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Chapter

Application of Local Information
Entropy in Cluster Monte Carlo
Algorithms
Artur Chrobak, Grzegorz Ziółkowski and Dariusz Chrobak

Abstract

The chapter refers to a modification of the so-called adding probability used in
cluster Monte Carlo algorithms. The modification is based on the fact that in real
systems, different properties can influence its clusterization. Finally, an additional
factor related to property disorder was introduced into the adding probability,
which leads to more effective free energy minimization during MC iteration. As a
measure of the disorder, we proposed to use a local information entropy. The
proposed approach was tested and compared with the classical methods, showing
its high efficiency in simulations of multiphase magnetic systems where magnetic
anisotropy was used as the property influencing the system clusterization.

Keywords: Monte Carlo simulations, cluster Monte Carlo methods, magnetic
simulations, entropy methods, ultra-high coercive alloys

1. Introduction

The problem of simulation magnetization processes of multiphase magnetic
materials seems to be important, regarding the tendency for applications of high-
efficient permanent magnets with reduced or without rare earth elements.
Recently, we reported unique hard magnetic properties of Tb-Fe-B-Nb bulk alloys,
i.e., coercive field over 7 T at room temperature, attributed to a specific micro-
structure of dendrite-like Tb2Fe14B grains [1, 2]. In this system, Tb and Fe magnetic
moments are coupled antiferromagnetically, which is responsible for relatively low
magnetic remanence (μ0Mr ≈ 0.3 T) and in consequence |BH|max (about 13 kJ/m

3).
However, the Fe-Nb-B-Tb bulk alloys can be considered as a material with
extremely high resistance to the external magnetic field and can be a source of
magnetic anisotropy in powders as well as bulk spring-exchange composites
containing magnetically soft and ultra-high coercive phases. For this reason, the
ability of simulating of such systems is very useful in the process of examining and
designing of spring-exchange composites in the pre-lab phase.

Monte Carlo (MC) algorithms are now widely used to clarify various physical
phenomena, as well as to investigate their potential application in modern technol-
ogy. Among many simulation methods, the Metropolis MC (MMC) approach [3, 4]
is especially attractive in statistical physics for the determination of system physical
quantities in thermodynamic equilibrium. The MMC algorithm realizes an ergodic
stochastic process, ensuring the fulfillment of the detailed balance condition.
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One of the bright examples of the application of the MMC algorithm is the Ising
model of spins located on the nodes of some lattice. Indeed, using this method one
can study a course of magnetic ordering and its dependence of temperature and
details of interactions between the spins.

The MMC method utilizes the single-spin-flip procedure to change the spin
configuration; however, in many cases (e.g., simulations of magnetization pro-
cesses) a more effective algorithm is needed. The simplest approach relies on the
generation of a cluster of uniformly oriented spins and their subsequent flip to
reach new state of the system. The main question is how to determine the cluster
and how to establish a rule of its acceptance, simultaneously satisfying the detailed
balance condition. Classical approaches, based on the Kasteleyn-Fortuin theorem
[5, 6], were proposed by Swendsen and Wang (SW) [7] as well as by Wolff [8] who
assumed a specific cluster-building procedure controlled by the so-called adding
probability. It is known that the cluster Monte Carlo methods (CMC) are very
efficient in the analysis of critical phenomena, e.g., transformation from ferromag-
netic to paramagnetic phase [9, 10]. In contrast, their application for studying
magnetization processes of systems far below the Curie point produces artificial
results, which can be demonstrated for the systems containing magnetically differ-
ent phases (e.g., hard and soft) as well as geometrical irregularities. The cluster-
building algorithms implemented within SW and Wolf approaches are steered by
the exchange interactions and the system temperature, but they are not sensitive to
other features, potentially affecting the clusterization of spins.

In order to broaden the applications of the CMC methods to simulations of real
magnetic composites, we proposed a new method based on some modification of
the SW/Wolff adding probability and a particular Metropolis-like algorithm,
ensuring the principle of detailed balance [11]. The idea is based on the fact that
some kind of regions of the system, characterized by a local disorder of selected
system property, constitutes natural barriers for the extension of clusters. In the
case of magnetic multiphase composites, spatial distribution of the magnetic
anisotropy can be considered as the property affecting the cluster formation.

In the chapter, the disorder-based CMC algorithm is introduced and discussed in
a context of classical CMC methods. We show that the new simulation procedure is
efficient leading to physically reliable results, especially for multiphase magnetic
composites.

