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1. Introduction 

The wine industry generates large quantities of waste annually, including organic solid 

wastes (solids, skins, pips, marc, etc.), inorganic solid wastes (diatomaceous earth, bentonite 

clay, perlite), liquid waste (cleaning wastewater, spent cleaning solvents, cooling water), and 

gaseous pollutants (carbon dioxide, volatile organic compounds, ammonia, sulphur dioxide, 

etc.) (Chapman et al., 2001; Musee, 2004a; Musee et al., 2007). Several factors give rise to 

these diverse waste streams (Musee, 2004a; Musee et al., 2007), however, only the most 

salient ones are highlighted here. Firstly, wine production evolved from a cottage industry 

to a global industry. Because of their antiquated origin, the design and development of 

many wineries made no provision for in-plant modern waste minimization (WM) 

approaches. Secondly, because the wine industry is dependent on an agricultural feedstock 

(grapes), the resultant waste streams tend to have a high concentration of organic material. 

This is because the grape feedstock cannot be altered, replaced, or eliminated before the 

vinification process begins – if the finished wine quality is to remain consistent. And finally, 

although auxiliary process feedstock, such as filter aids and diatomaceous earth are essential 

for clarifying the wine, they cannot be incorporated into the final product. Consequently, the 

clarification agents constitute part of the waste streams generated from the wine industry. In 

view of these unique constraints facing the wine industry, among others, necessitates the 

development of appropriate WM strategies to address the waste management challenges 

facing the wine industry (Musee et al., 2007).         

In recent years, there has been continuous pressure on the operating profits of wine makers, 

mainly owing to increasing competitiveness in the global wine market. This can be 

attributed to increased variety of wine brands, rise in operational and input material costs, 

as well as the emergence of an onerous environmental regulatory framework in many wine 

producing countries (Bisson et al., 2002). Notably, the impact of stringent environmental 

legislation on the cost of production is expected to continue to be a key determinant in the 

international competitiveness of wine products (Katsiri & Dalou 1994; Massette, 1994; 

Müller, 1999). This, and a combination of other powerful intrinsic and external drivers 

should motivate the wine industry to consider the possibility of incorporating WM 

strategies as an integral part of wine making processes. As such, the identification and 

implementation of appropriate WM strategies should be part of the drive to reduce the cost 

of wine production – particularly in the context of ensuring its future sustainability.  
Source: Decision Support Systems, Book edited by: Chiang S. Jao,  
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In practice, vinification processes are characterized by complex interactions amongst 
different production processes. As a result, any effective attempt to enhance winery waste 
management is likely to require a solution comprising of several WM strategies, and 
implemented concurrently. However, such an undertaking is dependent on the 
identification of suitable strategies, and secondly, a careful assessment of each strategy to 
determine its likely influence in addressing the overall WM problem in the wine industry. 
Moreover, the assessment of each strategy would inevitably entail the use of multiple 
screening criteria, such as technical feasibility, economic and social imperatives as well as 
environmental integrity. Unfortunately, the application of different criteria for the ranking 
of WM strategies is complicated by the lack of quantitative operating data presently 
available in the wine industry (Musee et al., 2006a).                           
Nonetheless, to be effective, decision support tools designed to facilitate waste management 
in the wine industries should ideally be able to exploit the qualitative data available, as 
these data constitute a vital component of industry knowledge. Fuzzy logic (Zadeh, 1965; 
Bonissone, 1997; Yen & Lugari, 1998; Ross, 2004) provides such a platform. Previously fuzzy 
logic has been applied in developing rational solutions for complex real world problems 
(Bonissone, 1997), and offering interpretable results (Setnes et al., 1998). For example, 
successful applications of fuzzy logic have been demonstrated in domains such as process 
design (Huang and Fan, 1995), water quality assessment (Ocampo-Duque et al., 2006), 
manufacturing (Büyüközkan & Feyzioğlu, 2004), safety (Gentile et al., 2003), sustainability 
(Phillis & Andriantiatsaholiniaina, 2001; Gagliardi, et al., 2007; Musee & Lorenzen, 2007; 
Prato, 2007), and hazardous waste classification (Musee et al. 2006b, Musee et al, 2008a; 
Musee et al, 2008b). 
Musee and co-workers (Musee et al., 2003; Musee et al., 2006a) studied a fuzzy logic 
approach to support decision making in the wine industry that entailed the ranking of WM 
strategies based on experts’ opinions. Because experts hold widely different opinions, this 
approach yielded decisions associated with a high degree of uncertainty. In the current 
work, this drawback is addressed using a fuzzy logic framework by combining the ranking 
of expert opinions with operational data to improve the analysis and selection of WM 
strategies in the context of wine production. The merits of the proposed approach will be 
illustrated with two case studies. 
This chapter is organized as follows. Section 2 provides an overview of the waste management 
in the wine industry, and the tools applied to model such a highly unstructured problem. The 
tools used in modelling the wine waste management problem comprised of; the screening and 
ranking indices, qualitative reasoning in developing various probable scenarios, and the fuzzy 
logic. In Section 3, a case study on WM in the wine industry is introduced, where a conceptual 
model – the intelligent decision support system together with mathematical equations – and 
how the knowledge stored in different knowledge rule bases were linked to effectively 
evaluate WM in the wine industry context. Section 4 presents results derived from the model, 
and a discussion on their application to real-world winery operations with respect to WM. The 
main findings of the chapter are presented in Section 5. 

2. Basics of waste management in the wine industry 

2.1 Hierarchical evaluation of wineries 

The hierarchical analysis of process systems has its origin in the hierarchical decision 
approach developed by Douglas (1988). In this chapter, hierarchical analysis was applied to 
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decompose the waste management problem in the wine industry. The vinification process 
was decomposed into several subtasks, followed by the identification of the most influential 
variables concerning: (i) the degree of recovery of products and by-products during the 
production processes; (ii) the quantity and quality of effluent generated during cleaning and 
sanitization processes; and (iii) the quantity of chemicals consumed during cleaning and 
sanitization processes.  
 

 

CS: Cleaning and sanitation; CC: Chemical consumption; P1: Crushing and destemming processes; P2: 
Transfer processes and operations; P3: Filtration, P4: Pressing; P5: Fermentation; P6: Bottling and 
packaging. 

Fig. 1. Analysis of the vinification processes using a hierarchical approach for the 
identification of WM strategies.  

