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1. Introduction 

Today, providing a good quality of service (QoS) in irregular traffic networks is an 
important challenge. Besides, the impressive emergence and the important demand of the 
rising generation of real-time Multi-service (such as Data, Voice VoD, Video-Conference, 
etc.) over communication heterogeneous networks, require scalability while considering a 
continuous QoS. This emergence of rising generation Internet required intensive studies 
these last years which were based on QoS routing for heterogeneous networks  on the one 
hand and on the backbone architecture level of communication networks characterized by a 
high and irregular traffic on the other hand (Mellouk et al., 2007b).    
The basic function of QoS routing is to find a network path which satisfies the given 
constraints and optimize the resource utilization. The integration of QoS parameters 
increases the complexity of the used routing algorithms. Thus, the problem of determining a 
QoS route that satisfies two or more path constraints (for example, delay and cost) is known 
to be NP-complete (Gravey & Jhonson, 1979). A difficulty is that the time required to solve 
the Multi-Constrained Optimal path problem exactly cannot be upper-bounded by a 
polynomial function. Hence the focus has been on the development of pseudo-polynomial 
time algorithms, heuristics and approximation algorithms for multi-constrained QoS paths 
(Kuipers & Mieghem, 2005).   
At present, several studies have been conducted on QoS routing algorithms which integrate 
the QoS requirements problematic for the routing algorithm. (Song & Sahni, 2006) introduce 
heuristics to find a source-to-destination path that satisfies two or more additive constraints 
on edge weights. (Jaffe, 1984) has proposed a polynomial time approximation algorithm for 
k multi-constrained path which uses a shortest path algorithm such as Dijkstra’s (Sahni, 
2005). (Korkmaz & Krunz, 2001) propose a randomized heuristic that employs two phases. 
In the first one, a shortest path is computed for each of the k QoS constraints as well as for a 
linear combination of all k constraints. The second phase performs a randomized breadth-
first search for a solution of k multi-constrained problem. In (Kuipers & Mieghem, 2005), 
authors suggest that QoS routing in realistic networks could not be NP-complete regarding 
to a particular class of networks (topology and link weight structure).   
Due this complexity, QoS routing problems are divided on several classes according to some 
aspects. For example, we distinguish the single path routing problem and the multipath  
routing problem, where routers maintain multiple distinct paths of arbitrary costs between a 
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source and a destination. The Multipath routing offers several advantages like good 
bandwidth, bounding delay variation, minimizing delay, and improved fault tolerance. So, 
it makes an effective use of the graph structure on a network, as opposed to single path 
routing which superimposes a logical routing tree upon the network topology. We find in 
literature many and various approaches that have been proposed to take into account the 
QoS requirement. The reader can refer to (Masip-Bruin et al., 2006) for an overview. 
Constraints imposed by QoS requirements, such as bandwidth, delay, or loss, are referred to 
as QoS constraints, and the associated routing is referred to as QoS routing which is a part of 
Constrained-Based Routing (CBR). Interest in constrained-based routing has been steadily 
growing in the Networks. Based on heuristics used in all of these approaches to reduce their  
complexity, we can classified it in three main categories:  
Label Switching/Reservation Approaches- spurred by approaches like ATM PNNI, MPLS 
or GMPLS. With MPLS, fixed length labels are attached to packets at an ingress router, and 
forwarding decisions are based on these labels in the interior routers of the label-switched 
path. MPLS Traffic Engineering allows overriding the default routing protocol, thus 
forwarding over paths not normally considered. A resource reservation protocol such as 
RSVP must be employed to reserve the required resources. Another Architecture proposed 
for providing Internet QoS is the Differentiated Services architecture. Diffserv scales well by 
pushing complexity to network domain boundaries.  
Multi-Constrained Path Approaches (MCP)- The goal of all of these approaches is to 
retrieve the shortest path among the set of feasible paths between two nodes. Considerable 
work in the literature has focused on a special case of the MCP problem known as the 
Restricted Shortest Path (RSP) problem. The goal is to find the least-cost path among those 
that satisfy only one constraint. An overview of these approaches can be found in (Kuipers 
et al., 2004).
Inductive approaches- To be able to make an optimal routing decision, according to 
relevant performance criteria, a network node requires to have a complete knowledge of the 
entire network state and an accurate prediction of the evolution of the networks and its 
dynamics. This, however, is impossible unless the routing algorithm is capable of adapting 
to the network state changes in almost real time. Thus, it is necessary to design intelligent 
and adaptive optimizing routing algorithms which take into account the network state and 
its evolution. We need to talk about QoS based state dependent routing algorithm.  
In this chapter, we present an accurate description of the current state-of-the-art and give an 
overview of our work in the use of reinforcement learning concepts focused on 
communication networks. We focus our attention by developing a system based on this 
paradigm called KOCRA for K Optimal Constrained path Routing Algorithm. Basically, 
these inductive approaches selects routes based on flow QoS requirements and network 
resource availability. After developing in section 2 the concept of routing in high speed 
networks, we present in section 3 the family of inductive approaches. After, we present our 
works based on reinforcement learning approaches in three different communication 
networking domains: wired networks, mobile ad hoc networks, and packet router’s 
scheduling networks. Last section concludes and gives some perspectives of this work.  

2. Routing problem  

As Internet is a large collection of more than 25,000 independent domains called 
autonomous systems (Ases), the cooperation between ASes is not optimized at the network 
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level, but rather it is based on the business relationships between organizations. The fully-
independent management actions in each AS are expressed in terms of a policy-based 
routing strategy which primarily controls the outbound traffic of an AS and can include 
conflicting policies. A global solution for QoS routing over all the ASes must be able to 
handle both the differing QoS provisioning mechanisms and service specifications. This 
latter solution of building models of large ISP’s is so complex to obtain (Quoitin & Uhlig, 
2005). For this, Routing is divided onto two classes: IGP and EGP. IGP, such as OSPF or IS-
IS, compute the interior paths in one AS, while EGP, such as BGP, is responsible for the 
selection of the interdomain paths. To fulfill application QoS requirements, many ISPs have 
deployed mechanisms to provide differentiated services in their networks. In fact, in the last 
decade, the development of none of QoS routing proposals has turned out to be sufficiently 
appealing to become deployed in practice. This is because ISPs have preferred to 
overprovision their networks rather than deliver and manage QoS (Yanuzzi et al., 2005).  
In the IGP or EGP cases, a routing algorithm is based on the hop-by-hop shortest-path 
paradigm. The source of a packet specifies the address of the destination, and each router 
along the route forwards the packet to a neighbour located “closest” to the destination. The 
best optimal path is choosed according to given criteria. When the network is heavily 
loaded, some of the routers introduce an excessive delay while others are under-utilized. In 
some cases, this non-optimized usage of the network resources may introduce not only 
excessive delays but also high packet loss rate. Among routing algorithms extensively 
employed in the same AS routers, one can note: distance vector algorithm such as RIP and 
the link state algorithm such as OSPF or IS-IS (Grover, 2003).   