2. Local disorder-based CMC method

Let the considered physical system be characterized by a discrete spectrum of
microscopic energy states (microstates) labeled by Eα. Furthermore, let the system
be in equilibrium with a thermostat having a temperature T. According to basic
principles of statistical mechanics, the probability that the system occupies the state
α is proportional to the Boltzmann factor: exp �βEαð Þ, where β ¼ 1=kBT, kB refers
to the Boltzmann constants. Then, the equilibrium value of some system quantity
(observable) F can be calculated using the following formula [12, 13]:

F ¼
1

Z

X

α

Fα exp �βEαð Þ, (1)

where Z ¼
P

α exp �βEαð Þ is the partition function. The direct use of Eq. (1) is
impractical due to a very large number of states that should be taken into account.
Indeed, even for small systems as, for example, a two-dimensional 10� 10 lattice of
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spins, we get a total of 2100 states—the number that makes the summation occur-
ring in Eq. (1) impossible.

In order to estimate the average ´F, a nonuniform sampling of the system states
can be applied. If αf g denotes a set of indices of M system states selected with the
probability pα, the equilibrium value of the observable F can be modeled [13] by the
estimator:

FS ¼

P

αf gFα exp �βEαð Þp�1
α

P

αf g exp �βEαð Þp�1
α

¼
1

N

X

αf g

Fα, (2)

where probabilities pα were selected to be equal exp �βEαð Þ=Z. All we need is a
method that generates a set of system states with the Boltzmann probabilities pα.
Because the exact value of the partition function Z is unknown, the generation of
the states is usually carried out by the ergodic Markov process. This process pro-
duces a proper chain of states under the assumption that transition probability Wαβ

(from α to β state) is independent of the states preceding α. Moreover, It is also
assumed that the detailed balance condition, pβWβα ¼ pαWαβ, is satisfied when the

system is in a state of equilibrium [12–15].
The transition probability Wαβ can be considered as a product of the selection

probability gαβ and the acceptance ratio (probability)Aαβ. In general, the selection

probabilities can be chosen to a large extent freely, e.g., they can be symmetrical
gαβ ¼ gβα [12]. In that case the acceptance probabilities satisfy the equation:

Aαβ=Aβα ¼ exp �β Eβ � Eα

� �� �

(3)

As an example, let us consider Ising model of N interacting spins placed at the
nodes of a two-dimensional regular. The energy of the system is, then, given by the
formula

E ¼ �J
X

N

i 6¼j¼1

sisj (4)

where si ¼ �1 describes the spin state at the ith lattice node and J refers to the
exchange integral. In order to determine the physical properties of our magnetic
system, theMetropolis algorithm can be employed. It relies on the particular choice of
both the selection probability and the acceptance ratio. Having some configuration of
spins, the next one is obtained by the flip of a single spin (single-spin-flip algorithm)
[12, 13]. This procedure results in uniform distribution of the selection probabilities,
i.e., each new state participates in simulations with probability gαβ ¼ 1=N. Then, the

new spin configuration can be accepted or rejected with an acceptance ratio
Aαβ ¼ exp �β Eβ � Eα

� �� �

(for Eβ � Eα >0) andAαβ ¼ 1 (for all other cases).
Although the Metropolis algorithm can be applied to a variety of physical problems,
when applied to magnetic systems, it has disadvantage that relies on a very rapid
increase of the correlation time as well as correlation length near the critical point. As a
result the system contains domains of the same oriented spins and therefore becomes
configurationally frozen. This unexpected behavior (critical slowing down) of the
Metropolis algorithm is the reason for the difficulties in the generation of statistically
independent spin configurations that are needed for the calculation of the estimator FS.