Fig. 1 depicts a hierarchical model of vinification processes. In this study, the operational 
variables were decomposed into three levels based on literature survey and interviews with 
experts knowledgeable on waste management practices and norms in the wine industry. In 
Level-I, different waste types generated from the vinification processes were classified as 
intrinsic (process) or extrinsic (utility). Detailed description of waste classification in the 
wine industry has been presented elsewhere (Musee et al., 2007), and will not be repeated 
here. In this study, the breadth of the adopted waste classification approach ensured that no 
waste stream was left unaccounted for. In addition, the model gave rise to consistent and 
robust results. These aspects will be elucidated in details in Sections 3 and 4.  
Owing to the seasonality of the vinification processes and high value-added nature of the 
product (wine) – wine production is an ideal candidate for both batch and semi-batch 
manufacturing techniques. This causes a wide variation in the composition of the waste 
streams - characterized by strong seasonal dependence. In Level-II, the vinification process 
is characterized by two seasons, viz. the vintage and non-vintage season. It should be noted 
that a definitive distinction between vintage and non-vintage season is more or less 
dependent on the processes that take place during a given period on the vinification 
calendar (Chapman et al., 2001).  
The vinification process was further decomposed based on the seasonality of the wine 
production which led to the identification of the most predominant processes under each 

P4

Extrinsic 

Waste minimization 

CC CS 

Intrinsic wastes
Level-I 

Level-II 

Level-III 
P6P5P1 P3CCCS  P2 P4 P6 P5P3P2
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Vintage 
season 
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season as described in Level-III (see Fig. 1). The next task was to identify how each process, 
for instance; crushing and destemming, fermentation, or filtration, etc., contributed to the 
final waste matrix in a given vintage season. A close scrutiny of the waste streams indicated 
that the final effluent quantity and composition, product and by-products losses, as well as 
the quantity of chemicals consumed had a strong dependence on the vinification season, as 
well as the processes operated in a given season. And the final task entailed the 
development of a systematic approach for identifying WM strategies under each process. 
The adopted methodology comprised of a three-step sequential approach, namely; waste 
source identification, qualitative waste causative analysis, and the formulation of feasible 
alternatives for WM in the wine industry (Musee, 2004; Musee et al., 2007).  

2.2 Screening and ranking index 

In an earlier study (Musee et al., 2006a), experts were asked to rank the WM strategies based 
on their waste management experience in the wine industry. However, the approach was 
found to be cumbersome, owing to the large number of strategies to rank (see details in 
Musee et al., 2007). This resulted in inconsistencies in the final ranking of WM strategies.  
This drawback is addressed in this chapter by using a more rigorous ranking approach that 
includes the use of a WM index (WMI). The WMI was used to assign dimensionless scores 
to each strategy in terms of its overall potential degree of influence on a specific targeted 
system output (e.g. chemical usage, effluent quality, etc). The WMI was more effective than 
the less formal approach previously reported by Musee et al. (2006a), because the influence 
of the experts’ subjective perceptions or personality aspects were eliminated. 
Generically, the evaluation criteria for WM alternatives often use economic functions which 
often lead to unintended consequences of identifying suboptimal solutions. Another demerit 
of relying solely on economic criteria lies in their inherent bias for identifying inferior 
alternatives purely based on cost. These criteria tend to favour options geared towards 
waste treatment above those that promote waste reduction, elimination, reuse, or recycling. 
In this investigation, a multifaceted criterion was used, accounting for the unique and 
operational constraints experienced by managers and operators in the wine industry. 
Ranking and screening of waste streams and pollution prevention systems have been 
extensively discussed by several researchers (Hanlon & Fromm, 1990; Balik & Koraido, 1991; 
Crittenden & Kolaczkowski, 1995; Smith & Khan, 1995; Allen & Rosselot, 1997). These 
indices were found to be strongly dependent on the nature of the industry, or problem 
under consideration, as well as the databases accessible in the domain under study. In this 
chapter, the Smith and Khan’s Index (Smith & Khan, 1995) commonly referred as the 
pollution prevention index was modified to suit the limitations of the accessible data in the 
wine industry.   
For the purpose of producing a broader and more acceptable prioritization of the derived 
WM strategies, each strategy was evaluated based on a set of multiple criteria, including the 
position of a given strategy in the WM hierarchy. Consequently, source reduction was 
assigned a higher priority in comparison to reuse and recycling. Different criteria were 
assigned different weights as shown in Table 1. The reason being, each criterion had a 
different impact on the reduction of the overall quantity of waste generated and the capital 
costs required for its successful implementation. It should be noted that the Smith and Khan 
Index (Smith & Khan, 1995) was comprised of source reduction, reuse, and waste treatment 
in accordance to the EPA pollution prevention hierarchy (USEPA, 1988). However, in this 
study, the waste treatment, payback period and depth of solution criteria were excluded 
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from the index, owing to waste management challenges unique to the wine industry. The 
rest of the criteria used in describing WM solutions were recycling, degree of waste 
reduction expressed in percentage, ease of implementing a given strategy, and the capital 
cost of a given solution. The weights assigned in each of the criteria were in descending 
order in accordance with the foregoing description, such that capital cost was assigned the 
lowest weight of 1, whereas source reduction had the highest weight of 105. Note that the 
percentage of waste reduction was expressed in qualitative terms – and generically was 
referred as the waste reduction possibility. Thus, the WMI for a given strategy was 
computed using the relation: 

 × × × × × ×5 4 3 2 1 0 WMI = SR 10  + Re 10  + R 10  + WRP 10  + IP 10  + CC 10    (1)     

where SR: source reduction, Re: Reuse or recovery, R: reclaim or recycle, WRP: waste 
reduction possibility, IP: implementation potential, and CC: capital cost.  
 

Criteria  Weight Activity   Index value  

Elimination  1.00 

High 0.75 

Medium 0.50 

Source Reduction 
(SR) 

105 
Minimize 

Low 0.25 
Full 1.00 
Partial 0.67 

Reuse/Recovery 
(Re) 

104 

Low 0.33 

Full 1.00 
Partial 0.67 

Reclaim/Recycling 
(RR) 

103 

Low 0.33 
No reduction (nr) 0 
Low reduction (lr) 1 
Moderate reduction (mr) 2 

Waste Reduction 
Possibility (WRP) 

102 

High reduction (hr) 3 
Procedure change (pc) 5 
Material substitution (ms) 4 
Preventive maintenance 3 
Retrofit equipment (re) 2 

Implementation 
Potential (IP) 

101 

New equipment 1 

No cost (nc) 5 
Low cot (lc)  4 
Moderate cost (mc) 3 
High cost (hc) 2 

Capital Cost (CC) 100 

Very high cost (vhc) 1 

Table 1. WM index for the wine industry (adapted from the Smith and Khan Pollution Index 
(Smith & Khan, 1995). 