2.1 Distance vector approach  

Also known as Bellman-Ford or Ford-Fulkerson, the heart of this type of algorithm is the 
routing table maintained by each host. With the distance-vector (DV) routing scheme (e.g. 
RIP, IGRP), each node exchanges with its neighbouring nodes its distance (e.g. hop count) to 
other networks. The neighbouring nodes use this information to determine their distance to 
theses networks. Subsequently these nodes share this information with their neighbours, etc. 
In this way the reachability information is disseminated through the networks. Eventually 
each node learns, which neighbour (i.e. next hop router) to use, to reach a particular 
destination with a minimum number of hops. A node does not learn about the intermediate 
to the destination. These approaches suffers from a classic convergence problem called 
“count to infinity”. It also does not have an explicit information collection phase (it builds its 
routing table incrementally). DV routing protocols are designed to run on small networks.  

2.2 Link state approach  

With link-state (LS) routing (e.g. OSPF or IS-IS), each node builds a complete topology 
database of the network. This topology database is used to calculate the shortest path with 
Dijkstra’s algorithm. Each node in the network transmits its connectivity information to each 
other node in the network. This type of exchange is referred to as flooding. This way each 
node is able to build a complete topological map of the network. The computational 
complexity cost used here is lower than the DV protocol. However, LS algorithms trade off 
communication bandwidth against computational time.   
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3. Inductive approaches  

Modern communication networks is becoming a large complex distributed system 
composed by higher interoperating complex sub-systems based on several dynamic 
parameters. The drivers of this growth have included changes in technology and changes in 
regulation. In this context, the famous methodology approach that allows us to formulate 
this problem is dynamic programming which, however, is very complex to be solved 
exactly. The most popular formulation of the optimal distributed routing problem in a data 
network is based on a multicommodity flow optimization whereby a separable objective 
function is minimized with respect to the types of flow subject to multicommodity  flow 

constraints (Gallager, 1977; Ozdaglar & Bertsekas, 2003). In order to design adaptive 
algorithms for dynamic networks routing problems, many of works are largely oriented and 
based on the Reinforcement Learning (RL) notion (Sutton & Barto, 1997). The salient feature 
of RL algorithms is the nature of their routing table entries which are probabilistic. In such 
algorithms, to improve the routing decision quality, a router tries out different links to see if 
they produce good routes. This mode of operation is called exploration. Information learnt 
during this exploration phase is used to take future decisions. This mode of operation is 
called exploitation. Both exploration and exploitation phases are necessary for effective 
routing and the choice of the outgoing interface is the action taken by the router. In RL 
algorithms, those learning and evaluation modes are assumed to happen continually. Note 
that, the RL algorithms assigns credit to actions based on reinforcement from the 
environment. In the case where such credit assignment is conducted systematically over 
large number of routing decisions, so that all actions have been sufficiently explored, RL 
algorithms converge to solve stochastic shortest path routing problems. Finally, algorithms 
for RL are distributed algorithms that take into account the dynamics of the network where 
initially no model of the network dynamics is assumed to be given. Then, the RL algorithm 
has to sample, estimate and build the model of pertinent aspects of the environment.  
Many of works has done to  investigate the use of inductive approaches based on artificial 
neuronal intelligence together with biologically inspired techniques such as reinforcement 
learning and genetic algorithms, to control network behavior in real-time so as to provide 
users with the QoS that they request, and to improve network provide robustness and 
resilience. For example, we can note the following approaches:  
Q-Routing approach- In this technique (Boyan & Littman, 1994), each node makes its 
routing decision based on the local routing information, represented as a table of Q values 
which estimate the quality of the alternative routes. These values are updated each time the 
node sends a packet to one of its neighbors. However, when a Q value is not updated for a 
long time, it does not necessarily reflect the current state of the network and hence a routing 
decision based on such an unreliable Q value will not be accurate. The update rule in Q-
Routing does not take into account the reliability of the estimated or updated Q value 
because it depends on the traffic pattern, and load levels. In fact, most of the Q values in the 
network are unreliable. For this purpose, other algorithms have been proposed like 
Confidence based Q-Routing (CQ-Routing) or Confidence based Dual Reinforcement Q-
Routing (DRQ-Routing).
Cognitive Packet Networks (CPN)- CPNs (Gelenbe et al., 2002) are based on random neural 
networks. These are store-and-forward packet networks in which intelligence is constructed 
into the packets, rather than at the routers or in the high-level protocols. CPN is then a 
reliable packet network infrastructure, which incorporates packet loss and delays directly 
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into user QoS criteria and use these criteria to conduct routing. Cognitive packet networks 
carry three major types of packets: smart packets, dumb packets and acknowledgments 
(ACK). Smart or cognitive packets route themselves, they learn to avoid link and node 
failures and congestion and to avoid being lost. They learn from their own observations 
about the network and/or from the experience of other packets. They rely minimally on 
routers. The major drawback of algorithms based on cognitive packet networks is the 
convergence time, which is very important when the network is heavily loaded.  
Swarm Ant Colony Optimization (AntNet)- Ants routing algorithms (Dorigo & Stüzle, 
2004) are inspired by dynamics of how ant colonies learn the shortest route to food source 
using very little state and computation. Instead of having fixed next-hop value, the routing 
table will have multiple next-hop choices for a destination, with each candidate associated 
with a possibility, which indicates the goodness of choosing this hop as the next hop in 
favor to form the shortest path. Given a specified source node and destination node, the 
source node will send out some kind of ant packets based on the possibility entries on its 
own routing table. Those ants will explore the routes in the network. They can memory the 
hops they have passed. When an ant packet reaches the destination node, the ant packet will 
return to the source node along the same route. Along the way back to the destination node, 
the ant packet will change the routing table for every node it passes by. The rules of 
updating the routing tables are: increase the possibility of the hop it comes from while 
decrease the possibilities of other candidates. Ants approach is immune to the sub-optimal 
route problem since it explores, at all times, all paths of the network. Although, the traffic 
generated by ant algorithms is more important than the traffic of the concurrent approaches.   
In the following, we give an overview of our work in the use of reinforcement learning 
concepts focused on communication networks. We focus our attention by developing a 
system based on this paradigm called KOCRA for K Optimal Constrained path Routing 
Algorithm and present our works based on reinforcement learning approaches in three 
different communication networking domains: wired networks, mobile ad hoc networks, 
and packet router’s scheduling networks.  

