Silva Chagas

and Waldir de Carvalho Júnior

Abstract

Brazilian semi-arid region is a recent frontier in the country for agribusiness.
The objective of this study is to apply pedometric tools to zoning areas with distinct
potential and limitations to agricultural purposes. The research was set in three
main steps: (i) to compile a database with all complete profile data collection; (ii) to
analyze the vertical variability of soil properties and select a set of soil key proper-
ties useful to define the land potential and limitations; and (iii) to classify the area
according to potential for agriculture, considering a medium technological level of
the farmers. The quantitative methods applied are supported by geographic infor-
mation systems (GIS) and spatial statistics. The soil data compilation was based on
legacy data, with corresponding topographical data and information from remote
sensing images of the area. Tree-based and geostatistical algorithms were applied to
predict the spatial variability of the soil key properties. The definition of manage-
ment zones was based on Iso Cluster and Maximum Likelihood Classification tools.
The results pointed three different management zones according to risks of salini-
zation and requirements for irrigation control. The approach showed to be a simple
and useful way to select and recommend primarily potential areas for agriculture
based on soil properties.

Keywords: AQP package, pedometrics, soil-depth functions, soil key properties,
zoning management areas

1. Introduction

Soils are essential to human survival, and they provide a wide diversity of
ecosystem services. Among them, soils are at the base of food production, carbon
storage and cycles to atmosphere, water availability, turning biomass into valuable
nutrients and degrading toxic elements, and supporting biodiversity [1]. Soil sur-
veys are a relevant source of soil information and environmental data for many uses
in agriculture and, otherwise, are fundamental for evaluating land capability and
preventing degradation [2]. Ramalho Filho and Pereira [3] highlight the importance
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of assessing regional conditions and soil properties to recommend adequate land-
use management.

However, in Brazil, even though this is well-known, the soil class information is
not commonly taken into account in planning or land-use zoning. One of the
problems is the small scale of available maps from systematic soil surveys
(1:250,000–1:1,000,000) in the country; this small scale is not suitable for recom-
mendations regarding soil management at the farm level [4]. This limits the imple-
mentation of land-use zoning and soil sustainable management practices and
policies.

The northeast region of Brazil presents complex and heterogeneous natural
features in relation to rainfall, soil, and vegetation. It represents a huge challenge for
the use and management of soil and water in sustainable agricultural systems. The
soil degradation observed in some areas of this region is due to irregular rainfall, soil
fertility conditions, and population pressures in a typically fragile environment [5].

Despite of the environmental variability, the northeast region of Brazil has a
unique biome with a particular vegetation type (named “caatinga”). The majority of
soils present shallow superficial horizons and profiles and very low organic carbon
contents [6–8]. The rainfall deficit together with an inappropriate soil management
for agricultural use can lead to desertification processes and to increase soil salinity
in many areas, further degrading the land. Also common is the presence of rocks on
the soil mass and/or surface layers and soils with high clay activity, both implying
strong limitations for tillage. Thus, knowing the distribution of soil classes and
properties is a requirement for land-use zoning.

The manipulation and analysis of a large soil profile collection, in the existing
datasets, can be difficult due to the wide variability of horizon depths and thickness,
as well as the variability among and between soil classes and orders. Addressing this
issue, studies about the variability of soil properties along with depth were devel-
oped by [9–15]. Beaudette et al. [16] introduced the algorithm for quantitative
pedology (AQP) package, which gathers tools to produce standard profile sketches
highlighting differences in soil properties between horizons. It allows to standardize
profile sketches, according to Munsell color chart, and dataset harmonization by
applying the slice-wise algorithm, among other useful tools to express variations
inside a given soil profile collection.

Quantitative studies have been developed in soil science through numerical
modeling relationships between environmental variables and soil, which are applied
to a geographic dataset to create a preliminary or predictive map [17, 18]. All these
techniques are known as pedometrics [17], which represents an interface between
statics and soil science, supporting predictive analysis related with soil classes and
attributes [19, 20]. Based in pedometric concepts, the digital soil mapping (DSM)
allows to study the relationships between soil and forming factors represented by
spectral bands from remote sensing data, surface numerical models, and thematic
maps [17]. Remote sensing data deserves an important place in digital soil mapping,
particularly in flat landscapes, where morphometric covariates have lesser influence
in soil formation [21].