2.3 Qualitative reasoning 

The concept of qualitative reasoning (Bobrow, 1984; Kleer & Brown, 1984) was applied to 
aid in representing and making available general and physical knowledge commonly used 
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by engineers, scientists and managers to address the environmental problems experienced 
in the wine industry – without invoking mathematics of continuously varying quantities 
and differential equations. This is because qualitative reasoning provides the most suitable 
platform to represent numerous qualitative abstractions specific to the wine industry 
through creation of quantitative models, without the necessity for rigorous mathematical 
computations. The use of qualitative symbolic representations and discrete quantities aided 
in modeling the complex behavior of different vinification processes and unit operations. 
Therefore, the qualitative approach aided in predicting the behavior of processes and unit 
operations satisfactorily because only a small number of qualitative variables were required to 
describe the system. As such, the qualitative reasoning was used to describe the qualitative 
‘states’ attainable with or without implementation of a given strategy in order to mitigate 
against waste generation, or in improving the management of inevitable waste streams.  
Consequently, a qualitative model was developed as point of departure without the 
necessity for detailed information on the implementation of various WM strategies in the 
winemaking process. For example, consider the WM strategy where a counter current 
method is applied to reduce the effluent generated during cleaning. Using qualitative 
reasoning, it is feasible to predict at least three possible ‘states’ – which satisfies the 
condition of using a small number of qualitative variables – after the strategy is applied. The 
states were derived from casual observations, or based on experience from previous 
measurements where the primary goal was to model the level of the strategy's actual 
‘effectiveness’ after implementation. 
The effectiveness of applying a counter current WM strategy in a specific winery was 
described by three ‘states', namely; effective, partially effective, not effective. Therefore, 
there were three possibilities regarding the final effluent quantity that can be predicted 
using a qualitative reasoning approach, viz.; high potable water usage (if the strategy is 
poorly or not implemented), moderate potable water usage (if the strategy is partially 
implemented), and low potable water usage (if strategy implemented adequately). 
Practically, the implementation of a given WM strategy can yield a continuum of 
possibilities ranging from the best case scenario (adequate implementation) to the worst case 
scenario (poor or no implementation). To attain such possibility may necessitate an increase 
on the number of predictable states by the model from three to nine. This has the advantage 
of broadening and increasing the sensitivity of the solution space of the decision support 
system. This was achieved by combining the degree of belief, or level of confidence (CF) the 
user expresses on a particular response regarding the implementation of a given strategy. 
Three levels of CF values were specified in this work, and were combined through simple 
algebraic multiplication to the dimensionless scores representing the qualitative values of a 
given strategy to expand the predictable states from three to nine. If the qualitative values of a 
given strategy are assigned dimensionless scores, xi1, xi2, xi3, and CF values y1, y2, and y3: then 
the possible predictable states for a single strategy or action can be modelled by the relation: 

 

⎛ ⎞
⎜ ⎟ =⎜ ⎟
⎜ ⎟
⎝ ⎠

1

1 2 1 2 1 1 1 2 1 3 2 1 2 2 2 3 3 1 3 2 3 3

3

( , , ) ( , , , , , , , , )i i i i i i i i i i i i

y

x x x y x y x y x y x y x y x y x y x y x y

y

  (2) 

where the CF values were fixed at 1.00, 0.75 and 0.50 for y1, y2, and y3, respectively, and i 
denotes the strategy under consideration. Note that xi1y1, xi2y1, xi3y1 are equal to the original 
three predictable states represented by the values xi1, xi2, xi3, correspondingly.  
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The next task was to determine a suitable methodology of aggregating the quantitative 
outputs derived using Eq. 2 that influences a given variable, which in turn exerts a direct 
impact on the magnitude of a specific targeted system output (e.g. effluent quantity). In this 
study, the aggregation process was based on the following premise. No single strategy 
could adequately address the WM problem in the wine industry in a given process or unit 
operation. Hence, several strategies had to be implemented concurrently in an integrated 
manner in order to address the waste management challenges in the wine industry 
adequately. Therefore, the variables used as linguistic input values into the fuzzy model 
were functions of sums of individual strategies influencing it (Section 3). Equally important, 
to determine the crisp numerical value of a given variable, all scores from strategies 
influencing it were summed and normalized using a mathematical expression of the form:  

 =

=

= ×
⎛ ⎞
⎜ ⎟
⎝ ⎠

∑
∑

1

1

( , )

( , )

n

ni j
i

k mn

ni j
i

F x y
Var S

Max F x y

  (3)                          

where Vark is the kth variable, xni is the dimensionless score assigned to a strategy’s 
qualitative value, yj is the user’s level of confidence to a given response, n is the total 
number of strategies influencing the kth variable, j= 1, 2, 3 with fixed numerical values of 
1.00, 0.75 and 0.50, correspondingly; and Sm is the mth standardization coefficient where its 
values were 10 for m=1, or 100 for m=2. The aggregation principle applied in this study is 
schematically represented in Fig. 2.   
 

 
Fig. 2. A conceptual framework based on qualitative reasoning to transform qualitative 
values into fuzzy numbers. 

2.4 Fuzzy logic  

The fundamentals of fuzzy set theory (Zadeh, 1965; Yen & Lugari, 1998) are well known 
(Klier & Yaun, 1988; Zimmermann, 1991; Yager & Zadeh, 1992; Yager & Filev, 1994; Yen & 
Lugari, 1998; Mamdani & Assilian, 1999). Thus, only the most salient features of fuzzy 
systems essential for designing and developing an intelligent decision support system are 
summarized. Fuzzy logic generalizes ordinary or classical sets in an attempt to model and 
simulate human linguistic reasoning particularly in domains characterized by incomplete, 
imprecise, vague and uncertain data and knowledge. As such, fuzzy logic being a soft 
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computing tool has the “ability to compute with words”, and therefore, provides rational 
and well reasoned out solutions for complex real world problems (Bonissone, 1997), such as 
WM in the wine industry (Musee et al., 2004a; Musee, 2004b; Musee et al., Musee et al., 2005; 
Musee et al., 2006a).  

2.4.1 Fuzzy membership functions  

In a fuzzy system, the variables are regarded as linguistic variables to aid ‘computation with 
words’. A linguistic value is defined as a variable whose value is a fuzzy number, or is a 
variable defined in linguistic terms (Lee, 1990). Each linguistic value, LV, is represented by a 
membership function μLV(x). The membership function associates each crisp input, say XA, 
with a number, μLV(xA) in the range [0,1]. Essentially μLV(xA) represents the grade of the 
membership of xA in LV, or equivalently, the truth value of proposition ‘crisp value A is 
LV’. The overlapping of the membership functions allows an element to belong to more than 
one set simultaneously, and the degree of membership into each set indicates to what extent 
the element belongs to that particular fuzzy set (Fig. 3).  
 

 

Fig. 3. Triangular and trapezoidal membership functions for the effluent quality 
management variable with fuzzy linguistic terms: poor, fair, good, and excellent.  