4. KOCRA system based reinforcement learning in routing wired networks.  

KOCRA is the successor of KONRS, a K Optimal Neural Routing System (Mellouk et al., 
2006a).   

4.1 Brief summary of KONRS  

In (Mellouk et al., 2006a), we have presented an adaptive routing algorithm based on Q 
learning approach, the Q function is approximated by a reinforcement learning based neural 
network (NN). As shown in figure 1, In this approach, NN ensure the prediction of 
parameters depending on traffic variations. Compared to the approaches based on a Q table, 
the Q value is approximated by a reinforcement learning based neural network of a fixed 
size, allowing the learner to incorporate various parameters such as local queue size and 
time of day, into its distance estimation. Indeed, a neural network allows the modelling of 
complex functions with a good precision along with a discriminating training and a taking 
into account of the context of the network. Moreover, it can be used to predict non-
stationary or irregular traffics. In this approach, the objective is to minimize the average 
packet delivery time. Consequently, the reinforcement signal which is chosen corresponds 
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to the estimated time to transfer a packet to its destination. Typically, the packet delivery 
time includes three variables: The packet transmission time, the packet treatment time in the 
router and the latency in the waiting queue.   

Fig. 1. Neural Net Architecture  

The input cells in NN used correspond to the destination and the waiting queue states. The 
outputs are the estimated packet transfer times passing through the neighbours of the 
considered router.  The algorithm derived from this architecture can be described according 
to the following steps:  

When receiving a packet of information:    
1. Extract a destination IP address,    
2. Calculate Neural Network outputs,   
3. Select the smallest output value and get an IP address of the associated router,  
4. Send the packet to this router,  
5. Get an IP address of the precedent router,  
6. Create and send the packet as a reinforcement signal.  

At the reception of a reinforcement signal packet:   
1. Extract a Q estimated value computed by the neighbor,  
2. Extract a destination IP address,  
3. Neural Network updating using a retro-propagation algorithm based on gradient 

method,  
4. Destroy the reinforcement packet.  

This approach offers advantages compared to standard Distance Vector (DV) routing policy 
and earlier Q-routing algorithm, like the reduction of the memory space for the storage of 
secondary paths, and a reasonable computing time for alternative paths research. The Q 
value is approximated by a reinforcement learning based neural network of a fixed size. 
Results given in (Mellouk et al., 2006a) show better performances of the proposed algorithm 
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comparatively to standard distance vector and Q-routing algorithms. In fact, at a high load 
level, the traffic is better distributed along the possible paths, avoiding the congestion of the 
network.  

4.2 The concepts behind KOCRA  

This first version of our KONRS routing system explore all the network environment and do 
not take into account loop problem in a way leading to large time of convergence algorithm. 
To address this drawback and reducing computational time, we have worked on the 
evolution of our earlier Q-neural routing algorithm and present the enhanced version of 
KONRS called “K Optimal Constrained path Routing Algorithm (KOCRA)” (Mellouk et al., 
2007a). KOCRA contains three stages. The objective of the first stage is to select the K Best 
candidate paths according to the cost cumulative path from the source and the destination 
nodes (for simplicity, we consider here all link costs equal to 1). The second stage is used to 
integrate the dynamics of traffic. For this, a continuous end-to-end delay among the K Best 
selected Paths is computed using a reinforcement Q-learning function. In order to force the 
router to take the alternative routes regarding to the second stage, we used a third one 
which compute automatically a probability affected to each path based on packet delivery 
time obtained by the second stage and the time latency in queuing file associated for each 
path.

4.2.1 First stage: constructing K-best paths  

First of all, in spite of exploring the entire network environment which needs large 

computational time and space memory (Mellouk et al., 2006a), our approach reduces this 

environment to K Best no loop paths in terms of cost cumulative links. Thus, each router 

maintains a link state database as map of the network topology. We used a label setting 

algorithm based on the optimality principle and being a generalization of Dijkstra's 

algorithm (Sahni, 2005). In order to find these K best paths, a variant of Dijkstra's algorithm 

proposed in (Eppstein, 1999) was used. The space complexity is O(Kmn), where K is the 

number of paths, m (resp. n) is the number of edges (resp. the number of links). By using a 

pertinent data structure, the time complexity can be kept at O(m+nlogn+K) (Mellouk et al., 

2007a). When a network link changes its state (i.e., goes up or down, or its utilization is 

increased or decreased), the network is flooded with a link state advertisement (LSA) 

message. This message can be issued periodically or when the actual link state change 

exceeds a certain relative or absolute threshold. Obviously, there is tradeoff between the 

frequency of state updates (the accuracy of the link state database) and the cost of 

performing those updates. In our approach, the link state information is updated when the 

actual link state change. Once the link state database at each router is updated, the router 

computes the K optimal paths.  

Let a DAG (N; A) denote a network with n nodes and m edges, where N = {1.. n}, and A 

={aij/i,j€N}. N}. The problem is to find the top K paths from source s to all the other nodes. 

Let’s define a label set X and a one-to-many projection h: N  X, meaning that each node i€ 

N corresponds to a set of labels h(i), each element of which represents a path from s to i.  