The solution of the critical slowing down problem was proposed by Swendsen-
Wang [7] and later by Wolff [8]. The approach developed by Wolf (cluster-flipping
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algorithm) based on the generation of the uniformly oriented spin cluster and its
subsequent flipping [12]. In contrast to single-spin-flip algorithm, this procedure
easily destroys domains of correlated spins and allows the system to walk through
the configuration space. The Wolff algorithm is recognized to be more effective
than the Swendsen-Wang one [16–18]. The selection of a spin cluster starts from
randomly chosen spin to which the neighbors occupying the same spin state are
added with the probability Padd. The cluster grows up until no spin is added to it. It
is a great advantage that the Wolff algorithm is a rejection-free one. Indeed, adding
probability Padd is defined so that the detailed balance condition (with acceptance
ratio equal to one) is met:

Padd ¼ 1� exp �2βJð Þ (5)

Despite the great achievements, theWolff model is not able to correctly simulate
magnetic phenomena that occur far below the critical point in real magnetic mate-
rials, including those that are composed of various magnetic phases as well as those
containing geometrical irregularities. To be more precise, one can consider, as an
example, remagnetization of the system build of two magnetically hard and soft
ferromagnetic spheres coupled by a narrow bridge. Let us assume that in the initial
state, the magnetization of the system is collinear with the direction of the external
magnetic field and then the magnetic field is switched in the opposite direction.
What happens to the system is that the magnetization of the soft sphere will follow
the change of the magnetic, and then the similar behavior of the hard sphere is
expected. Unfortunately, for systems with strong spin-spin coupling, the two-step
behavior of the considered system cannot be modeled using Wolff clusterization
algorithm. Indeed, every attempt to build a cluster within the two-sphere magnetic
system results in that the hard and soft spheres belong to the same cluster indepen-
dently on magnetic anisotropy and geometry of the system. So, even if the two-step
remagnetization process is energetically preferred, the simulated magnetization
curve consists of one step related to the common spin rotation. Taking into account
the problems encountered during modeling the remagnetization of magnetically
inhomogeneous system, we propose a modification of the Wolff algorithm that
relies on an assumption that some regions of the system, characterized by a disorder
of selected system property, can serve barriers for an extension of magnetic clusters.

We began from the introduction a distribution of system property K that can
refer, for example, magnetic anisotropy or some other properties potentially affect-
ing the clusterization of the system. Let us define a sphere V around a node of the
spin lattice—the sphere containing N nodes in total. Furthermore, let the system
property be characterized by a discrete and finite set of values: K1, K2,…, KNK

. The
local distribution of the K system property is defined by the numbers
nif g ¼ n1; n2;…; nNKf g, where ni stands for the number of nodes having the value

Ki. The sum overall is ni equals N. Thus, the particular K-state of the sphere V is
defined by the set of numbers nif g. The number of possible realizations of the
K-state denoted by Ω nif g is given by the expression

Ω nif g ¼
N!

n1!n2!…nNK
!

(6)

Using the Stirling formula, the previous equation takes the form

ln Ω nif g

� �

≈ �N
X

NK

i¼1

piln pi
� �

(7)
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where pi ¼ Ni=N stands for the probability of finding Ki value inside the sphere
V. The expression on the right side of Eq. (7) contains the term called local
information entropy [19]:

Slocnif g ¼ �
X

NK

i¼1

piln pi
� �

(8)

So the number of “microstates” corresponding to the K-state is

Ω nif g ≈ exp NSlocnif g

� �

(9)

The probability of particular local distribution nif g of the system property K is
proportional to Ω nif g. If the only one value of K dominates its distribution inside the

sphere V, e.g., N;0;…0f g, the local information entropy achieves the lowest value

Sloc ¼ 0. Other local distribution nif g that involves more than one value of K results

in Sloc >0.
Now we can introduce the perception of local disorder of the K system property

and its measure pK . We will say that the K system property is fully ordered inside
the sphere V if all the nodes inside the sphere have the same value of K. Conse-
quently, one can say that the sphere V exhibits some local disorder of K if more
values of K are distributed inside the sphere. The measure of the local disorder can
be defined by as follows:

pK ¼ exp �Sloc
� �

(10)

which gives pK ¼ 1 if the case of fully ordered system property (Sloc ¼ 0). One
can see that pK decreases when local disorder of K system property increases

(Sloc >0).
We assume that local disorder of K system property decreases the probability of

cluster growth and constitutes barriers for cluster expansion. Thus, one could
expect nonuniform distribution of adding probability P0

add among the system nodes.
In order to derive a reasonable formula for P0

add, we follow an analogy with deriva-
tion of the van der Waals equation. Our “ideal gas” corresponds to the uniform
distribution of adding probability given by Wolff algorithm, while “real gas” refers
to the case when the distribution of adding probability is affected by local disorder
of some system property. In order to still play with Wolf algorithm, an influence of
local disorder should be compensated in some way, e.g., by multiplication P0

add by

p�1
k . Then, assuming that this product satisfies the Wolff’s formula P0

add exp Sloc
� �

¼

1� exp �2βJð Þ, the adding probability that takes into account the impact of local
disorder of some system property can be easily obtained:

