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Chapter

Salen and Related Ligands
Ashish K. Asatkar, Mamta Tripathi and Deepali Asatkar

Abstract

The salen and related ligands are very popular among the inorganic chemists due 
to multiple reasons such as ease in synthesis, coordinating ability with very long 
range of metal ions, facilitating the metal ions to adopt various geometries, ability 
of stabilising the metal ion in variable oxidation states and potential applications of 
metallosalen in several fields. The most common application of metallosalen is in 
the field of catalysis because of their recoverability, reusability, high efficiency, high 
selectivity and their capability of working as homogeneous as well as heterogeneous 
catalysts for numerous functional group manipulations including asymmetric 
synthesis. Molecular magnetism, sensory applications, bioinorganic activities 
and medicinal applications of metallosalen are also very promising areas of their 
applications. Porous materials involving metal organic frameworks (MOFs) and 
supramolecular building blocks are increasingly getting attention of researchers for 
the gas absorption and heterogeneous catalysis.
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1. Introduction

The coupling of aldehyde group with primary amine yields imine bond which is 
called Schiff ’s base. Salen ligand system, one of the most studied classes of chelate 
ligands, is also a Schiff ’s base ligand. The earliest report of salen-metal complexes 
is probably by Pfeiffer et al. in the year 1933 [1]. The word ‘salen’ is composed of 
two abbreviations, sal+en; ‘sal’ stands for salicylaldehyde and ‘en’ stands for ethyl-
enediamine. When two equivalents of salicylaldehyde reacts with one equivalent 
of ethylenediamine potential tetradentate chelating ligand known as ‘salen’ is 
produced (Figure 1).

Usually, these reactions do not need any catalyst and proceed straightforwardly 
but sometimes the products may be hydrolysed in reversible manner. To overcome 
this problem, dehydrating agents or molecular sieves (3 Å) are used so that the 
water molecules produced during the reaction can be absorbed. Dean Stark appara-
tus is also used for the removal of water molecules when water-immiscible solvent 
(e.g., toluene or benzene) is used. Sometimes template synthesis is also performed 
to get metal-salen complexes directly in which process first metal-salicylaldehyde 
complex is prepared in-situ as template then ethylenediamine is added to get 
salen ligand. Although, the salen ligands are sensitive towards hydrolysis which 
is catalysed by acid, their metal complexes are quite stable and thus to avoid the 
hydrolysis of salen ligands during the applications, their metal-complexes are often 
used. Metal salen can work even in aqueous medium. Moreover, the salen ligands 
have potential to stabilise metal ions in various oxidation states, making them good 
candidates as catalysts.
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Salen ligand possess N2O2 donor sites which offers metal ions to adopt various 
geometries such as square planar, tetrahedral, square pyramidal and octahedral as 
well, with additional ligand(s) if required. A large number of metal ions have been 
introduced to salen to produce variety of complexes [2–4]. A very broad range of 
transition metals, main group metals and inner transition metals have been coor-
dinated with salen ligand systems. Being the multidentate ligand, their complexes 
often have very high formation constants. Salen based complexes have potentially 
been used in several fields like catalysis, biochemistry, electrochemistry, sensors, 
molecular magnetism and materials science. Salen-metal complexes are still leading 
in the field of homogeneous catalysis for various organic reactions. In the past few 
decades, numerous reviews based on salen ligand system have been published, 
highlighting its importance [5–8].

2. Salen ligands and derivatives

Several manipulations have been done on parent salen system to develop the 
varieties of salen system for various applications. The derivatives of salen are 
designed to develop desirable properties like solubility, stability, chirality, catalysis, 
extended conjugation, etc. Aromatic ring and diamine linkage (e.g., ethylene link) 
are two main portions in salen ligand system, which are used to put various sub-
stituents. 3-,5-Positions of salicylideneimine are frequently used for substitution. 
Substitution at 3- and 5-positions of salicylideneimine also improves the catalytic 
activities and prevents dimerization as well. The numbering of positions in salen 
system is shown in Figure 2. Substitution at aromatic ring of salicylaldehyde is very 
popular to enhance solubility of salen ligand and its metal complexes while the 
substitution at diamine linkage is commonly used to get the chiral ligand. Another 
position available for the substitution is carbon atom of imine bond.