To illustrate the functionality of the membership functions for the purpose of determining 

the linguistic value of a given variable, a simple example is provided. Let the crisp input 

value for the effluent quality management linguistic variable be x = 57 in a universe of 

discourse of 0 to 100. Then, according to Fig. 3, an input of 57 generates two membership 

functions μAC (xi), viz. μ1 = 0.686 in the fuzzy set labelled Good and μ2 = 0.150 in the set 

labelled Fair. Note that the rest of linguistic values Poor and Excellent each had a 

membership function of zero. By applying the max-min fuzzy inferencing algorithm (Lee, 

1990) where the membership function values are μ1 = 0.686 and μ2 = 0.150, then the linguistic 

value was determined as Fair (Min [(0.686, 0.150)] =0.150).  

2.4.2 Knowledge representation 

In a fuzzy rule-based modelling system, knowledge is represented by use of linguistic IF-
THEN rules. Ultimately, this renders the knowledge library (base) the core of the system 
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and, the breadth and quality of the knowledge determine the capacity of the system to 
render useful intelligent decision support. Generically, the premise and conclusion parts of 
the fuzzy rules are of the form: 

R(l): IF x1 is F11 AND… xn is Fnl, 

  THEN y is Gl  (4) 

where Fli and Gl are fuzzy sets, x = (x1, … , xn)T ∈ U and y ∈ V are linguistic input and 
output variables, respectively, with l = 1, 2, …, M. Practically, the fuzzy IF-THEN rules 
provide a convenient framework for incorporating human experts’ knowledge in fuzzy 
expert systems. Each fuzzy IF–THEN rule (Eq. 4) defines fuzzy set Fl1 x … x Fln => Gl in the 
product space U × V. 
The knowledge necessary for decision making regarding WM in the wine industry was 
encapsulated in several rule bases with a total of 152 rules. Additionally, the rules were 
systematically encoded into different hierarchically interlinked rule bases to ensure their 
easy accessibility at different levels of the decision support execution, and on the other 
hand, to minimize the overall number of rules in the rule bases. The design of hierarchically 
interlinked rule bases is analogous to consulting several experts on a certain problem, to 
derive a final conclusion that takes into account each individual opinion. The model is 
flexible, robust, and allows the user to choose initial values or adjust the rules in any 
knowledge base on the basis of operational realities related to the vinification process or 
processes under scrutiny. Notably, the use of few IF-THEN rules has the merit of aiding in 
validating the functionality and the contribution of each rule in a given rule base. 

2.4.3 Fuzzy inferencing 

The core of decision making in a fuzzy logic system is the inference engine. Fuzzy 
inferencing is used to derive an aggregated output from a particular knowledge base using 
the rules coded in specific rule bases. In practice, many fuzzy inferencing methods have 
been developed, with the so-called max-min and max-dot or max-prod (Lee, 1990; Mendel, 
1995; Yen & Lugari, 1998) being the most popular. In this case the max-min fuzzy 
inferencing algorithm proposed by Mamdani & Assilian (1999) was applied. According to 
the Mamdani-Assilian inferencing algorithm, the truth values of the fuzzy output variables 
are clipped, such that the area under the clip line determines the outcome of the rule. 
Finally, a defuzzifier converts the fuzzy aggregate membership grades generated from the 
inference engine into non-fuzzy output values. Again, there are various approaches to 
defuzzification (Mazumoto, 1995; Mendel, 1995). The most common is Yager’s centroidal 
method (Yager, 1980), and was applied in this study because of its sensitivity in comparison 
to other techniques (Yager & Zadeh, 1992). 
To illustrate how the fuzzy inference system aided in diagnosing the WM in the industry, a 
brief description of its salient features and functionalities are presented. Notably, each of the 
four knowledge sub-modules had a set of features in the form of data, information, and 
knowledge stored in various interlinked data bases and rule bases as described in Section 3. 
The hierarchical reasoning structure of each knowledge sub-module can be generically 
summarized as follows: 
1. The linguistic set of strategies/actions were transformed through qualitative reasoning, 

as well as ranking and screening processes into dimensionless scores at the first 
hierarchical level (Level-III) of each knowledge sub-module (Fig. 1) using Eqs. 1 and 2. 

www.intechopen.com



 Decision Support Systems 

 

290 

2. The qualitative or linguistic strategies/actions were broadly grouped into two or three 
fuzzy linguistic input variables. For example, strategies affecting the effluent quantity 
were aggregated into three linguistic input variables, viz. organic matter removal, 
equipment efficiency, and effluent quantity (volume) management. These linguistic 
variables were used in evaluating the targeted system output (e.g. effluent quantity) at 
various hierarchical levels of a given knowledge sub-module (see Figs. 2 and 6). 

3. The inference for computing the crisp numerical input variable values was performed 
through solving a series of algebraic summation equations in a specific knowledge sub-
module. For instance, to evaluate the degree of product and by-products recovery Eqs. 
9 and 10 (in Section 3) were used to compute the fuzzy crisp inputs for the organic 
material recovery and the general management variables, respectively. 

4. The crisp inputs derived in step 3 for a given targeted system output (e.g. chemical 
usage or effluent quality) were fed automatically into the fuzzy model to derive a final 
aggregated and ranked output depending on a given set of user’s specified inputs. Note 
that the final fuzzy model crisp output signified a measure of given winery's 
performance with respect to the targeted system output such as chemical usage, 
effluent quality, etc. 

To illustrate the system’s functionality, let’s consider the data and knowledge stored for 

evaluating product and by-products recovery before wet cleaning and sanitization 

processes. Assume that from steps 1 to 3, the product and by-products recovery (PBR) and 

generic management crisps values were computed as 0.48 and 55% in their respective 

domains of discourse. After coding the crisp input values into the fuzzy product and by-

products recovery rule base module – resulted in firing four IF-THEN rules in the rule base 

as shown in Fig. 4. To infer the final system output, first, each of the four activated rules had 

to be evaluated individually. The linguistic rules and the evaluation findings are as follows: 

 
Rule #10:  IF PBR is Moderate AND Generic management is Good 

THEN Effective PBReff is Moderate 
EVALUATION: Min (0.30, 0.57) = 0.30 

 

Rule #11:  IF PBR is Moderate AND Generic management is Fair 
THEN Effective PBReff is Low 
EVALUATION: Min (0.30, 0.25) = 0.25 

 

Rule #14:  IF PBR is Low AND Generic management is Good 
THEN Effective PBReff is Low 
EVALUATION: Min (0.96, 0.57) = 0.57 

 

Rule #15:  IF PMR is Low AND Generic management is Fair 
THEN Effective PBReff is Low 
EVALUATION: Min (0.96, 0.25) = 0.25 

 

The fuzzy model through fuzzification process derived the evaluation results as follows. A 
PBR input of 0.48 produced 0.96 and 0.30 degrees of membership in the fuzzy sets Low and 
Moderate, respectively. Similarly, a crisp input of 55% for the generic management variable 
yielded membership degrees of 0.25 and 0.57 in the fuzzy sets Fair and Good, respectively. 
The clipped membership functions derived from the four activated rules in the rule base  
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Fig. 4. Fuzzy inferencing mechanism using Mamdani-Assilian model to evaluate the 
product and by-products recovery (PBR) with two input-variables, and four activated rules. 

were aggregated through the defuzzification process into a numerical score (Fig.4). The 
aggregated system numerical output of the four fuzzy sets signified an overall estimation of 
the recovered product and by-products, and was determined using the disjunction (max) 
operator based on the Yager’s centroidal defuzzification method given by the expression: 

 

μ ω ω

μ ω

•

=

=

=
∑
∑
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1

( )

( )

n

j j
j

n

j
j

Z    (5)    

Applying Eq. 5 on the four fuzzy set outputs yielded a crisp output of 0.393 which was 
linguistically ranked as Low recovery of product and by-products.             