* S the source node 
* N –set of nodes in network 
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* X – the label set 

* Count
i
– Number of paths determined from S to I 

* elm – Affected number to assigned label 

* P – Paths list from S to destination (D) 

* K – paths number to compute 

* h – corresponding between node and affected label number

/* Initialisation */ 

count
i
= 0 /* for all i � K */ 

elem = 1 

h(elem) = s 

h
-1

(s) = {elem} 

distance
elem 

= 0 

X = {elem} 

P
K

= 0 

While (count
t
< K and X != { }) 

begin

/* find a label lb from X, such that 

distance
lb

<= distance
lb1

,� lb1 � X*/ 

X = X – {lb} 

i = h(lb) 

count
i
= count

i
+ 1 

if (i == D) then /* if the node I is the destination node D */ 

begin

p = path for 1 to lb 

P
K

= P
K

U {h(p)} 

end 

if (count
i
<= K) then

begin

for each arc(i,j) � A

begin

/* Verify if new label does not result in loop */ 

v=lb

While (h(v) != s) 

begin

if (h(v) == j) then

begin

goto do_not_add 

end 

v = previous
v

end 

/* Save information from new label */ 

elem = elem + 1 

distance
elem 

= distance
n
+ c

ij

previous
elem 

= lb

h(elem) = j 

h
-1

(j) = h
-1

(j) U {elem} 
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X = X U {elem} 

do_not_add:

end 

end 

end 

4.2.2 Second stage: Q-learning algorithm for optimizing the end-to-end delay  

After finding our K best Optimal Paths based on link costs, the second step is to distribute 

the traffic on these K candidate paths. For this, we use another criteria based on the end-to-

end delay. The reinforcement signal which is chosen corresponds to the estimated time to 

transfer a packet to its destination. This value is computed by a variant of Q-Routing 

algorithm which is considered as an asynchronous relaxation of the Bellman-Ford algorithm 

used in distance vector protocols. Typically, the packet delivery time includes three 

variables: the packet transmission time, the packet treatment time in the router and the 

latency in the waiting queue. In our case, the packet transmission time is not taken into 

account. In fact, this parameter can be neglected in comparison to the other ones and has no 

effect on the routing process.  

In this approach, each router x maintains in a Q-table a collection of values of Q(x, y, d) for 

every destination d and for every interface y. This value reflects a delay of delivering a 

packet for destination d via interface s. Then, the router x forwards the packet to the best 

next router y determined from the Q-table. Just after receiving this packet, the router y

provides x an estimate of its best Q value to reach the destination. This new information is 

then added in the Q-values of the router x.   

The reinforcement signal T employed in the Q-learning algorithm can be defined as the 

minimum of the sum of the estimated Q (x, y, d) sent by the router y neighbour of router x

and the latency in waiting queue q
x
 corresponding to router x.

(1)

Where Q(x, y, d), denote the estimated time by the router x so that the packet p reaches its 

destination d through the router y. This parameter does not include the latency in the 

waiting queue of the router x.  The packet is sent to the router y which determines the 

optimal path to send this packet.  

Once the choice of the next router is made, the router y puts the packet in the waiting queue, 

and sends back the value T as a reinforcement signal to the router x. It can therefore update 

its reinforcement function as:  

(2)

 and  are the packet transmission time between x and y and the learning rate respectively.  

So, the new estimation  can be written as follows:  

= +
(3)
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Fig. 2. Updating of the reinforcement signal.  

4.2.3 Third stage: adaptive probabilistic path selection.   

The goal of this stage is to distribute the traffic on K best paths in probabilistic manner. To 
force the router to take alternative routes find in K best paths and not only the best one, we 
compute a probability affected to each path automatically. We associated a maximal value 
P

max 
for the best path and divided the rest of probability (1- P

max
) for the remaining (K-1) 

paths. The value of P
max

 is fixed by a counting process. To force the router to take the 

alternative routes find in the second stage and not only the best path, a uniform distributed 
random process is implemented in each router. This process chooses randomly a number 
between [0, 1]. Next, a router choose the path verifying the condition that it’s probability is 
less than this random number. For example, in the situation characterized by K=2 (two 
paths), P1=0.8, P2=0.2, if the random number <=0.8, the router chooses the first path, 
otherwise the router takes the second one. In this manner, the flow packets reach their 
destination with a time close to optimal, while ensuring a good exploration of the remaining 
paths. Unfortunately, this kind of fixed hand probability don’t take automatically into 
account the dynamic of the irregular traffic. We have proposed a second version of 
computing automatically the load balancing distribution. The process is based on the packet 
delivery time computed by our Q reinforcement learning and the latency in queuing file 
associated for each path.   

Let D
i
 (t) be the packet delivery time for path i at time t. Let (t) be the latency in queuing 

file associated to closest router n’ in the direction of path i at time t (that is, the neighbour of 

router n). The following formula allows us to count the probability (t) for the ith path in 
router n at time t:   

(4)

Where and are two tuneable parameters that determine respectively the influence of 

delay time and waited queue time. They have an equivalent influence in the case of = .

This formula associates a very small probability for paths with high delay time and/or high 
queue time. This is due to the fact that when delay time (respectively waited time) increase 

the value of  (respectively ) decreases. 
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4.3 Performance evaluation   

To validate our results in the case of irregular traffic in wired networks, we take the results 
given by a well-known Djikstra’s algorithm (which offers to use an existing polynomial-time 
path computation) used in protocols such OSPF, IS-IS or CISCO EIGRP as a reference for 
our study. This choice of this classical approach is argued by the fact that the majority of 
ISP’s used actually this kind of protocols to exchange routing information in their networks. 
In order to do comparison with KOCRA, parameters of standard approach used here are 
fixed in order to optimize the delay and cost criteria simultaneously (on the rest of paper, 
we used the notation “Standard Optimal Multi-Path Routing Algorithm (SOMRA)” for this 
kind of algorithm). All algorithms have been implemented with OPNET and used the same 
data structure. OPNET software constitutes for telecommunications networks an 
appropriate modelling, scheduling and simulation tool. It allows the visualization of a 
physical topology of a local, metropolitan, distant or on board network. The protocol 
specification language is based on a formal description of a finite state automaton.  
The simulations presented in this article consisted of creating a traffic merged in irregular 
network topology, through which the two family of algorithms (KOCRA and SOMRA) 
computed the best paths between two nodes. QoS measures of each of tested algorithms 
concerns two additive constraints: cost and delay criteria. Results given in all the figures are 
evaluated in terms of average packet end-to-end delivery time on both topologies. Time 
simulation is represented on the other axis of the figures.  