Landsat spectral bands, particularly in the short-wave infrared range (SWIR),
are commonly used to represent the environmental covariates of parent material
and/or soil. Different mineral assemblages will have different spectral reflectances,
which may be separable by analyzing bands 1–5 and 7 [22, 23]. The normalized
difference vegetation index (NDVI) values range between �1 and +1. High positive
values usually indicate the occurrence of dense green vegetation, pointing to an
appropriate supply of water and nutrients. Low values express limited photosyn-
thetic activity, and negative ones correspond to sparse lacking ground coverage
[24]. The soil enhancement ratios of Landsat spectral band ratios 3:2, 3:7, and 5:7
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have been interpreted to accentuate carbonate radicals, ferrous iron, and hydroxyl
radicals, respectively, in exposed soil and geologic materials [25].

The identification of homogeneous zones of management consists in grouping
areas whose environmental characteristics, as relief and soil, are similar. The design
of homogeneous zones must be done according to the soil management, considering
as well the risk of degradation, and it contributes to the sustainable land-use plan-
ning. Sánchez and Silva [26] pointed out that management areas present similar
response when applied similar agronomic practices and they are subject to the same
risks and limitations of agricultural use.

The cluster analysis deals with segmentation of a set of N objects into clusters
(groups) in a fashion that the same type of datasets falls in a cluster that is different
from those with dissimilar datasets [27]. The results of cluster analysis reveal inter-
nal data structure and improve understanding of data. There are many cluster
algorithms that are available for data partitioning into. This analysis was used to
delineate management zone methods [28], and the authors prefer to apply fuzzy
cluster algorithms, and they are commonly used to define management zones for
precision agriculture. To develop management zones [29], the cluster analysis was
conducted by Management Zone Analyst 1.0.1 (Agricultural Research Services, Uni-
versity of Missouri, Columbia), with a combination of variables (elevation-Electrical
Conductivity-EC, ECah-%Na; elevation-ECah-%Na, elevation-pH 1:1-%Na).

The hypothesis of this study is that the use of soil legacy data allied with modern
tools that are able to analyze large datasets can assist the definition of soil potential
and limitations to agricultural practices and thus assist the land-use planning and
zoning. The work was developed from a legacy dataset of soil surveys made by the
Companhia de Desenvolvimento do Vale do São Francisco (CODEVASF) [30] in the
Brazilian semiarid region.

The specific goals of this study are (i) to identify soil key properties for defini-
tion of different management zones based on area databased and literature; (ii) to
harmonize the dataset according predefined properties; (iii) to produce soil key
property maps through digital soil mapping; and (iv) to create a map zoning the
area according the potential to agricultural uses. This approach was used to
establish the main trends from the profile collection by means of soil-depth func-
tions and to select soil key properties adequate for the area (flatland landscape and
semiarid climate), in this way, separating the areas according to their agriculture
potentials.

2. Materials and methods

2.1 Study area and dataset

The study was conducted in an area located between 9°5300″ and 9°36030″ S and
40°34030″ and 40°23030″W (with 34,437.82 hectares), in the municipality of
Juazeiro in Bahia State, northeast region of Brazil (Figure 1).

The biome in the region studied was the caatinga [31], an ecoregion character-
ized by xeromorphic vegetation with broadleaf thorny shrubs and trees that shed
their leaves seasonally, cactus plants, and sparse arid-adapted grasses [32]. The
climate is characterized as semiarid with dry winter and rainy summer, and the
coldest month mean temperature remains above 18°C (BSwh’ in the Köppen classi-
fication). The average annual rainfall is 400 mm, with the rainy season extending
from November to April (highest precipitation in March); and average annual
temperature is around 26°C. The xerothermic indexes are between 200 and 150,
comprising of 7 to 8 dry months.
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At the study site, a portion of the original vegetation has been removed, and
signs of land degradation such as bare soils are common. The landscape is mainly
compounded by flat surfaces, with maximum slopes of 8%, and plateaus are com-
mon in the region. Geology comprises of limestone rocks from the caatinga forma-
tion, gneiss-granite rocks of the Caraiba-Paramirim complex, and recent colluvium/
alluvium sediments [33].