3. Intelligent decision support system development  

A systematic methodology for data acquisition as well as knowledge inferencing and 
manipulation was developed for the purpose of representing diverse findings concerning 
different aspects of WM in the wine industry. The unique protocol for data handling was 
essential to ensure that the final findings were transparently computed, hence, could easily 
be interpreted by the targeted end-users. Generically, the development of an intelligent 
decision support system comprised of three steps, namely knowledge acquisition, 
knowledge representation, and inference mechanism. In the following sections, salient 
aspects on each of the above steps in the context of WM in the wine industry are 
summarized.  

3.1 Knowledge acquisition   

Knowledge acquisition entailed the sourcing of data, information and knowledge 
concerning WM in the wine industry. The knowledge was manually collected through 
conducting interviews with experts and extensive literature reviews. The knowledge was 
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broadly classified as generic knowledge (GK) or specific knowledge (SK) (Fig. 5). The GK 
comprised of WM techniques and practices that were universally applicable to a wide range 
of processes and unit operations owing to their repetitive (routine) character. Conversely, 
SK focused on WM techniques and strategies for specific process or unit operation, and 
particularly targeting the intrinsic waste streams (Musee et al., 2007).  
 

 

Fig. 5. Data and knowledge sources, knowledge type accessible, and knowledge acquisition 
for WM in the wine industry. 

Equally important, the strategies for either knowledge type (SK or GK) were dependent on 
the target output under consideration. For instance, the knowledge-type strategies for 
evaluating the products and by-products recovery were different from those of effluent 
quality both in the case of intrinsic or extrinsic waste streams. The combining of generic and 
specific knowledge types and exploitation of the synergies between them lead to the 
development of rule bases that captured a good degree of WM strategies in the context of 
the wine industry. Only the knowledge in product and by-products sub-module, as well as 
effluent quantity sub-module are briefly described in the following sections.  

3.1.1 Products and by-products losses/recovery sub-module 

Solid wastes from the vinification processes contain commercially valuable products 
(wine) and by-products. However, depending on the way the solid waste streams are 
handled, either the products/by-products recovery can be optimized, or huge losses are 
incurred. The degree of product and by-product recovery is dependent on the vinification 
processes and unit operations under consideration, or the vinification season (vintage or 
non-vintage). As a result, the loss of the product and by-products has a direct impact on 
the final effluent quality and quantity as they resulted into the liquid waste streams – 
mainly the wastewater.  
In order to compute the degree of product and by-products recovery in a given vinification 
process, strategies related to intrinsic and extrinsic factors, the vintage season, and experts’ 
estimations of relative contribution of the potential losses for each process under scrutiny – 
were taken into account. Notably, only strategies that had a direct link to recovery, or loss of 
the products or by-products were taken into account in this sub-module. Experts were asked 
to provide an estimation of product and by-products overall impact on the quality and 
quantity of the effluent on a scale of zero to one. An example of heuristics from two experts 
is presented in Table 2. The values were estimates in relative terms between different 

Sources Method Knowledge type  Method type

Knowledge  
elicitation  

Complex-
large scale 

wine 

Literature
(Theory) 

Expert 
(Experience)

Literature 
reviews  

Interviews  

Generic 
knowledge 

Specific 
knowledge 

Manual 
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processes and unit operations on the basis of a given expert’s opinion. During the 
computation of the final product and by-products the average of values of the six experts 
who provided inputs were used, for the vintage and non-vintage seasons.  
  

Effluent quantity Effluent quality
Vintage Non-vintage Vintage Non-vintage 

Process/unit 
operations 

EP1 EP2 EP1 EP2 EP1 EP2 EP1 EP2 
Crushing/destemmi 0.10 0.25 0.00 0.00 0.15 0.30 0.00 0.00 
Wine transfers 0.25 0.15 0.35 0.25 0.30 0. 10 0.40 0.35 
Filtration 0.15 0.10 0.20 0.25 0.10 0.10 0.10 0.15 
Pressing  0.20 0.20 0.15 0.15 0.15 0.30 0.10 0.20 
Fermentation  0.25 0.25 0.20 0.20 0.25 0.20 0.25 0.15 

Bottling/packing 0.05 0.05 0.10 0.15 0.05 0.10 0.15 0.15 
Sum of weights 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Table 2. Two experts’ approximation concerning potential losses of product and by-products 
under different processes and vinification seasons. Note: Values are based on South Africa 
vinification processes, EP: expert opinion. 

An estimation of the quantities of products and by-products recovered during a given 
season was computed as follows. First, qualitatively the degree to which the generic and 
specific strategies were implemented in a given facility was evaluated using the qualitative 
reasoning approach. Secondly, the computed values owing to generic and specific 
implementation of the strategies were added. The additive value was taken as an indication 
of the degree to which product and by-products were recovered from surfaces and 
equipment before wet cleaning and sanitization processes commenced. Thirdly, to ensure 
uniformity and interpretability of values in a given process or unit operation, and 
consequently in the entire vinification process, the computed values were normalized.  For 
example, assume for process i, the values obtained after the implementation of the generic 
and specific strategies are Ai and Bi, respectively. Then, the normalized value Ni for process i 
is given by the expression: 

 
+

=
+

i i
i

it it

A B
N

A B
  (6) 

where Ait and Bit are the maximum values if all the generic and specific strategies were 
adequately implemented in process i.  
Thus, the total recovery of products and by-products (PBR) for the entire vinification 
process is approximated by a linearly weighted expression: 

 β
=

=∑
6

1

( )is i

i

PBR N   (7) 

where PBR is the total recovered product and by-products from all processes and unit 
operations in season s defined in the range 0 to 1. Zero means no recovery, hence maximum 
losses whereas one implies maximum recovery of the product and by-products. ßi is the 
weight specified by the waste management experts in the wine industry for processes i (i=1, 
2, …, 6) during season s (s = 1 (vintage),  2 (non-vintage)) satisfying the condition: 

www.intechopen.com



 Decision Support Systems 

 

294 

  β β β β β β+ + + + + =1 2 3 4 5 6 1   (8) 

Note that processes i (i = 1, 2, …, 6) represent crushing and destemming, transfer systems, 

filtration, pressing, fermentation, and bottling and packing processes, respectively. Nis is an 

index in the range (0 ≤ Nis ≤ 1) representing the recovered organic material in a specific 

process i before wet cleaning starts and is computed using the relation: 

 = =

= =
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  (9) 

 

where W is the dimensionless score assigned to the qualitative values of each strategy; A 

symbolizes specific strategies; B symbolizes generic strategies; n is the number of specific 

strategies considered in process i; and m is the number of generic strategies considered to 

improve product and by-products recovery in all processes and unit operations under 

consideration; CFk is a measure of the degree of belief the user has on a given response 

regarding a particular practice or strategy; k = 1; 2; 3 whose values were fixed at 1.00, 0.75, 

and 0.50, respectively.  