4.3.1 Simulation parameters on the irregular topology.  

The topology of the network is specified by a collection of routers and a set of links that bind 
these routers elements. The network traffic is specified in the source router by setting 
several parameters like: the start time, the stop time, the statistical distribution for packet 
inter-arrival times, the statistical distribution for packet size and the destination node.   
To ensure a meaningful validation of our algorithm performance, we devised a realistic 
simulation environment in terms of network characteristics, communications protocols and 
traffic patterns. We focus on IP datagram networks with irregular topology. The topology of 
the network employed for simulations includes 36 interconnected nodes with essentially 
two parts of the network, as shown in Fig 3. This topology is the same used in (Boyan & 
Littman, 1994) for their Q learning approach.  
We model traffic in terms of requests characterized by its source and destination. While we 
concern ourselves with arrival and departure of flows, we do not model the data traffic of 
the flows. For simplicity, we also chose not to implement a proper management of error, 
flow and congestion control. In act, each additional control component has a considerable 
impact on the network performance, making very difficult to evaluate and to study 
properties of each control algorithm without taking in consideration the complex way it 
interacts with all the other control components (Dorigo & Stüzle, 2004). Therefore, we chose 
to test the behavior of our algorithm such that the routing component can be evaluated in 
isolation.  
The traffic is sent/received by four end nodes (marked in the figure noeud100, noeud101, 
noeud102 and noeud103).   
For our simulation results, we studied the performance of the algorithms for increasing 
traffic load, examining the evolution of the network status toward a saturation condition, 
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and for temporary saturation conditions. For this topology, we study the performance of our 
routing strategies according a Poisson Law inter-arrival times statistical distribution.  

Fig. 3. Network topology.  

4.3.2 Poisson distribution of model traffic.  

In probability theory, the Poisson distribution is a discrete probability distribution which 
expresses the probability of a number of events occurring in a fixed period of time if these 
events occur with a known average rate, and are independent of the time since the last 
event. The It is represented by random variables N that count a number of discrete 
occurrences (called "arrivals") that take place during a time-interval of given length. The 
probability that there are exactly k occurrences (with k a non-negative integer, k = 0, 1, 2, ...) 
is:   

(5)

Where is a positive real number and is the mean number of occurrences k. The Poisson law 

is then defined by its mean parameter.

In our simulations, we suppose the mean of the inter-arrival times is 3 s and fix the time 

start to 1 min and the stop time to the end of simulation is fixed to 6 h. 

4.3.3 Simulation results.  

As shown in Fig. 4 which represent time simulation versus the average packet delivery time, 
our probabilistic K Optimal Constrained path Routing Algorithm (KOCRA) give better 
results than the well-known N best optimal path routing Algorithm SOMRA. This is due to 
the fact that in our new approach, routers are able to take into account not only the average 
of delivery delay but also the waiting queue time. Thus, they are able to adapt their 



Inductive Approaches Based on Trial/Error Paradigm for Communications Network 337

decisions very fast and in close concordance with the network dynamics. In spite of the 
many packages taking secondary ways, N-optimal routing does not present better 
performances because it rests on a probabilistic method to distribute the load of the network 
over the closest cost paths, and not on the degradation of the times of routing. So, in classical 
approach, the routers take their decisions only according to the average of delivery delay 
and the exploration of potentials good paths, none trivially best and that can give us betters 
results, is not realized. Our approach, with the introduction of a probabilistic module, 
responds to this inconvenience and shows better results for Poisson law distribution of 
traffic. Thus, mean of average packet delivery time obtained by KOCRA is reduced by 37% 
compared to traditional N best optimal routing Algorithm.   

Fig. 4. Poisson law distribution simulations results

5. AMDR based reinforcement learning in mobile ad hoc networks.  

AMDR (Adaptive Mean Delay Routing) is a new adaptive routing protocol based on 
probabilities and built around two exploration RL agents. Exploration agents gather mean 
delay information available at each node in their route and calculate total delay between 
source and destination. According to the delay value gathered, probabilistic routing tables 
are updated at each intermediate node.  In order to deal with mobile nodes synchronisation 
we consider, in our protocol, delay estimation model proposed in [Naimi, 2005; Naimi & 
Jacquet, 2004], instead of instantaneous delay considered in the most oriented delay routing 
protocols.
Unlike data packets, control packets, used in adaptive routing, are sent in broadcast manner 
and so treated at IEEE 802.11, MAC layer differently than unicast packets. For this, we 
consider that trip delay of a control packet is not the same of a data packet.  
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In AMDR, routing function is determined by means of very complex interactions of forward 
and backward network exploration agents. Forward agents report network delay conditions 
to the backward ones. So, no node routing updates are performed by the forward agents.   
AMDR uses two kinds of agents: Forward Exploration Packets (FEP) and Backward 
Exploration Packets (BEP).  Forward agents explore the paths of the network, for the first 
time in reactive manner, but it continues the exploration proactively.   
FEP packets create a probability distribution at each node for its neighbours. Backward 
agents are used to propagate the information gathered by forward agents through the 
network, and to adjust the routing table entries.    

5.1 Forward exploration packet  

When a new traffic arrives at a node n, periodically the node n generates a forward 
exploration packet called FEP. The FEP packet is then sent to the destination of traffic. Each 
FEP packet contains the following fields: source_node_address, destination_node_address, 
ext_hop_address, stack_of_visiting_nodes_addresses, total_delay.   
If the entry of the current destination does not exist then a routing table entry is 
immediately created. The algorithm of FEP sending is the following:  

Algorithm (Send FEP) 
At Each T_interval_secondes Do  
Begin  

Generate a FEP
If any entry for this destination Then  

Create an entry with uniform probabilities.  
End If  

Broadcast the FEP  
End

End (Send FEP) 

When a FEP arrives to a node i, it checks if the address of the node i is not equal to the 
destination address contained in the FEP agent then the FEP packet will be forwarded. FEP 
packets are forwarded according to the following algorithm:  

Algorithm (Receive FEP) 
If any entry for this destination Then  

Create an entry with uniform probabilities.  
ELSE If my_adress  dest_adress Then  

IF FEP not already received then  
Stock address of the current node,  
Recover the available mean delay,  
Broadcast FEP  

ELSE  
Send BEP  

End IF  
End IF  

End (forward FEP) 
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5.2 Backward exploration packet  

As soon as a forward agent FEP reaches its destination, a backward agent called BEP is 
generated and the forward agent FEP is destroyed. BEP inherits the stack and the total delay 
information contained in the forward agent.  We define five options for our algorithm in 
order to reply to a FEP agent. The algorithm of sending a BEP packet depends on the chosen 
option. The five options considered in our protocol are:  

Reply to All: for each FEP reception, the destination a BEP packet is generated. In 
this case, the delay information is not used and the overhead generated is very 
important.
Reply to First: Only one BEP agent is generated for a FEP packet. The mean delay 
module is not exploited. It’s the same approach used in the AntNet. The overhead 
is reduced but any guarantee to have the best delay paths.  
Reply to N: destination node can generate until N BEP packet for the same FEP. 
The overhead is reduced compared to reply to N but it is more important than the 
Reply to first option.  
Reply to the Best: We save at each node the information of the best delay called 
“Node.Total_delay”. When the first FEP arrives to the destination, 
Node.Total_delay takes the value of total delay of the FEP packet. When another 
FEP arrives, its total delay is compared to the node total delay, and we reply only if 
the FEP has a delay better or equal to the node total delay.  
Reply to delay Constraint: This option focuses on Delay-Constrained-Path (DCP) 
unicast routing. The DCP issue is to select the path with given delay requirement. 
This is the case of real time applications having serious delay constraints.