The soils types in the northeast region of Brazil show large variation, according
to parent material and relief, from shallow and with high content of basic cations
(Ca, Mg, K, and Na) to deep and leached profiles [34]. Dominant soil classes
according to the World Reference Base for Soil Resources [35] are Vertisols,
Cambisols, and Planosols, with smaller extension of Regosols, Acrisols, and
Luvisols.

2.2 Soil input data and covariates

The soil properties used in this study were sand, clay, and cation exchange
capacity (CEC), determined according to [36]. The selection of soil properties was
based on two main conditions: (i) presenting variability according to depth and ii)
having importance to agricultural management (e.g., clay or sodium (Na) content).

From the original dataset, with 523 profiles, the ones with complete morpholog-
ical description and analytical data were selected, performed by Companhia de
Desenvolvimento do Vale do São Francisco (CODEVASF) in 1989 [29]. So, the input
dataset comprised of the topsoil (0–20 cm) and subsoil (20–60 cm) layers for 290
soil profiles from a soil survey (legacy data). The sampling was performed
according to the requirements of national soil survey service, correspondent to the
detailed soil survey level [37, 38].

Figure 1.
Study area and location of soil profiles, over Landsat image (band 3).
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As covariates, Landsat 5 TM spectral bands were used in this study (Table 1),
from September 1989, available in http://www.dgi.inpe.br/CDSR/. The NDVI
values range between �1 and + 1. In the study area, most of the NDVI values were
below 0.1, indicating little vegetation cover in the study area [39].

2.3 Modeling procedures

Quantitative soil properties, such as clay and sand content, can be estimated
along the depth of soil profile through slice-wise algorithm [16] implemented in R
software through algorithm for quantitative pedology (AQP) package [46]. The
functions calculate an estimative of the main trend of values, represented by
median and the variation interval by quartiles (25th and 75th of data distribution).
The values shown in a column corresponds to percentage of soil profiles contribut-
ing with the function at each depth.

Initially, Pearson’s linear correlation analysis was used to measure the linear
association between variables, to determine among the soil properties defined by
AQP, which correlated with environmental covariates (Table 1). This analysis was
implemented in R [46], through the function cor.test, according to [42, 44, 47]. In
Pearson’s correlation the p-value defines whether or not two variables are statisti-
cally correlated, and for this study, it was defined that values lower than 0.02
indicate that the correlation is significant.

The modeling procedure to execute the random forest (RF) prediction was
performed in R software, through randomForest (RF). RF is a nonparametric tech-
nique developed by Breiman [48] as an extension of classification and regression
tree (CART) systems, to improve the performance of the predictors. To implement
the RF models, three parameters are necessary: number of trees in the forest
(ntree); minimum amount of data in each terminal node (nodesize); and number of
covariates used in each tree (mtry) [49]. The ntree value was set to system default
(500), although more stable results can be achieved with a larger number [50]. The

Covariates Spatial resolution

(m)

Spectral range

(μm)*

References

Band 1 30 0.450–0.515 [23, 39–42]

Band 2 30 0.525–0.605

Band 3 30 0.630–0.690

Band 4 30 0.755–0.900

Band 5 30 1.550–1.750

Band 7 30 2.090–2.350

NDVI (Band 4 - Band 3)/(Band 4 + Band 3) 30 — [11, 23,
41–44]

Band 3/Band 2 30 —

Band 3/Band 7 30 —

Band 5/Band 7 30 —

GSI (Band 3 - Band 1)/(Band 3 + Band
2 + Band 1)

30 — [45]

*Landsat 5 satellite

Table 1.
Covariates used in spatial prediction of soil properties.
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nodesize value was set to 5 for each terminal node, as usually selected in regression
studies. The mtry value chosen in this study was according to Liaw and Wiener
[49], which proposes an amount corresponding to one third of the total number of
predictor variables for regression problems.