A schematic representation of computations for ranking the product and by-products 

recovery in a given season is shown in Fig. 6. The generic and specific knowledge derived 

for the product and by-products recovery sub-module are presented in Tables 3 and 4, 

respectively. The second variable that exerted influence on the product and by-products 

recovery is the generic management (GMPBR). This variable was determined by qualitatively 

evaluating the last four strategies in Table 3. GMPBR was evaluated and normalized using the 

expression:  
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  (10) 

 

GMPBR was defined in the discourse of 0 to 100. The value 0 represents the worst 

management scenario, while 100 imply the best management attainable in a specific facility. 

In real plant practices, overall effective product and by-products recovery is a function of 
PBR (operating and technological solutions) and GMPBR (management-related aspects) 
variables. Since both variables contain uncertainty (vagueness) and are linguistically 
quantified, the overall effective product and by-products recovery was evaluated using the 
fuzzy mathematical formalism of the form: 

 ( )= ,eff PBRPBR f PBR GM   (11) 

where f is a fuzzy logic function, PBReff is defined in the range 0 to 1, such that 0 represents a 

scenario where no recovery of product and by-products takes place before wet cleaning 

occurs while 1 signifies the best case scenario representing optimal recovery of product and 

by-products. 
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Table 3. The rankings of the generic strategies influencing the recovery and handling of 
product and by-products for intrinsic wastes1. 

3.1.2 Effluent quantity (volume) sub-module 
Fig. 7 depicts a hierarchical model for evaluating the effluent quantity generated during the 
cleaning and sanitization processes in a winery. The aggregated effluent quantity is a 
function of three linguistic variables, namely: the organic matter removal (OMRs), 
equipment efficiency (EEv), and effluent quantity (volume) management (Mv). The strategies 
influencing effluent management are summarised in Table 5. The effluent quantity 
management variable (Mv) is a function of generic effluent quantity management (Mgv) and 
the generic management of product and by-products (GMPBR) variable at Level-II as 
depicted in Fig. 7. 

                                                 

1 aWMI: waste minimization index discussed in section 2.2; bRanking was used to facilitate 
the process of assigning dimensionless scores to aid in the evaluation of the degree to which 
product and by-products were recovered from a given process or unit operation. cThe extent 
to which various strategies were effectively implemented in a winery for minimizing or 
eliminating waste as function of training and awareness of personnel at all levels. The 
training and education factor was ranked as the most significant in this category based on 
expertise knowledge. 
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Fig. 6. Hierarchical structure for evaluating overall product and by-products recovery. 
 

 

Fig. 7. Hierarchical model structure to evaluate the effluent quantity during the cleaning and 
sanitization processes.  

Note that the crisp numerical value for the generic effluent quantity management, (Mgv), is 
defined as: 

 =

=

×
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  (12)  

Mgv is defined in the range 0 to 100. 0 implies the worst management scenario whereas 100 
signifies the best effluent quantity management achievable in a given winery; W’ns is a 
dimensionless score for the ith strategy, i= 1; 2; 3; … n in season s. 
The generic management of product and by-products (GMPBR) is computed using Eq. 10. 
Therefore, the effective effluent quantity management linguistic variable, Mv, is defined by 
the relation; 
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Table 4. continued … 
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Table 4. Rankings of the specific strategies influencing the recovery and handling of product 
and by-products of intrinsic wastes, under each process or unit operation2. 

 

                                                 

2 Symbols and ranking criteria is the same as in Table 3. 
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Table 5. The rankings and assignment of dimensionless scores for the generic strategies that 
influences the effluent quality and quantity during vinification3. 

 

                                                 

3 aDS: Dimensionless scores; bEV: Effluent quantity; cEQ: Effluent quality 
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⎝ ⎠2

gv PBR
v

M GM
M   (13) 

where Mv is defined in the range 0 to 100, where 0 implies the worst effluent quantity 
management in a winery, while 100 signifies excellent effluent quantity management. 
In this study, what is regarded as organic matter removal (OMRs) in winery operations is 
generically referred herein as product and by-products recovery, and has been discussed in 
section 3.1.1. Therefore, taking OMRs in variable Level-IV (see Fig. 7) to be equivalent to 
PBReff in variable Level-III, then the crisp numerical input value for this variable was 
computed by multiplying Eq. 11 by 10 to express the OMRS values in the range of 0 to 10. 
The expression for evaluating OMRS is: 

 s effOMR  = PBR   10 ×   (14) 

At Variable Level-IV, the last important variable also influencing the final effluent quantify 
is the efficiency of the equipment used for cleaning and sanitization purposes. Therefore, the 
equipment efficiency was used as a measure of the water, or steam quantity delivered from 
the equipment per unit time. The cleaning equipment with high efficiency (e.g. high 
pressure cleaners) had the merit of reducing the effluent quantity generated per unit time.  
However, if the organic matter were present on the surfaces and equipment being cleaned, 
then the high efficiency of the cleaning equipment would have had a negative impact on the 
resultant effluent quality. This is because high concentrations of organic matter and 
chemicals in the effluent degrades its quality. On the other hand, if the equipment efficiency 
were low, there was likelihood of effluent quality being high, owing to dilution. These 
heuristics were used to model the equipment efficiency in relation to its potential impacts on 
the effluent quantity, as well as effluent quality. The crisp numerical input of the cleaning 
efficiency (EEv) variable in Variable Level-IV was estimated using the heuristics mentioned 
above, and the fact that optimal efficiency of cleaning equipment ranges between 60 to 70%. 
Thus, EEv was computed using the expression: 

 v v REE  = K  X CF    (15) 

where Kv is a constant and a function of the cleaning equipment used with respect to its 
influence on the effluent quality. A summary of the Kv values is presented in Table 6. CFR 
represents the degree of belief the user has on the cleaning equipment efficiency under use; 
R = 1, 2, … 6 with values fixed at 1.0; 0.9; 0.8; 0.7; 0.6; and 0.5, correspondingly. Note that 
EEv ranged from 0 to 100, where 0 signified the lowest equipment efficiency 100 implied the 
highest efficiency. 
Thus, the resultant effluent quantity generated (V) was evaluated using the results obtained 
from Eqs. 12-15 given by the expression:  

 ( )v s vV = f M ,OMR ,EE   (16) 

V was defined in the range 0 to 1, where 0 represented the best case scenario signifying 
prudent management of potable water through an integrated management of the 
influencing factors, whilst 1 implied the worst case scenario representing large effluent 
quantities of water generated during the cleaning and sanitizing processes. Similar 
equations were developed for the chemical usage and quality of effluent generated during 
the vinification process (Musee, 2004a). 
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Table 6. K values for modelling the cleaning equipment efficiency effect on final effluent 
quality and effluent quantity4. 