2.1 Chiral salen

The asymmetry is introduced to salen system mostly by the use of chiral 
diamine. Chiral salen are of particular importance in asymmetric synthesis as 
enantioselective catalyst. Many procedures are known for chiral synthesis of 

Figure 2. 
Numbered positions in salen ligand.

Figure 1. 
Synthesis of salen ligand.
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ligands using diamine having one or more stereocentres [9, 10], or a stereoaxis [11], 
through the incorporation of axial [12] or planar [13–15] chirality within the sali-
cylaldehyde. Trans-1,2-diaminocyclohexane and 1,2-diphenylethylene-1,2-diamine 
are often used as 1,2-diamine to produce the chiral salen. These two chiral salen (2 
and 3) are very popular and their several derivatives have been reported [16]. Very 
often, tertiary butyl group and long alkyl chain are put to modify solubility, steric 
factor and electronic factor.

Chiral binaphthyl salen complexes (4 and 5) have been designed in such a way 
that the complexes possess two stereogenic centres and thus considered as second 
generation metal salen complexes. One of the stereogenic centres belongs to 
binaphthyl unit while other belongs to diamine unit [17–19]. The complexes were 
used for non-racemic oxidation of prochiral sulphides.

2.1.1 Non-symmetrical salen

Salen ligand systems have successfully been employed as homogeneous catalysts 
for variety of organic functional group manipulations. Very often they are symmetri-
cal and having C2-axis of symmetry. Non-symmetrical ligands bring out further 
magnify opportunities for tuning of electronic, steric and catalytic properties and 
therefore various nonsymmetrical analogues of salen have also been developed [20]. 
There are various advantages of unsymmetrical salen over symmetrical salen such as 
nonsymmetrical salen with single functional group can be immobilised onto hetero-
geneous and homogeneous traps to recover it after use [21, 22]. Moreover, electron 
releasing and/or withdrawing groups can be put on aryl rings of salicylideneimine 
part of salen. Presence of electron releasing and withdrawing groups together acts as 
push-pull system for electron density. Also, the unsymmetrical salen-metal com-
plexes have shown better enantioselectivity in certain cases [23, 24].

The easiest way to prepare an unsymmetrical salen can be direct two step Schiff 
base coupling i.e., the reaction between salicylaldehyde and ethylenediamine in 
1:1 molar ratio to get mono-keto-imine product followed by the reaction with 
substituted salicylaldehyde (Figure 3) [25–27]. This method do not need any 
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protection of group or presence of special reagent, but the main drawback of this 
method is that the stepwise coupling is not much favourable due to the formation 
of symmetrical product in first step and lability of imine bonds towards hydrolysis 
which reduces the yield of desirable unsymmetrical product drastically. Jacobsen 
et al. exhibited another way to prepare nonsymmetrical salen ligand directly by 
the reaction of two different salicylaldehyde derivatives and (1R,2R)-(+)-1,2-
diaminocyclohexane L-tartrate in 1:1:1 molar ratio in single spot, but in moderate 
yield (Figure 4) [28, 29]. Another approach for the synthesis of non-symmetrical 
salen is selective protection of one of the amine groups of diamine compound 
followed by Schiff base coupling of another amine group with salicylaldehyde, then 
the protected amine group is deprotected and coupled with distinct salicylaldehyde 
(Figure 5) [30, 31].

Silica- and polymer-immobilised Co(III)-salen non-symmetrical complexes (6) 
have also been developed and successfully used as catalysts for hydrolytic kinetic 
resolution of terminal epoxides with better rate, enantioselectivity and recyclability 
[32, 33]. Similar Mn(III)-salen non-symmetrical complexes have also been designed 
and studied [7]. Rigamonti et al. reported the synthesis of nonsymmetrical salen-
Cu(II) complexes (7–14) by the reaction of salicylaldehyde/5-nitrosalicylaldehyde 

Figure 4. 
Direct one step synthesis of nonsymmetrical salen ligand.