Although Na showed a significant correlation at the two depths, according to the
Pearson correlation analysis, the preliminary results using the random forest (RF)
model were very unsatisfactory. Thus, exceptionally for this property, the RF model
has been replaced by ordinary kriging (OK). Semivariograms were used to analyze
the spatial structure of the Na, and to generate predictive maps, in both depths. The
OK was performed in R software, through krige function [46]. OK model is the
most familiar type of kriging and provides an accurate estimate for an area around a
measure sample [51].

The model’s performance was evaluated based on independent validation set,
which was not used in the training procedure. Thereby, the 290 soil samples were
randomly divided into 2 independent datasets in the R software; one of these was
used in the training process (200 soil samples) and another for the validation
process (90 soil samples). The analysis of the model’s performance was based on the
correlation between the measured values (validation samples) and estimated
values, calculated by the coefficient of determination (R2), the root mean square
error (RMSE), and mean error (ME), presented as Eqs. (1) and (2):

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
n

Xn

i¼1
d2i

r

(1)

ME ¼
1
n

X

n

i¼1

di (2)

where “d” is the difference between the observed and estimated values and “n”
is the number of samples used in the validation process.

The RMSE is a measure of the overall error of the estimation and commonly is
used to estimate the error or uncertainty in places where the error was not mea-
sured directly; thereby, the higher the values of RMSE, the greater the differences
between the datasets [52]. The ME gives the bias and allows evaluation of
overestimation (positive values) or underestimation (negative values); values close
to zero are preferable.

2.4 Definition of management zones

Management zones were defined in this study according to potential for agri-
culture, considering variability of soil key properties along profile depth, impor-
tance of soil properties for the land management, and the performance of the
models to predict the spatial variation of the properties. Based on the maps for the
selected soil key properties, an unsupervised classification was performed by using
a series of input raster bands (Na, CEC, clay, and sand) using the Iso Cluster and
Maximum Likelihood Classification tools from ArcGIS Desktop 10.3.

The Iso Cluster tool uses a modified iterative optimization clustering procedure,
also known as the migrating means technique. The algorithm separates all cells into
the user-specified number of distinct unimodal groups in the multidimensional
space of the input bands; the iso prefix of the isodata clustering algorithm is an
abbreviation for the iterative self-organizing way of performing clustering. In the
clustering process, during each iteration, all samples are assigned to existing cluster
centers, and new means are recalculated for every class. The optimal number of
classes to specify is usually unknown. Therefore, it is advised to enter a
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conservatively high number, analyze the resulting clusters, and rerun the function
with a reduced number of classes [53].

3. Results and discussion

3.1 Algorithm for quantitative pedology (AQP)

The AQP package allows to gather a set of functions to work and to analyze large
soil profile collections. Depth functions of soil key properties used to distinguish the
profiles are presented in Figure 2 and Figure 3. The percentage values plotted along
the profile shows the relative quantity of profiles used in the soil-depth function to
calculate the statistics (median and quartiles) at each depth.

The study area presents shallow soils, sometimes with high base saturation; but
the main limitation for agricultural use is the soil texture and high clay activity,
which will influence the soil moisture to adequately manage the soils due to their
high plasticity.

The pH and the calcium (Ca) content presented a linear trend of median values
along depth (Figure 2), even though a smaller number of soil profiles (less than
25%) were used in the estimative for deeper than 150 cm depth. However, different
patterns were shown for potassium (K), sodium (Na), electrical conductivity (EC),
and cation exchange capacity (CEC). The soil key properties Ca, K, and CEC
showed more variability around the median value, thus presenting a better predic-
tive potential to distinguishing soils with different parent materials and high clay
activity, respectively.

It is pertinent to select which soil key properties could indicate differences in soil
behavior along depth and are relevant for land management. From the analyses of
Figure 3, it is possible to conclude that clay and sand contents have an opposite and
large variability among the profiles of the collection; thus, they have great potential
to aid in the definition of soil management zones. Since both properties are

Figure 2.
Depth functions for soil key chemical properties. EC, electrical conductivity; CEC, cation exchange capacity.
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important to irrigation and mechanization practices, they were selected as criteria
for agricultural zoning.