3.1.3 System architecture 

The architecture of the proposed knowledge-based decision support systems (KBDSS) is 
depicted in Fig. 8. The design of the architecture was based on two factors. Firstly, to ensure 
that it can handle the diverse, qualitative, and incomplete knowledge essential for decision 
making with respect to WM in the wine industry. And secondly, to guarantee system 
flexibility in terms of the ability to accommodate future expansions and incorporation of 
additional features, new tasks, new knowledge and information without restructuring and 
developing the entire system code from scratch. The former challenge was addressed by 
using a hybrid of expert systems and fuzzy logic, while the latter was achieved by designing 
the system using a modular approach. The system structure comprised of four components, 
namely; the knowledge base (rule base and data base), graphical user interface (GUI), fuzzy 
inference engine, and the knowledge acquisition and maintenance module. Fig. 8 illustrates 
the structure and information flow in the fuzzy logic expert system from a top level modular 
approach.  
The knowledge base consisted of the rule base and the data base. The data base management 
module entailed managing and combining different kinds of knowledge stored in the system 
in form of generic knowledge, specific knowledge, mathematical models, or in the if-then rule 
format. The mathematical models module was used to compute the crisp numerical values 
which served as decision input variables into the fuzzy inference mechanism module. Easy 
access and interactions between the data base, rule base and the inference engine facilitated the 
identification of a solution dependent on user inputs, as well as preloaded knowledge stored 
in various rule bases. In this case, the fuzzy rule base was designed to evaluate different 
system outputs classified as functional groups, viz. effluent quality, effluent quantity, chemical 
consumption, and effectiveness of handling intrinsic oriented wastes. The if-then rules under 
each module were associated with effluent quality (48), effluent quantity (48), chemical 
consumption (36), and product and by-products recovery (20). 

                                                 

4 aKq: The constant used in computing the efficiency of the cleaning equipment when 
considering the effluent quality; bKv: The constant used in computing the efficiency of the 
cleaning equipment when considering the effluent volume. 
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Fig. 8. The fuzzy logic expert system functional architecture for evaluating WM in the wine 
industry. 

The GUI system provided seamless interaction of various components between the user and 
the data, information as well as knowledge stored in different data bases and rule bases. The 
GUI provided a convenient environment for data entry, specific module evaluation, overall 
system evaluation, and display of system results. This aided free interaction of the user and 
system through “buttons” that made it easy to understand and transparently illustrate how 
the system results were evaluated at various stages, before the final findings were displayed 
on the screen. 

4. Results and discussions  

In this section, the functionality of the proposed decision support system is illustrated by 
use of two case studies, viz.; the product and by-products recovery and the effluent quantity 
system outputs. Under each system output, the decision support system’s ability to 
diagnose WM in the wine industry will be demonstrated by examining the final specific 
outputs under different user defined operational conditions. The derivation of the system 
results was executed in accordance to the defined procedure described in section 2.4.3.  

4.1 Evaluation of product and by-products recovery 

Generally there is no unique solution in terms of product and by-products recovery during 
vinification, owing to the complexity of interactions among different processes and human 
actions, as well as spatial and temporal factors. Nonetheless, the actions of operators and 
WM strategies adopted by the management were ranked as the most influential factors on 
the overall product and by-products recovery. The evaluation of product and by-products 
recovery required 29 inputs distributed as follows: Four generic, 20 specific and five 
management-related strategies (Tables 3 and 4). The system inputs for four different runs 
based on the user’s responses, as well as degrees of confidence on each response are 
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summarized in Table 7. Also, the screening and ranking index was applied in each set of 
specific and generic strategies to ensure that the dimensionless scores assigned reflected the 
relative importance of each strategy towards the recovery of product and by-products in a 
given process or unit operation (Tables 3 and 4). 
To demonstrate how the proposed algorithm was applied in diagnosing WM in terms of 
product and by-products recovery, consider the inputs presented in Table 7. Under each 
run, the contribution of each process or unit operation for the product and by-products 
recovery was computed and normalized on a scale of 0 to 1 using Eq. 9. For instance, during 
the pressing process the inputs for the generic and specific strategies yielded scores of 10.500 
and 7.125, respectively, under Run 1. The computed values were then normalized to 
determine the effective contribution of the pressing process to the overall recovery of 
product and by products, and yielded a value of 0.5508 (using Eq. 9).  
The procedure was repeated in the rest of the processes, and the results are summarized in 
Table 8. To determine the overall weighted recovery of product and by-products in the 
vintage season (PBRv), the computed values from each process (derived using Eq. 9) were 
multiplied with the experts’ weightings using Eq. 7. For Run 1, the computation yielded a 
value of 0.5603. On the other hand, the generic waste management linguistic variable (GM) 
for handling product and by-products recovery was evaluated using Eq. 10. The GM value 
based on Run 1 user inputs yielded an aggregated value of 45.35%. Consequently, under 
Run 1, the crisp input values to the fuzzy model (Fig. 6) for the PBRv and GM were 0.5603 
and 45.35%, respectively. These crisp inputs were evaluated in a fuzzy model (using Eq. 11) 
in a rule base of 20 if-then rules and yielded a fuzzy effective product and by-products 
recovery (PBRveff) of 0.345, which was linguistically ranked as Low.  
The product and by-products recovery ranked as Low under Run 1 implies large losses of 
wine and other potential feedstock materials for recovering by-products – eventually ending 
up into the wastewater streams. Consequently, the effluent quality and effluent quantity are 
likely to be impacted negatively. For instance, the wine and its associated solid waste 
streams – reduce the quality of the effluent – as evidenced by high chemical oxygen demand 
and suspended solids in various wastewater streams. Also, it may lead to high use of 
cleaning water to remove wine residues and other solids from equipment surfaces. A similar 
methodology was applied in Runs 2 to 4 and the results are presented in Table 8 based on 
the specified users’ inputs presented in Table 7. Under Run 2, the crisp inputs computed for 
the GM and PBRV linguistic variables were 0.67 (on a scale of 0–1) and 80% (on a scale of 0–
100), respectively. These crisp input values were fed into the fuzzy model, resulting in the 
GM and PBRV variables being linguistically labelled as Good and Very High, respectively, 
according to the rule base shown in Fig. 4. The defuzzified modular numerical output for 
the effective PBRVeff was 0.910, and linguistically labelled as Very High. This signifies the 
merit of adopting an integrated approach in implementing WM strategies during wine 
production.  
By comparing the simulation results in Run 1 and Run 3, one would expect a higher 
recovery for the product and by-products in Run 1. However, this is not the case, because 
experience has shown that wineries where the management is rated as Good (as in Run 3) 
there is a higher possibility of improving product and by-products recovery than in 
situations where it is ranked Poor (as in Run 1). Thus, the fuzzy rules were designed to 
reflect this practical reality, which may otherwise be impossible to account for using data 
driven deterministic approaches. In addition, this also illustrates the necessity for training of 
personnel and ensuring good operating practices in order to enhance effective WM in the 
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Table 7. User’s inputs for evaluating product and by-products recovery during the vintage 
season5.  