Figure 5. 
Protection-deprotection method for the synthesis of nonsymmetrical salen ligand.

Figure 3. 
Direct two step synthesis of nonsymmetrical salen ligand.
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and ethylenediamine/propylenediamine in 1:1 molar ratio in presence of Cu(II) ion 
and pyridine followed the addition of differently substituted salicylaldehyde and 
their nonlinear optical properties were studied and correlated with the structural 
diversities [34]. Salen ligand with methyl group at ethylene backbone is known as 
“salpn” (15). Salpn and its complexes have been used as additive in engine oil [35].

2.2 Conjugated salen

When phenylenediamine (phen) is taken in place of ethylenediamine during 
the reaction, the ligand formed is known as “Salphen” or sometimes “Salophen” 
(16). Salphen has extended conjugation with rigid planarity when coordinated with 
metal ion in square planar, octahedral or square pyramidal geometry, which is a very 
important criterion for material applications. Their photophysical properties can be 
fine-tuned by putting suitable substituents. Pietrangelo et al. synthesised thiophene 
capped salen ligands and their V, Ni and Cu copper complexes (17) and electro-
chemically polymerised them [36]. Asatkar et al. reported the synthesis of thiophene 
analogue of salphen (18) by taking 2-formyl-3-hydroxythiophene in place of 
salicylaldehyde and their Cu(II) and Zn(II) complexes [37]. However, the complexes 
could not be electrochemically polymerised as thiophene capped salphen did.

Even more complicated salphen have been developed by linking/merging two or 
more such units either through phenelene or salicylaldehyde [38] Bis-salphen scaf-
fold ligand can be prepared by the reaction of four equivalents of salicylaldehyde 
and one equivalent of 1,2,4,5-benzenetetramine and its derivatives can also be 
developed is similar way [39, 40]. Kleij et al. reported the synthesis of unsymmetrical 
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bis-metal-salphen scaffold complexes by partial hydrolysis of parent symmetrical 
bis-zinc-salphen scaffold complex followed by Schiff-base coupling with differently 
substituted salicylaldehyde derivatives (19–29) [41]. Similarly, another bis-salphen 
symmetrical and unsymmetrical ligands (30) are prepared using one equivalent of 
3,3′-diaminobenzidene and four equivalents of salicylaldehyde [42, 43]. Salphen 
based tri [3+3] (31), tetra [4+4] and hexa [6+6] macrocycles have also been prepared 
using 2,3-dihydroxybenzene-1,4-dicarbaldehyde and 1,2-phenylenediamine [44–47].

2.3 Salen based metal organic framework

Metal-organic frameworks (MOFs), is a fascinating classification of porous 
materials that can exits as self-assembled via coordination of metal aggregation/
ions with organic linkers [48–50]. Shultz et al. synthesised MOF using pyridine 
functionalized Salen-Mn complex and tetrakis(4-carboxyphenyl)benzene [51]. 
The MOF was further used to prepare new MOFs with change in metal ion. 
The Mn-MOF was demetalated first using H2O2 then remetalated with Cr(II), 
Co(II), Ni(II), Cu(II) and Zn(II) ions [52]. Lin et al. reported MOFs using chiral 
Mn-Salen functionalized with variable size dicarboxalic acid linkage. The MOFs 
exhibited asymmetric epoxidation catalysis with enantiomeric excess as high as 
92% [53]. Jeon et al. reported infinite coordination particles based on carboxalic 
acid functionalized Salen-Zn complex and studied the gas absorption capacity. The 
amorphous material showed excellent hydrogen gas intake capability [54]. Roesky 
et al. used carboxalic acid functionalized Salen-Ni complex and lanthanides to 
synthesise MOFs [55]. Shape of the framework was found to be dependent of size 
of lanthanides.