3.2 Predictive models

3.2.1 Pearson’s correlation

The Pearson correlation coefficients (Table 2) showed that in general, the envi-
ronmental covariates were significantly correlated with all soil properties analyzed
(p < 0.05). The sand content was significantly correlated with covariates b5, b7,

Figure 3.
Depth functions for soil key physical properties. PWP, permanent wilting point.

Variables Soil properties

Sand Clay CEC Na

Depth (cm) 0–20 20–60 0–20 20–60 0–20 20–60 0–20 20–60

b1 0.303 0.212 0.236 0.599 0.289 0.667 0.001 0.000

b2 0.198 0.321 0.431 0.177 0.848 0.723 0.001 0.000

b3 0.281 0.396 0.631 0.274 0.360 0.687 0.001 0.000

b4 0.037 0.040 0.009 0.072 0.002 0.016 0.019 0.000

b5 0.000 0.001 0.000 0.002 0.000 0.001 0.099 0.001

b7 0.000 0.002 0.000 0.003 0.000 0.000 0.152 0.001

NDVI 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

b3/b2 0.267 0.218 0.712 0.291 0.028 0.051 0.108 0.041

b3/b7 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

b5/b7 0.702 0.990 0.274 0.718 0.000 0.001 0.617 0.082

GSI 0.000 0.000 0.000 0.000 0.649 0.493 0.010 0.000

Table 2.
Pearson’s correlation (p-value) between soil properties (sand, clay, CEC, and Na) and environmental
covariates (b1, b2, b3, b4, b5, b7, NDVI, b3/2, b3/b7, b5/b7, and GSI).
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NDVI, b3/b7 ratio, and GSI (Table 2). These results do not agree with [44], who
found no correlation between sand content and the Landsat 5 TM image data. Only
the covariate b3/b7 was strongly correlated (r = �0.58 and �0.49, topsoil and
subsoil, respectively) with the sand content [54], whereas the NDVI was moder-
ately correlated (r = 0.39 and 0.36, topsoil and subsoil, respectively) and the other
covariates weakly correlated, with r values below 0.27 (positive or negative)
(Table 3).

Inverse relationships were observed between clay content and the environmen-
tal covariates, but magnitudes were the same as those observed for sand (Table 2),
except for the covariate b4 (topsoil) which had no correlation with sand; similar
results were reported by [42, 55]. The most relevant covariates were b3/b7
(r = �0.56 and �0.51, topsoil and subsoil, respectively) and NDVI (r = �0.36 and
�0.37, topsoil and subsoil, respectively). These results vary among authors in the
literature. Significant correlations were obtained between clay, the NDVI index,
and b3/b2 and b5/b7 band ratios by [44], while there was no correlation between
clay and the b3/b7 ratio band. On the other hand, Ahmed and Iqbal [56] found
significant correlations between clay and bands 4 and 6 using Landsat 5 TM.

The CEC was significantly correlated with the covariates b4, b5, b7, NDVI, and
b3/b7 and b5/b7 ratios (Table 2). Only the covariate b3/b7 was strongly correlated
(r =�0.45 and�0.44, topsoil and subsoil, respectively) with the CEC [54], whereas
the other covariates were weakly correlated, with r values below 0.27 (positive or
negative) (Table 3). A strong correlation was observed by [55] between the CEC
and covariates measured by ASTER spectral bands (1–8). The Na content was
significantly correlated with most of the covariates, except with b7 (topsoil) and b3/
b2 and b5/b7 ratios (Table 2). However, none of the covariates had a strong or
moderate correlation with Na content (Table 3), which may explain the very low
performance of the random forest model in the prediction of this soil property.

The study performed by Demattê et al. [57] highlighted that the correlation with
a particular spectral band is directly related with soil characteristics in specific
regions, explaining the differences between study cases.