Applications needs in term of delay are determined in a max delay supported “D” value. 
Arriving to destination, this one compares FEP total_delay to the application delay_constraint
“D”. If the FEP total_delay is equal or less than “D” then a BEP is generated and sent to the 
source of the FEP. We give in the following a part of BEP sending algorithm. We focus on 
“Reply to best” option which will be used in simulation part: 

Algorithm (Send BEP) 
Select Case Option
 Case: Reply to All  

....  
Case: Reply to first  
If (First (FEP) ) Then  

…..
endIf

Case: Reply to N  
If (N>0) Then  

.......  
endIf

Case: Reply to Best  
If (FEP.Total_Delay <= Node.Total_Delay) Then  

Genarate BEP  
BEP.Total_Delay=0,  
BEP.dest = FEP.src,  
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Send BEP,  
Node.Total_Delay= FEP.Total_Delay,  

endIf
Case: Reply to Delay Constraint (D)  
If (FEP.Total_Delay <= D) Then  

......  
End If  

End (Send BEP) 

Backward Exploration Packet (BEP) retraces the inverse path traversed by the FEP packet. In 
other words, unlike FEP packets, a BEP packet is sent in a unicast manner because it must 
take the same path of its FEP generator. During its trip, the BEP agent calculates the total 
mean delay of its route and uses this new delay to adjust the probabilistic routing table of 
each intermediate node. The algorithm of forwarding BEP agent is the following:

Algorithm (Receive BEP) 
If (my_adress = BEP.dest) Then  

Update probabilistic routing table  
Else  

Update probabilistic routing table  
Forward BEP  

End If  
End (Receive BEP) 

5.3 Updating routing tables 

Routing tables are updated when a BEP agent is received. The probabilities updating can 
take many forms, and we have chosen updating rules (6), (7), (8) and (9) described in (Baras 
& Mehta, 2003). As soon as, routing table is calculated, data packets are then routed 
according to the highest probabilities in the probabilistic routing tables.  
Unlike on demand routing protocols, there is no guarantee to route all packets on the same 
route because of the proactive exploration. The BEP agent make changes to the probability 
values at the intermediate and final node according to the following update rules: 

 p
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fd
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In both the above cases, the reinforcement parameter r can be defined as a function of delay. 
Here, r=k /f(c), where k > 0 and f(c) is the cost function (Baras & Mehta, 2003). 

5.4 Flooding optimization  

In order to improve the performance of our routing protocol, we introduce the MPR 
(Nguyen & Minet, 2006) concept in the broadcast process. However, the MPR selection 
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according to native OLSR is unable to build path satisfying a given QoS request. To avoid 
this problem, we propose a new algorithm for MPR selection. We keep at each node a table 
called MPR table containing a partial view of MPR neighbours. Our algorithm takes into 
account the mean delay available at each node. The MPR selection algorithm based on mean 
delay is the same proposed for bandwidth in (Nguyen & Minet, 2006), unlike their approach 
for bandwidth MPR; we define only one kind of MPR which are delay MPR. Mean delay 
MPR selection algorithm is composed of the following steps:  
1. A node N

i
selects, first, all its neighbours that are the only neighbours of a two hop 

node from N
i
.

2. Sort the remaining one-hop delay neighbours in increasing order of mean delay.  
3. Consider each one-hop neighbour in that order: this neighbour is selected as MPR if it 

covers at least one two-hop neighbour that has not yet been covered by the previous 
MPR.

4. Mark all the selected node neighbours as covered and repeat step 3 until all two-hop 
neighbours are covered.  

With the present MPR selection algorithm, we guarantee that paths having best delays will 
be discovered but there are any guarantees about the overhead generated (Ziane & Mellouk, 
2006).

5.5 Performance evaluation  

We use NS-2 simulator to implement and test AMDR protocol. We present in this section 
two scenarios of simulation. In the first one, we define a static topology of 8 nodes. To 
compare AODV, OLSR and AMDR, we have chosen the Reply to Best option of AMDR. 

5.5.1 Static scenario  

The following table summarizes the simulation environment: 

Routing AODV, AMDR, OLSR 

MAC Layer 802.11 

Bandwidth 11Mb/s 

TERRAIN 1000m,1000m 

Nodes 8 

Simulation time 1000 sec 

Data traffic exponential 

Table 1. Simulation settings scenario 1  

We injected three types of traffic in the network and compared for each simulation the file 
trace for each routing protocol. Figure 5 shows the comparison of end to end delay realized 
by AODV, AMDR and OLSR protocols. We can see that, at first OLSR realizes the best 
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delays when AMDR and AODV show a large initial delay, which is required for routes to be 
set up.  
A few times after initialisation stage, AMDR shows more adaptation to changes in the 
network load and realizes the best end to end delay followed by AODV and at last OLSR.  
On the other hand, comparing loss rate performances of the three protocols shows in figure 
6, that OLSR realizes the best performances followed by AMDR and then AODV. AMDR 
performance is justified by keeping alternative paths used when the actual path is broken. 
Any additional delay is need to route waiting traffics and deliverance ratio is well improved 
than AODV. 

Fig. 5. Packets delay comparison in static scenario  

Fig. 6. Comparison of loss rate for static scenario  

From the overhead comparison results, we saw that overhead generated by OLSR was the 
most important followed by AMDR and than AODV. This is justified by the proactive 
exploration process used by AMDR even a route is already established. The difference 
between overhead of AMDR and AODV is not very important because of optimization 
flooding mechanism used in AMDR.  
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5.5.2 Mobility scenario  

In this scenario, we test the impact of mobility on AMDR and compare its performances 
with OLSR and AODV. We define a random topology of 50 nodes. 