Kleij et al. found the unique self-aggregation nature of bis-Zn(salophen) [14, 
15, 56, 57]. They have secure self-assembly behaviour through linking coordination 
motifs that are fundamentally different from those usually found for the self-assem-
bly of mononuclear Zn-salophens [58]. This takes place on both at the interface of 
solid-liquid as well in solution. Oligomeric (Zn▬O)n coordination moiety are accus-
tomed inside the assembly and this is quite distinct from mononuclear analogues 
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of Zn(salphen) which form dimeric structures having a classical Zn2O2 central unit 
[59]. Multimetallic salen frameworks have been revealed to act as metallohosts form-
ing adduct complexes with further structural ordering upon substrate binding [38]. 
Nabeshima et al. employed a linear metallohost containing two N2O2 binding units 
[60]. Upon metalation with Zn(II) a 1:3 ligand to metal complex forms via a highly 
cooperative process. One Zn(II) ion is situated in a C-shaped O6 site in the centre of 
the helical complex. Guest exchange was shown to occur through substitution of the 
central Zn(II) with rare earth metal and lanthanide cations. Excitingly, the helicity 
of the complex is relying on the size of the central guest cation.

3. Analogues of salen

Due to the extended applications of salen ligand systems, their various ana-
logues have been developed and studied. Chalcogen analogues of salen include sul-
phur and selenium derivatives as thiasalen and selenasalen. However, the sulphur 
and selenium analogues are relatively less explored because of the volatile nature, 
instability, synthetic complications, unpleasant smell and adverse effect of thiol 
and selenol compounds. To synthesise the metal-thiasalen/selenasalen complexes, 
template synthesis is often used.

Dutta et al. reported the one pot synthesis of thia/selena analogues of salen-metal 
complexes (32–37) via oxidative addition of zero valent group ten metals (Ni(0), 
Pd(0) and Pd(0)) to S-S/Se-Se bond of bis(o-formylphenyl)disulphide/−diselenide 
followed by in situ coupling with ethylenediamine [61]. Panda et al. reported the 
synthesis of bis(alkylseleno)salen ligands (38–41) by the reaction of 2-(alkylthio/
seleno)benzaldehyde and ethylenediamine [62]. Their complexation with Pd(II) 
and Pt(II) ions exhibited very interesting results. Complexation of 2-(alkylseleno)
benzaldehyde with Pd(II) and Pt(II) ion yielded the formation of unsymmetrical 
complexes with the cleavage of one of the alkyl groups from Se-C(alkyl) bonds. 
However, the complexation with Pd(II) ions Complexation of 2-(methylthio)
benzaldehyde with Pt(II) ion, reported by Dutta et al., yielded similar unsymmetri-
cal complex (42–46) while the same with Pd(II) ion yielded time dependent product 
[63]. When the reaction mixture was refluxed for 5 min the symmetrical complex 
(48) with both the methyl groups intact was obtained, but when it was refluxed for 
4 h the unsymmetrical complex (47) was obtained.

Benzene rings have also been replaced by other aromatic rings to design the new 
salen analogues. Jeong et al. reported the synthesis of pyridine based salen type chi-
ral ligands (49–50) and their complexes and used them as enantioselective catalysts 
in Henry reaction [64]. Asatkar et al. reported the thiophene analogues (51–52) 
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of salen ligand system [65]. Interestingly, thiophene analogue of simple salen was 
found to exist in different tautomeric forms in solid and solution phases, unlike 
salen ligand. Its reaction with Cu(II) ion resulted in the dimeric complex. Another 
example of change in aromatic ring is pyrrole based salen type ligand (53), reported 
by Berube et al. along with its dimeric samarium(II) complex [66].

 

4. Applications of salen-metal complexes

M(salen) complexes have unique and exciting class of ligand based complexes 
with exceptionally versatile applications ranging from laboratory reaction to 
mass scale industries level. Interestingly, metal salen complexes gained popularity 
because of their roles in multiple areas few important of them are discussed below:

4.1 Catalysis

Metal-salen complexes appear as both homogeneous and heterogeneous cata-
lyst and have been substantially investigated by researchers for multiple uses [5]. 
The most attracting feature of metal salen catalysts is that they can be recovered 
and reused. Usually found that the salen as catalyst possess high stability revealed 
by their high stability constants [7]. When metal salen are applied as catalyst, 
demetalation of the complex occurs because of competitive binding with reagents, 
solvent or products, may be associated with changes in the oxidation state of 
metal in catalytic cycle. Few important reactions catalysed by metal salen includes 
Meerwein-Ponndorf-Verley reductions (MPV) [67, 68], Friedel-Crafts Reactions 
[69], Oppenauer oxidation, Tishchenko reactions [70, 68], ene reaction [71], 
mixed-aldol condensation [72, 73], Diels-Alder reactions [71], dipolar cycloaddi-
tions, Claisen rearrangements [74] and the cyclotrimerization of isocyanates to 
isocyanurates [75].