Variables Soil properties

Sand Clay CEC Na

Depth (cm) 0–20 20–60 0–20 20–60 0–20 20–60 0–20 20–60

b1 0.06 0.07 �0.07 �0.03 �0.06 �0.03 0.19 0.32

b2 �0.08 �0.06 0.05 0.08 �0.01 0.02 0.20 0.34

b3 �0.06 �0.05 0.03 0.06 �0.05 �0.02 0.19 0.32

b4 0.12 0.12 �0.15 �0.11 �0.18 �0.14 0.14 0.27

b5 0.23 0.20 �0.25 �0.19 �0.24 �0.20 0.10 0.20

b7 0.21 0.18 �0.24 �0.18 �0.27 �0.23 0.09 0.19

NDVI 0.39 0.36 �0.36 �0.37 �0.22 �0.23 �0.21 �0.27

B3/b2 0.07 0.07 �0.02 �0.06 0.13 0.11 �0.10 �0.12

b3/b7 �0.58 �0.49 0.56 0.51 0.45 0.44 0.24 0.29

b5/b7 �0.02 0.00 0.06 0.02 0.21 0.20 �0.03 �0.10

GSI �0.27 �0.26 0.21 0.24 0.03 0.04 0.15 0.23

Table 3.
Pearson’s correlation coefficient (r) between soil properties (sand, clay, CEC, and Na) and environmental
covariates (b1, b2, b3, b4, b5, b7, NDVI, b3/2, b3/b7, b5/b7, and GSI).
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3.2.2 Predictive models

In the training process, the RF model only maintains the covariates that had
moderate or strong correlation with the soil properties (Table 3). The results
obtained by the predictive models (RF and OK) using an independent dataset for
validation (90 samples) are illustrated in Figure 4. In this study, the results
obtained by RF models in the topsoil layer were higher than those obtained by

Figure 4.
Results obtained by prediction models using independent validation samples. (a) Topsoil sand—RF; (b) subsoil
sand—RF; (c) topsoil clay—RF; (d) subsoil clay—RF; (e) topsoil CEC—RF; (f) subsoil CEC—RF; (g) topsoil
Na—OK; (h) subsoil sand—OK.
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subsoil for sand (R2 = 0.58 and 0.44 and RMSE = 91.95 and 90.32 g kg�1, topsoil and
subsoil, respectively) and clay (R2 = 0.53 and 0.45 and RMSE = 75.71 and
73.45 g kg�1, topsoil and subsoil, respectively). The results were higher in subsoil
than topsoil for CEC (R2 = 0.44 and 0.59 and RMSE = 8.62 and 7.47 cmolc kg

�1,
topsoil and subsoil, respectively) and Na content (R2 = 0.15 and 0.26 and
RMSE = 0.18 and 0.37 cmolc kg

�1, topsoil and subsoil, respectively) (Figure 4).
The results achieved by RF models were superior (topsoil) or similar (subsoil) to

[58] that used terrain properties derived from a digital elevation model, for sand
(variance explained = 30%) and clay (variance explained = 43%). In a study in
Nigeria [59], percentages of variance explained (Varex) for RF models were of 48–
49% for sand and 53–56% for clay in the top soil layer (0–15 cm). These values are
inferior or similar to those obtained in this study for sand, similar for clay in the
topsoil and superior in the subsoil. Therefore, the RMSE results for sand (19.26–
19.67 g kg�1) and clay (13.11–13.59 g kg�1) were lower than those in the present
study for the topsoil and subsoil layers (Figure 4). Lower Varex values were
reported by [60] for sand (33–35%) and clay (31–35%).