Traffic model Exponential 

Surface of simulation 1000m,1000m 

Packets size 512 byte 

Bandwidth 1Mbs 

Rate of mobility 5m /s , 10m/s 

Number of connections 5, 10, 15, 20, 25 

Rate 5 paquets/s 

Simulation duration 500 s 

Table 2. Simulation settings scenario 2  

Table 2 summarizes the simulation setting. We injected at first five traffics, ten, fifteen, 
twenty and at last twenty five traffics. After each simulation we calculate the end to end 
delay realized by each protocol. Figure 7 summarizes our comparison. We can observe that 
with low load, there is no difference in end to end delays. However, more the network is 
loaded more AMDR is better in term of delay. Such performance is justified by the 
adaptation of AMDR to changes in the network load. In the case of AODV and OLSR an 
additional delay is impossible to circumvent for adapting to changes. 

Fig. 7. Packets delay comparison for mobility scenario  

Comparing loss rate performance between AODV, AMDR and OLSR, shows in figure 8 that 
both AMDR and OLSR have, in a low loaded network, the same performance when AODV 
realises the best performances. However, in a high loaded network (case of 20 or 25 
connexions), AODV becomes less good than AMDR and OLSR. We justify such results by 
the adaptation of AMDR to load changes when AODV needs more route request function. 
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Fig. 8. Loss rate comparison for mobility scenario 

6. A system based reinforcement learning in packet scheduling 
communications network routing.  

6.1 Problem formulation  

In the dynamic environment the scheduler take the actual evolution of the process into 
account. It is allowed to make the decisions as the scheduling process actually evolves and 
more information becomes available. For that, we consider at each router an agent that can 
make decision. This decision-maker collects information gathered by mobile agents and then 
decides which action to perform after learning the current situation. We will focus on 
dynamic technique and will formulate the packet scheduling problem through several 
routers as a multi-agent Markov Decision Problem (MDP). As Machine learning techniques, 
we use reinforcement learning to compute a good policy in a multi-agent system (Mellouk & 
Hoceini, 2005; Hoceini et al., 2005). Simultaneous decision making in a dynamic 
environment is modelled using multi-agent Markov Decision Processes (MMDPs) 
(Puterman, 2005). However, learning in multi-agent system suffers from several limitations 
such the exponential growing of number of states, actions and parameters with the number 
of agents. In addition, since agents carry out actions simultaneously so they have evolving 
behaviours, transitions are non-stationary. Since centralized MAS may be considered as a 
huge MDP, we work with decentralized system where each agent learns individually in 
environment improved with information gathered by mobile agents.  

6.2 Markov decision processes  

Markov decision problem (MDP) can be used for modelling the interaction of an agent with 
its environment. It is defined as a 4-tuple < S, A, P, r > where S is a finite set of states, A is a 
finite set of actions, P is the transition probability function and r is the reward function. 
Given a state s and an action a, P(s, a, s’) denotes the transition probability of the system to 
state s’ when action a is executed in state s. Hence, the dynamics of the environment can be 
characterized by the transition probabilities. The process is said to be Markovian when the 
transition function depends only on the current state and not on any previously traversed 
states or any previous actions. If the state and action spaces are finite, then it is called a finite 
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Markov decision process (FMDP). The reward function r is defined as a real function r: S x A 
x S , where the scalar reinforcement signal r(s, a, s’) is the reward of taking action a in 
state s and observing state s’ as the next state. A policy  is denoted for a description of 
behaviours of an agent. It is a function that maps the current state s of the system into an 
action. The value of a state s under a policy  is the expected discounted sum of rewards 
obtained following this policy. The action value of a state according to the policy  noted 
Q (s, a) is the expected discounted sum of reward obtained by taking action a in state s and 
following policy . We use the reward as feedback to find an optimal policy * by iteratively 
refining an initial policy 0.  
In a Markov decision process, the objective of the agent is to find a policy  so as to 
maximize the expected sum of discounted rewards, It has been proved that there exists an 
optimal policy * such that for any s � S, the following Bellman equation holds: 

(10)

where V(s, *) is the optimal value for state s. When the transition function is unknown, the 
Q-learning (Watkins, 1989) is one of the algorithms most used to find an optimal policy. In 
Q-learning, Q*(s, a) is the total discounted reward obtained in state s after performing action 
a and following the optimal policy *. Then, the above equation becomes:  

(11)

On basis of Q*(s, a) the optimal policy * can be found by performing an action a in state s so
as to maximise Q*(s, a).  
The Q-Learning algorithm builds values of Q(s, a) for all s � S and a � A whose initial 
values may be arbitrarily chosen. If the agent, after executing an action a, moves from state s
to s’ and receives an immediate reward r(s, a), the current Q(s, a) values are updated using 
the following formula:  

(12)

where , 0 1 is the learning rate. (Watkins & Dayan, 1992) proved that equation (12) 
converges to optimal Q*(s, a). At the end of the learning, an optimal policy * can be derived 
such as *(s) = arg max

a
Q*(s, a).  

6.3 Multi-agent MDPs  

The single MDP and Q-learning are defined for the case where only one action is selected 
with each iteration. In this case the existence of optimal policy * is guaranteed. 
Nevertheless, the formalism can be extended to problems where multiple actions can be 
carried out simultaneously by several agents (Boutilier, 1999). In this way, we consider n 
agents each one of them having learned the optimal solution from its own MDP. The effort 
of these n agents in individual learning is combined to learn the joint optimal policy of this 
multi-agent MDP.  
We define a multi-agent MDP as 4-tuple (S, A, P, R) where the state space is a subset of the 

joint state space of n agents such that S = S
1

× ….× S
n

in which each S
i
is a discrete state space 

of each agent, the action space is the joint action space of n agents A = A
1

×…..× A
n

in which 
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a joint action (a
1
, a

2
, …., a

n
) corresponds to the concurrent execution of the actions a

i
by each 

agent i. The transition probabilities and rewards are factorial and defined for all states s, s’ � 
S and for all actions a � A respectively as:  

 (13) 

and R is given by the function R: S × A  such that:  

(14)

where r
i
(s

i
, a

i
, s

i
’) is the reward obtained by agent i when it performs action a

i
in state s

i
and 

move to state s
i
’.