                                                 

5 aAll the user inputs are ranked as High (H), Medium (M), and Low (L) for simplicity 
purposes; bSenior management; cSkilled workers; dUnskilled workers. 
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Table 8. System outputs for product and by-products recovery based on inputs in Table 76.  

wine industry. Under Run 4, the system ranking indicates a Very Low recovery of product 
and by-products owing to Very Low (0.35) aggregated value for PBRV and Fair (44%) rated 
generic management. To improve the performance of such a winery, it would be necessary 
to adopt an integrated approach in which diverse WM strategies – are implemented 
simultaneously and optimally. 

4.2 Evaluation of effluent quantity  

The second case study illustrates the suitability of the qualitative-quantitative model 
proposed in this paper to address WM challenges in the wine industry focusing on the 
effluent quantity generated during vinification processes. The user inputs and the system 
aggregated outputs are presented in Table 9. The linguistic inputs of the fuzzy model were 
the effluent quantity management (Mv), organic matter removal (OMRs), and equipment 
efficiency (EEv) – computed using Eqs. 13, 14, and 15, respectively. Nine runs were executed 
to illustrate the model suitability to assess WM challenges regarding effluent generation. 
Runs 1, 4, and 8 show ineffective implementation of WM as evidenced by the ranking of 
 

                                                 

6 ag: denotes the generic factors' contribution.; bs: denotes the specific factors' contribution; 
cef: denotes ; the total effective contribution of a given process or unit operation; dGM: 
generic management variable. 
ePBRv: organic matter handling during vintage season; fPBRveff: effective organic matter 
handling during the vintage season ranking computed using the fuzzy if-then rules. 
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Table 9. User inputs and WM analysis results for effluent quantity during the vinification 
under the vintage season. 

the effluent quantity as High or Very High. Although the inputs in each run reflected 
different operational conditions, the aggregated values for the final effluent quantity 
management (Mv) ranged between 41% and 43%, and linguistically ranked as Poor.  
In addition, the cleaning equipment efficiency (EEv) was ranked linguistically Very Low as 
the values for Runs 1, 4, and 8 were 40%, 21%, and 35%, respectively. This mostly likely 
indicates that open pipes (without nozzles) were used for cleaning purposes (see Table 6 for 
low Kv values). Besides, the organic matter removal from equipment and surfaces before 
cleaning and sanitization started was ranked Poor by the fuzzy model as evidenced by the 
final computed values listed in Table 9. Therefore, one way of minimizing the quantity of 
effluent generated under such operational scenarios represented by Runs 1, 4, and 8 is to 
target low cost strategies, particularly focussing on the removal of organic matter and fixing 
nozzles to the cleaning pipes in order to improve the cleaning equipment efficiency. 
Secondly, the suggested options are easy to implement and operate without need for costly 
training of personnel. 
To illustrate the viability of the proposed alternatives using low cost alternatives, consider 
the simulation findings of Runs 1 and 6. The Mgv was left unchanged at 0.4022 as 
technological modifications and finding of suitable alternative input substitutes were 
viewed as costly, not easy to implement, and requiring long payback periods. However, the 
GM variable, which is easy to implement in a winery was varied from 0.454 in Run 1 to 
0.657 in Run 6, and consequently changed the Mv from 43% to 53%. Concurrently, the 
OMRve and EEv fuzzy model inputs were varied from 3.45 to 5.49, and 40% to 72% (through 
replacing open pipes with high pressure cleaner), respectively. The fuzzy model in Run 6 
(using Eq. 16) yielded an effluent quantity linguistically labelled as Low.  
Therefore, easily implemented, low cost alternatives have been demonstrated to reduce the 
quantity of effluent during the vinification processes. Similarly, the same procedure was 
applied to illustrate how high quantities of effluent can be reduced in cases such as Runs 3 
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and 5; Runs 4 and 7, as well as Runs 8 and 9. The breadth of the solutions provided by the 
proposed framework indicates its versatility and robustness in addressing WM related to 
effluent quantity. Note that Run 2 was presented as a base case illustrating an ideal winery, 
where various WM strategies were adequately implemented, and therefore no further action 
was necessary. Therefore, besides the ranking of the effluent quantity or other system 
outputs, such as chemical usage and effluent quality, the proposed framework also offers a 
suitable diagnostic tool for the wine industry to identify areas where they can improve their 
overall waste management performance.  

5. Conclusions  

In summary, the proposed knowledge-based decision support system provides a systematic 
approach for evaluating and diagnosing the unstructured WM problem in the wine industry 
by way of processing the user inputs (both qualitative and quantitative) to compute a given 
winery performance in terms of effluent quantity, product and by-products recovery, 
chemical usage, or effluent quantity. The system results are in a format that can be easily 
read, understood, or altered by the user. This is because the final system outputs are 
expressed in the form of performance indexes (range [0, 1]), and therefore, the proposed 
decision model offers a transparent and robust tool for assessing the performance of a given 
winery – with respect to WM. Secondly, the system incorporated data, information and 
knowledge sourced from experts that can aid in facilitating efficient decision-making 
regarding WM in the wine industry. Thirdly, as the wine industry has dearth of statistical 
data regarding WM unlike the chemical industry, fuzzy logic and qualitative reasoning soft 
computing approaches were applied to aid in evaluating WM in this industry.  
Presently, there is no evaluation-framework tool that can assess WM performance of a given 
winery through integration of both qualitative and quantitative data. Thus, the integrated 
methodology proposed in this paper serves a suitable tool to achieve this objective as well as 
to aid in automating WM analysis in the wine industry. Consequently, based on the 
integrated framework presented, the WM can be evaluated and ranked at different levels of 
aggregation – clearly identifying areas that may need improvement to optimise resources 
utilization and reduce operational costs. And finally, the system has the merit of reducing 
the time, effort, and resources required in undertaking extensive WM in the wine industry. 
The suitability of the approach has been demonstrated through two worked case studies, 
each with several different functional scenarios.  
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