P0
add ¼ 1� exp �2βJð Þ½ � exp �αSloc

� �

(11)

The above equation is the clue of our method which expresses the decrease of the
classical adding probability by the disorder-based factor. A set of property, for which
the disorder is determined (by the local information entropy), should be chosen
dependently on a specific application. The α parameter expresses some enhancement
or weakness of the influence of the entropy on the system clusterization. It should be
defined regarding the specific problem (see next paragraphs).
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3. Simulation procedure

The main simulation procedure consists of a series of Monte Carlo steps, and it is
based on the classical Metropolis algorithm applied to the so-called spin continuous
approach. However, the main difference lies in the cluster-building procedure
which is executed with a small probability Pcl, as shown in Figure 1.

First of all, a random node i of the system is chosen, and then it is decided,
regarding the probability Pcl, whether to analyze the selected node or build a cluster,
starting from the node as a seed. In the first case, the algorithm goes to the typical
Metropolis procedure and spin continuous method, i.e., the spin direction is ran-
domly modified by angle �θ, and then the energy difference ∆E between the new
and the old configuration is calculated. The energy of the system is computed in the
frame of the 3D Heisenberg model:

E ¼ �
X

i, j
JijSi � Sj �

X

i

Ki Si � nið Þ2 � gμBμ0
X

i

Hi � Si þD
X

i, j

Si � Sj � 3 Si � eij
� �

Sj � eij
� �

r3ij

(12)

where Jij is the exchange parameter, Si is the spin vector on site i, Ki is the
anisotropy constant (per site), ni is the easy magnetization axis, g is the Lande factor,
μB is the Bohr magneton, μ0 is the vacuum permeability, Hi is the magnetic field on
site i, D is the dipolar constant, eij is the directional versor between the ith and jth
nodes, and rij is the distance between the ith and jth nodes. The change is accepted
with the Metropolis acceptance probability. In the second case, the algorithm is
similar; however, it is necessary to find a cluster around the selected node and, if it
exists, carry out a coherent rotation of all spins belonging to the cluster. The

Figure 1.
Schematic diagram of the used algorithm.
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procedure of the cluster building is the key and important point. We used the Wolff
algorithm but with the modified adding probability P0

add expressed by the formula

P0
add ¼ 1� exp �βEcoupling

� �h i

exp �αSloc
� �

(13)

where Ecoupling is the exchange interaction energy between the neighboring spins.
The local information entropy is computed in the defined sphere around each

node. In general, the choice of properties (used in the entropy calculation) will
depend on the problem being considered; however, for magnetic systems, the
natural limit of cluster growth is the change in the value and direction of magnetic
anisotropy K. Therefore, an optimal feature is a set of three components [Kx, Ky, Kz],
whereby the nonmagnetic nodes do not participate in the entropy calculations.
In addition, at the beginning of each cluster-building procedure, the α coefficient is
drawn that will weaken (α < 1) or strengthen (α > 1) the influence of a local
property disorder on the system clusterization. Moreover, it is recommended that
from time to time (typically about 20% cases), it completely ignores the impact of
disorder and builds a cluster based on the standard Wolff method.

The presented algorithm gives some freedom of the cluster building for which
the thermodynamic balance is fulfilled. Indeed, even if the cluster rotation slightly
disturbs the balance, the remaining single-spin MCM iterations restore it again. The
only condition is that the Pcl and θ values are relatively low (it can be determined
experimentally for cases when the results do not depend on the parameters).

Parameter Description Recommendation and notes

θ The angle at which the direction of the

spin or cluster can be changed in a

single iteration

Note, it affects the energy changes in a single

step. A large θ value will freeze the system, while

the small will make it very loose as well as more

iterations will be needed to obtain the same

change

Pcl Probability of cluster analysis instead

of spin in a single iteration

If many independent clusters in the system are

expected, then the value of the parameter should

be raised to give everyone a chance to be

analyzed. However, high values may destroy the

thermodynamic equilibrium

Srange The range of local information entropy The range of local entropy should be selected

depending on the geometry of the system. The

larger range increases the chance to separation

between the magnetic grains and a small

common area

Niter The number of iterations contained in

one MC step

Typically, we suggest Niter = 3 N where N is the

number of all spins in the system

Nstep The number of MC steps used to

calculate the average spin of the

system <SZ>

We propose Nstep = 400

α Modifier of the impact of local

information entropy

For α < 1 and for α > 1, the Sloc impact will be

depressed and strengthened, respectively. The

best approach is to draw an α value before each

cluster search

PWolff The probability of searching for a

cluster based only on the Wolff

method

In some cases, you can build a cluster ignoring

the impact of local entropy. Typically, we

suggest PWolff = 0.2

Table 1.
A guide of the parameters used in the algorithm.