Interestingly, Metal salen holds important role in many oxidation reactions like 
alkene epoxidation [76], asymmetric syntheses of cyanohydrins and amino acids 
[77], and oxidation of heteroatom-containing compounds [78]. In biological system 
they actively take part in catalytic oxidation of Ni(III) oxidised in the catalytic 
cycles of Ni-Fe hydrogenases [79–82], acetyl coenzyme A synthase(ACS) [83–85], 
COdehydrogenase [86, 87], and methyl coenzyme M reductase [88]. Mirkhani et al. 
have found that the oxidation of diphenyl sulphide mediated by Mn(III)-salphen 
and Mn(III)-salen employing terminal oxidant as sodium periodate. The Mn(III)-
salphen complex yields a product mixture of sulfoxide and sulfone (4, 1 ratio) in 
100% transformation under mild conditions [89]. This is in contrast to the analo-
gous Mn(III)salen complex which only led 18% (ratio of sulfoxide and sulfone, 2:1). 
Mn(III)-salphen catalytic system was also successfully applied towards a variety of 
other sulphides and also furnished 100% yields.

Salen complex of heterobimetallic origin have been exclusively examined 
for many asymmetric catalytic synthesis [90]. Salen ligands are prepared from 
diamines and salicylaldehydes [91], configuration of both of these constituents can 
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easily be changed, sterically modified as per desirable physical and electronically 
altered which makes it possible for the synthesis of recyclable and immobilised 
salen complexes [7, 92–96]. Shibasaki et al. have used chemoselective complexation 
of transition metals at N2O2 coordination core while the rare earth metal utilised 
O2O2 core of same ligand. However, the key role for selectivity and reactivity of 
these multimetallic catalysts is based on metal ions e.g., coupling of Cu(II) and 
Sm(III) yields 66–99% enantiomeric excess (ee) in Mannich-type reactions [97] 
whereas Pd(II) and La(III) is the best combination for the asymmetric synthesis in 
Henry reaction, yielding product in 72–92% ee [98].

4.2 Molecular magnetism

Magnetic linkage of paramagnetic metal centres with some non-innocent 
ligands, in multimetallic salen complexes has produced essential information on 
spin interaction mechanisms. The extent of magnetic interaction (whether it be 
antiferromagnetic or ferromagnetic) is dependent on a number of factors including 
the distance between the paramagnetic centres and comparative orientation of the 
related magnetic orbitals. The relative ease of synthesis and the distance between 
the paramagnetic centres. Single molecule magnets have gained much research 
attention since the discovery of spontaneous magnetization below a critical tem-
perature [99, 100]. By applying proper ligand scaffolds, ferromagnetic interactions 
can be enforced between metal centres in multimetallic complexes [101]. Glaser 
et al. investigated phloroglucinol as a linker between paramagnetic metal salen 
units [102–104]. At the time, m-phenylene linkers had been well established in the 
organic radical community as an efficient ferromagnetic coupler and had been 
used extensively as a means to produce high spin organic radicals [105]. First row 
of transition metal V(IV)〓O [106], Mn(III) [107], Fe(III) [108], Ni(II) [109] and 
Cu(II) [110] are best fitted coordinating with triple salen.