The Varex obtained for CEC using the validation samples was 47% (R2 = 0.47)
for topsoil layer and 59% (R2 = 0.59) for subsoil layer. The goodness of fit estimated
by RMSE was 8.62 and 7.47 cmolc kg

�1 (topsoil and subsoil, respectively). Regard-
ing the model’s performance, the results can be considered satisfactory; besides
that, few studies in literature have used RF to predict soil CEC, and no one has used
only remote sensing data as main covariates. The present results showed worst
performance from statistical indexes when compared with those obtained by
Lagacherie et al. [61], which reached 79% for Varex for the layer between 15 and
30 cm and 3.4 cmolc kg

�1 for RMSE, using as input data terrain attributes and
hyperspectral data in the visible and near infrared (AISA-Dual) with 5 m of spatial

Statistics Dataset Predictive model

Random forest Ordinary kriging

Sand Clay CEC Na Sand Clay CEC Na

g kg�1 cmolc kg�1 g kg�1 cmolc kg�1

Topsoil

Min 75 133 5.71 0.01 175 235 12.30 0.14

Max 802 640 61.41 3.59 626 594 54.33 0.57

Mean 334 449 33.29 0.37 338 449 34.27 0.34

SD 144 113 11.91 0.37 103 78 8.52 0.07

CV 43 25 36 100 30 17 25 206

Subsoil

Min 100 160 6.59 0.01 165 204 10.69 0.17

Max 672 673 62.15 7.99 576 623 51.28 1.26

Mean 308 484 33.99 0.71 308 483 35.24 0.65

SD 125 102 11.54 0.69 85 76 7.86 0.21

CV 41 21 34 97 28 16 22 32

Min, minimum; Max, maximum; SD, standard deviation; CV, coefficient of variation

Table 4.
Descriptive statistics from soil samples and predictive models for topsoil and subsoil.
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resolution. The difference from this study may be related to the coarser spatial
resolution of images from Landsat 5 (30 m), in comparison with Lagacherie et al.
[61] who used hyperspectral data (5 m). The influence of spatial resolution in the
prediction of soil properties is reported by other studies [62, 63].

However, in this study the performance of metrics for CEC prediction was
better when compared to the values (9.49 cmolc kg

�1) achieved by [60]. The poor
performance was explained by the authors as due to the small-scale variation of
parental material and erosion/deposition rates, which were not captured by the
spatial resolution of the covariates (100 m). The authors also highlighted impor-
tance of input dataset to improve the models’ performance.

The semivariogram obtained for Na content (Figure 4) provides a description of
the spatial dependence and indicates processes related with the spatial distribution
[65]. For both depths, the best semivariogram was the exponential model. The
semivariograms for topsoil and for subsoil (Figure 4) used to estimate the Na
content present a R2 of 0.26 and RMSE of 0.37 cmolc kg

�1 and R2 of 0.15 and RMSE
of 0.18 cmolc kg

�1, respectively. The descriptive statistics of soil properties predic-
tion for the predictive models are presented in Table 4.

Figure 5.
Spatial distribution of soil physical properties estimated by the RK models. (a) Topsoil sand; (b) subsoil sand;
(c) topsoil clay; (d) subsoil clay.
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The RF model produced predicted values for sand, clay, and CEC within the
range of the original values (Table 4), with a smaller standard deviation and
coefficient of variation, as expected for this model [64]. The same was true for Na
content in the OK model. However, the map produced presented a smaller range of
values than the original dataset, which, according to [65], means that this model
had low accuracy to describe the spatial variation of Na content, corroborating
results found when predicting this property at both depths. The mean values for
sand, clay, CEC, and Na content in both depths (Table 4) are closer to the values of
the original dataset. The CV for both models was smaller than the CV from the
original dataset, except for Na content in the topsoil.

These results could be explained by the moderate correlation of soil properties
with the covariates and predominance of short-scale variations that could not be
modeled from the set of profiles used. The results were considered satisfactory,
except for Na content, and they can be ascribed to the physical interference of soil
properties in the incident and reflected energy. However, the quantification of soil
properties using an orbital sensor is not an easy task due to complexity of soil

Figure 6.
Spatial distribution of soil chemical properties estimated by the RF and OK models. (a) Topsoil CEC;
(b) subsoil CEC; (c) topsoil Na content; (d) subsoil Na content.
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dynamics and formation [66]. The spatial distribution of soil properties according
to the predictive models is shown in Figures 5 and 6.

3.3 Definition of the management zones

Based on the maps created for each soil key property, the zoning procedure
was applied by using Iso Cluster and Maximum Likelihood Classification tools.
The descriptive statistics and the map produced are presented on Table 5 and
Figure 7, respectively.