7

Application of Local Information Entropy in Cluster Monte Carlo Algorithms
DOI: http://dx.doi.org/10.5772/intechopen.88627



Finally, one MC step consists of Niter iterations presented in Figure 1, and the Nstep

steps are taken to obtain the magnetization of the system <Sz> (the average spin in
the external field direction).

The most important parameters of the algorithm, their possible values as well as
our recommendations from a practical point of view are summarized in Table 1.

The algorithm can be, in some aspects, paralleled [20–23]. The main limitations
of the parallelization process are due to three reasons. First of all, each step in the
Monte Carlo procedure should be based on the system modified in the previous
step. In particular, the decision to accept the new spin direction depends on the
current direction of the neighboring spins due to the exchange energy. Conse-
quently, a situation in which different threads are testing a new configuration for
the two neighboring spins at the same time should be refused. Similarly, simulta-
neous analysis of the whole cluster and individual spins inside it (as well as spins
interacting with it) is not allowed. The second thing to keep in mind is to ensure
that each state of the system can be selected with the same probability. This means
that none of the actions can interfere with the probability of choosing a spin for
analysis. For example, the spin cannot be temporarily omitted in the draw as well as
the analyzed cluster must always be found in the real time and cannot be taken from
a fixed database. Finally, it should be taken into account that a change of the spin
direction inside a cluster, which is constructed based on the P0

add probability, may
disrupt the thermodynamic balance of the system. Therefore, from the statistical
point of view, after each change of the cluster spins, there should be many iterations
analyzing single spins in the cluster and whole system.

Despite all the above restrictions, there are three time-consuming problems in the
algorithm which can be parallelized: the main MC loop, the calculation of cluster
energy as well as the cluster-building procedure around the chosen spin. Our experi-
ence shows that the parallelization of the algorithm accelerates the computation time

Figure 2.
Comparison of computation time (400 MC steps) for different Pcl, system size, and its magnetic properties.
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more than 10 times (depending on the probability of cluster analysis and the system
size) and maintains the correctness of results. Figure 2 shows a comparison of com-
putation time (needed for 400MC steps) for different Pcl, system size, and its mag-
netic properties. On this graph, the independent quantity is a number of threads
applied for the simulations (HP ProLiant DL580 G7, 4x Intel Xeon 8C X7560
2.27 GHz).

Generally, this aspect of calculations is very complex. Nevertheless, one can
conclude that the parallelization is more effective for the systems with small num-
ber of the cluster-building trials.

4. Application of the method to multiphase magnetic systems

In order to show an efficiency of the disorder-based cluster MC algorithm and its
comparison with the classical Wolff method, the two systems containing magneti-
cally hard and soft phases were analyzed. The 3D system space consists of
50 � 50 � 50 (1,25,000) nodes; the spins are arranged in shapes of joined spheres
with hard and soft magnetic properties. The bonding between the spheres, further
called “bridges,” is different for the two cases, and it equals 1 or 7 nodes, recep-
tively. Figure 3 depicts an example of the system with one-bridge coupling between
the hard and soft spheres. The parameters of the magnetic phases and simulation
procedure are listed in Table 2.

The difference between classical and disorder-based approaches lies in the defi-
nition of adding probability. It can be demonstrated by the cluster-building

Figure 3.
Example of the system with one-bridge coupling between the hard and soft spheres. The graphs on the right show
cross sections (z-x plane) for different y values equal to 10 (a), 25 (b) and 40 (c).
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successes when the procedure starts from the same cluster “seed.” Figures 4 and 5
show the comparison for the one- and seven-bridge systems, respectively. The
cluster seed is placed in the center, and the white color is attributed to 100 cluster-
building successes per 100 trials.