4.3 Material applications

Metal salen based materials have drawn attraction of material scientists as well 
[111]. Metal organic framework (MOF) and zeolite encapsulated salen have porosity 
in their bulk material and thus exhibited gas storage properties and thus expected 
as gaseous fuel loading materials [6, 112]. Various lanthanide and transition metal-
lanthanide complexes have been found to have excellent luminescence properties 
[113]. Yu et al. reported the Zn(II) complex of salen type ligand exhibiting blue 
photoluminescence with brightness of around 37.2 cd m−2 [114]. The LED material 
also showed excellent thermal stability and thin film coating property. Ni(II), Pd(II) 
and Pt(II) complexes of salphen derivatives have also shown LED uses [115, 116]. 
Cu(II) and Zn(II) complexes of thiophene analogue of salphen have been reported as 
semiconducting material for field-effect transistor with excellent hole mobilities [37]. 
Thiophene capped salen-metal (V, Ni and Cu) complexes, Pietrangelo et al., where 
electrochemically polymerised as thin film to get conducting polymers. The poly-
merised complex materials exhibited enhanced nonlinear optical properties [36].

4.4 Biological activities

Metallosalens exhibits many biological activities as antimicrobial activity, anti-
oxidant activity [117] and anticancer propensity [118]. Their numerous applications 
have been seen in therapeutics and as biosensors. It has been found that the metal 
salen have functional enzyme mimic models as superoxide dismutase [119, 120], 
and Galactose oxidase mimics [121], Cytochrome P-450 mimics [122], Cytochrome 
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P-450 mimics [123], vitamin B12 [124, 125]. Metallosalens are capable of induc-
ing specific damage to DNA or RNA and have been recommended as footprinting 
agents [126, 127]. Salen complexes are versatile (biomimetic) catalysts for impor-
tant organic transformations. Derivatives of diaryl-substituted amines linked with 
metal attached with salen as ligand were experimented in number of cancerous cell 
lines [128]. Aromatic ring substitution and structural orientation of salen com-
plexes predict the cytotoxicity. Two labile titanium-salen complexes of cis  
configuration were discovered as antitumor agents due to its chelating ability as 
found in cis-platin [129, 130].

4.5 Sensors

Metal salen complexes have shown the sensory properties for verities of metal ions 
and small molecules [2, 38]. Colorimetric and fluoremetric both types of responses 
have been observed depending on the sensor and sensing ions. Chan et al. reported 
the Pt(II)-salphen based polymeric sensors for the detection of Pd(II), Cd(II), 
Hg(II), Zn(II), Mg(II), Ca(II), Li(I) and K(I) ions [131, 132]. Wezenberg et al. 
reported Zn(II)-salphen complexes as metal ion sensors based on demetalation of 
complexes [133, 134]. Many multimetallic salen complexes have found to be potential 
sensory properties [2]. Song et al. reported chiral salen based fluorescent polymeric 
sensor for the enantioselective detection of α-hydroxy carboxylic acids showing 
fluorescence quenching upon reaction [135]. The same group reported another chiral 
salen based fluorescent polymeric sensor for the detection of Zn(II) ion as turn-on 
fluorescence response [136]. Salen based chemosensors for the detection of Al(III) 
ion based on transmetalation mechanism have also been reported [137].

5. Conclusions

Researcher aims to design or synthesise a molecule with multidirectional use, 
for developing such a molecule endless work is needed with clarity of innovation 
leading to novelty. Salen is among those important creation, nevertheless molecule 
has unimaginable and multiple scope of application ranging from catalysis to 
biological activities, or as therapeutic use in many medicinal drugs. Salen and its 
derivatives have been extensively studied because the structural configuration of 
complex felicitates its importance in various chemical reactions. Widespread use 
enhances its reliability as catalyst in oxidation, reduction, asymmetric synthesis 
and many more. The nonsymmetrical salen derivatives have signify to be essential 
for the preparation of different polymer-supported catalysts that show improved 
properties (higher activities, catalyst recycling) as collate with parent mono-nuclear 
complexes. Metallic interference adhere tremendous approach in chemical reac-
tion, presence of metallic centres promotes many specific reaction. Henry reac-
tion, Mannich reaction, Diels-Alder reaction, alkene epoxidation and many such 
reactions encountered frequently employing salen as transitional part between 
reactant and product. Metal organic framework (MOF) using salen ligand is recent 
advancement in the field of macromolecule i.e., supramolecular structure attracting 
great attention in the field of catalysis and material science. Thus, it is assumed that 
in near future salen can escort a bloom in the field of catalysis, magnetism, sensors, 
medicinal areas and material sciences.
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