Management zones MIN MAX Range Mean STD

Na (0–20 cm)

1 0.14 0.57 0.43 0.35 0.05

2 0.14 0.57 0.43 0.33 0.08

3 0.14 0.57 0.43 0.29 0.09

Na (20–60 cm)

1 0.17 1.21 1.05 0.72 0.16

2 0.17 1.25 1.09 0.62 0.19

3 0.17 1.26 1.10 0.52 0.29

CEC (0–20 cm)

1 26.90 54.33 27.43 41.88 3.87

2 15.17 47.03 31.86 31.55 4.40

3 12.30 35.81 23.50 20.85 3.63

CEC (20–60 cm)

1 24.32 51.28 26.96 41.70 4.29

2 14.39 48.22 33.83 33.18 4.46

3 10.69 37.09 26.41 23.15 4.48

Clay content (0–20 cm)

1 401.4 593.7 192.3 520.1 25.9

2 321.2 536.7 215.5 427.2 27.7

3 234.2 501.3 267.1 313.0 38.3

Clay content (20–60 cm)

1 457.3 623.0 165.7 552.4 26.0

2 325.8 574.9 249.0 457.2 30.9

3 204.2 488.3 284.1 362.4 55.3

Sand content (0–20 cm)

1 175.0 370.9 195.9 242.7 31.6

2 221.0 538.1 317.1 369.1 37.2

3 230.7 626.1 395.5 512.3 51.8

Sand content (20–60 cm)

1 164.5 321.4 156.9 228.8 24.3

2 201.5 518.3 316.9 335.7 37.9

3 209.9 576.3 366.4 447.0 47.5

MIN, minimum; MAX, maximum; STD, standard deviation

Table 5.
Descriptive statistics of the management zones separated by layers 0–20 and 20–60 cm.
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The conditions to define the agricultural zones have to be adjusted according to
available data and heterogeneity of soil properties in the study area, in this case
located in a semiarid region.

Zone 1 presents the greater amount of Na in both layers, and it is associated
with greater values of CEC as indicated by the mean values, than Zones 2 and 3.
The same condition is verified for clay content, where Zone 1 has the greatest mean
value in both layers (0–20 and 20–60 cm). As expected, sand content shows the

Figure 7.
Zoning of the study area according to selected soil key properties.
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opposite pattern. Zone 1 occupies 42.6% of the area (1467 ha), and it has greater
risk of salinization due to the higher mean values of Na. Even though Zone 1 has the
greater mean values of CEC, it is associated to the high Na content and high content
of clay, and possibly high clay activity (2:1). These properties limit the soil potential
and irrigation management, further increasing salinization risks.

Zone 2 is characterized by medium values of Na in both layers, when compared
to Zones 1 and 3. The CEC values follow the same trend of Na, with medium values,
and clay and sand contents are intermediary. This zone occupies 41.7% of the area
with 1436 ha. Zone 2 presents medium effort and limitation to soil management,
considering risks of salinization and requirements for irrigation control.

Zone 3 is characterized by the lowest values of Na and CEC in both layers; it has
the soils with lowest clay contents and proportionally greatest sand contents. This
zone occupies 15.7% of the area with 539 ha. Zone 3 has the lowest mean values of
CEC and Na, which decrease risks of salinization; plus, the lower clay content is less
limiting to soil mechanization.

4. Conclusions

The approach based on the combination of orbital remote sensing data, with
random forest (RF) and OK models to predict properties of soils in the Brazilian
semiarid region, was considered satisfactory for sand, clay and CEC contents, and
unsatisfactory for Na content.

The use of remote sensing data to map soil properties in flat relief areas, where
common topographic covariates may not result in adequate maps by digital soil
technics, is an advance. However, more research is needed to improve the quality of
the covariates used as an input data.

The zoning procedures through multivariate analysis allowed to identify areas
with higher salinization risks and where the management of irrigation is more
complex. In the same way, the approach allowed to recognize zone of soils with
lower sodium content and clay activity, which are preferred to grow annual crops.
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