As shown, using the classical Wolff algorithm, all spins in the system belong to
the same cluster independently on their magnetic properties. This means that dur-
ing simulations, a possibility of closing the clusters inside the hard or soft phase is
not available. The modification of adding probability causes that the cluster-
building procedure can distinguish the hard and soft phase with relatively high

Parameter Soft phase Hard phase

Exchange coupling J 1.5e–2 eV 1.5e–2 eV

Anisotropy constant K 0 1e–3 eV

Simulation procedure

Dipolar constant D 1.8e–7 eV

Thermal energy kBT 1e–4, 1 e–5, 1e–6 eV

α parameter Random value from 0 to 25

Cluster analysis probability Pcl 10�3

Range of the entropy Srange �3 nodes

Spin change angle θ π/100

System size (in one direction) n 50

Number of iteration in one MC step 3n3 = 3,75,000

Number of MC steps for magnetization averaging 400

Table 2.
Parameters of the analyzed systems and simulation procedure.

Figure 4.
Comparison of the adding probabilities for the one-bridge system.
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Figure 5.
Comparison of the adding probabilities for the seven-bridge system.

Figure 6.
Reverse magnetization curves simulated using the classical Padd and modified P0

add adding probability.
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probability. However, with lower probability, the cluster contains whole spins in
the system (like in the Wolff algorithm) which is related to a random value of the α
parameter. The modification of adding probability causes that the configurations
necessary for modeling of real magnetization processes are available during MC
iterations. In other words, if magnetization processes require separate behavior of
the hard and soft phase, the simulation procedure will test such a possibility.

As a final test, the so-called reverse magnetization curves were simulated using
the classical as well as modified adding probability. Initially, the system was satu-
rated in the field direction (all spins are directed up), and then the field was
switched off. During calculations the field was increased in the opposite direction.
Magnetization, determined as average spin value in the field direction, as a function
of the external magnetic field for all examined cases is shown in Figure 6.

The difference between Padd and P0
add appeared in all studied examples. Note

that for the one-bridge system (relatively low interactions between the hard and

Figure 7.
Spin configurations depicting the reverse magnetization process for the seven-bridge system at kB T = 1e‒4 eV.
Red and blue colors indicate the soft and hard phase, respectively.
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soft phases), the two-step reverse magnetization curve is expected. The first step is
attributed to the spin flip of the soft phase, while the second one related to spin flip
of the hard phase. For the seven-bridge system, the reverse magnetization is differ-
ent due to stronger interphase coupling. However, at temperatures kBT above
1e–6 eV, this process consists of a subsequent change of the “soft” spins and next,
coherent flip of the “hard” spins. Such a scenario is fully confirmed by the spin
configurations depicting the reverse magnetization process for the seven-bridge
system at kBT = 1e–4 eV (see Figure 7).

Regarding the fact that in some cases also for Padd the two-step behavior occurs,
the main question is which curve is physically correct. For this reason, it is worth to
analyze the curves in fields when the soft phase changed spin direction using P0

add in
the cluster-building procedure. It is known that thermal equilibrium is related to a
minimum of the free energy of the system. Comparing the spin configurations for
the Wolff and our modified algorithm, one can state that entropy (as a thermody-
namic function) is higher for the second one, i.e., applying P0

add, which contributes
to a decreasing of the free energy. Therefore, this approach is correct for which the
energy of the system is lower. Figure 8 shows a focus of the interesting region as
well as the energy of the system for the two tested algorithms. In all cases the
application of P0

add results in “faster” (in lower fields) minimization of the system
energy than the procedure based on the classical adding probability.

It is clear that the introduced modification of adding probability results in more
effective finding of the free energy minimum and, therefore, produces physically
reliable results which allows modeling multiphase magnetic systems.

5. Conclusions

As it was shown, in some conditions (low temperature and/or strong exchange
coupling) the classical CMC algorithm can produce incorrect results in the

Figure 8.
Reverse magnetization curve and energy of the system in the fields related to the spin flip of the soft phase.
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application of multiphase magnetic systems. The problem lies in the adding proba-
bility used in the cluster-building procedures. This problem can be overcome by the
proposed modification of Padd accompanied by the specific Metropolis-like algo-
rithm. The key point is to recognize a property that influences the system
clusterization and, next, introduction of the local information entropy of this prop-
erty into the adding probability.

In summary, one can conclude that the method proposed for modeling of mag-
netic systems allows sampling spin configurations practically inaccessible by origi-
nal Wolff clusterization procedure. An interesting future of our method is the
acceleration of the energy minimization process.
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