However, the multi-agent MDP approach has two disadvantages. The learning is 
centralized, i.e. the task consisting in finding an optimal policy for the group cannot be 
distributed among the agents. Moreover, the need to consider all the joint actions increases 
considerably the complexity of learning, since the size of the space of joint actions grows in 
an exponential way according to the number of agents. We are interested in a decentralized 
MDP with communication where each agent takes into account only its actions but 
considers that all the other agents are part of the environment. The communication is 
governed by mobile agents.  

6.4 Mobile agent  

An important aspect of multi-agent systems is to construct intelligent agent able of 
achieving goals in complex environment. They address specifically the behaviour of the 
agent in its environment changes [Hadeli et al., 2004; Mellouk et al., 2006). Reinforcement 
learning provides a framework of adaptation of the agent’s behaviour according to its 
environment. As mobile agents we consider an ants’ colony. The structure of the model 
identifies two kinds of agents, their responsibilities, and the way they interact. The structure 
consists of a scheduler agent that deals with management of queues on the basis of available 
information (resource capacity) and a resource agent that measures the resource amount 
and gives this information to the scheduler.  
Scheduling in this system is done as follows: Before performing action selection and then 
scheduling the different queues based on their QoS, each scheduler agent sends ants moving 
downstream to control actual situation. They gather information about the availability of the 
resource and then return to the sender agent with the information. On the basis of this 
information the scheduler agent chooses a schedule and sends ants to reserve the needed 
resources by deposing pheromone. After that the scheduler agent regularly sends ants to 
reserve the previously found best resource capacity because if the reservation is not 
refreshed, the pheromone evaporates after a while. From time to time, the scheduler agent 
sends ants to survey the possible new (and better) amount of this resource. If they find a 
better measurement, the scheduler agent reserves the resource that is needed for the new 
schedule and the old reserving information evaporates. Ants are used also to distribute 
information and make their current state known throughout the system. The scheduler 
agent is not restricted to send the ants in one direction only. The ants are sent towards 
various directions which are directly connected with the router containing this scheduler 
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agent. The scheduler agent waits until all the ants arrive back with the gathered information 
and than decides to keep only the ant with the best information, the others terminate. Also, 
each agent sends ants to distribute information about its current state to the other agents. 
Every time an ant arrives at a scheduler agent, it gives a reward according to the 
information that was investigated. This reward is in form of a belief factor which will allow 
each scheduler agent in the multi-agent system to make update on their scheduling policies. 
The belief factor is a function of the synthetic pheromone concentration. It reflects the degree 
of confidence that an agent will consider on the information established by other agents 
from the same cooperating group. The belief factor might be useful in situations where the 
information is not reliable due to changes in the environment. 

6.4.1 Combining pheromone and Q-learning  

At level on each router, the scheduler agent performs a reinforcement learning to schedule 
the service of queues. This scheduling is done by taking account the current state of the 
environment provided by the ant agent. During the learning, the Q-function is updated 
based on the concentration of pheromone in the current state and the neighbour states. The 
used technique combines Q-learning (Sutton & Barto, 1998) with a synthetic pheromone 
introducing a belief factor into the update equation. The formula bellow describes the belief 
factor (Monekosso & Remagnino, 2004):  

(15)

where (s) is a synthetic pheromone, a scalar value that integrates the basic dynamic nature 
of the pheromone, namely aggregation, evaporation and diffusion. 
where (s) is a synthetic pheromone, a scalar value that integrates the basic dynamic nature 
of the pheromone, namely aggregation, evaporation and diffusion.  

6.5 Proposed model.  

Definition: A decentralized multi-agent MDP is defined as 4-tuple (S, A
i
, P

i
, r

i
), where S is a 

set of all states, A
i
is the set of all actions of agent i, P

i
: S × A

i
(S) is the state transition 

function where (S) is the set of probability distributions over the set S and r
i
: S × A

i
× S 

is the individual reward such that r
i
(s, a

i
, s’) is the reward obtained by agent i when it 

performs action a
i
in state s and move to state s’.  

We define a local policy 
i
for each agent i such that:  

 (16)  

The expected discounted value function of agent i is the following: 

(17)

where  rit is the immediate reward at time step for agent i and  is a discount factor.  

We consider also Q
i
as local Q-function, defined for each state-action pair as: 



Reinforcement Learning: Theory and Applications 348

(18)

The Q-learning update equation adapted to the local decision process according the global 
state space and modified with synthetic pheromone is given by the following formula: 

(19)

where the parameter  is a sigmoid function of time periods such that  0. The value of the 
parameter  increases with the number of agents which achieve successfully the current 
task.

The optimal policy 
i,
* for each agent i can be obtained by using the modified formula (11): 

(20)

The effect of one agent’s action depends on the action taken by others or choosing an action 
by an agent may restrict actions that can be selected by others. In this case each agent should 
change its local learned policy in order to achieve a multi-agent global optimal policy. For 
any global state s = (s1, ….., sn) and any joint action a = (a1, …., an), the optimal action value 
function Q*of the multi-agent MDP is the sum of the optimal action value functions 
Qi,*learned by a decentralized multi-agent MDP for each agent. The agents could have 
different estimations on the optimal state-action values according to the environment. These 
estimations wi(s, a) can be computed as: 

(21)

where h
i
(s, a

i
) is the number of estimations’ updates achieved by agent i for (s

1
, ….., s

n
, a

i
)

and  is an adjustable parameter. So, 

(22)

When the learning is finished, an optimal policy can be directly derived from the optimal 
action value Q*(s, a) by: 

(23)

6.5.1 Learning algorithm  

The model of the environment’s dynamics, the transition probabilities and rewards is 
unknown in learning of a single agent MDP and consequently the subsequent multi-agent 
MDP. So, the learning of the optimal solution of a problem is done by agents through 
interaction with the environment.  
We describe the global scheduling problem as a multi-agent MDPs in a decentralized 
approach. We derive a multi-agent learning algorithm from traditional reinforcement 
learning method based on Markov decision process to construct global solutions from 
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solutions to the individual MDPs. In this case, we assume that the agents work 
independently by making their trials in the simulated environment. The system state s is 

described by the space state of all agents; an action a
i
describes which queue is serviced in 

the time slot. Therefore, the goal of scheduling is to find an optimal policy * such that the 
rewards accumulated are maximized.  
The proposed algorithm converges to the optimal policy and optimal action value function 
for the multi-agent MDP since the difference between standard multi-agent and our 

decentralized multi-agent MDP model is the global states space for each action set A
i
of an 

agent i. 
The rewards may depend both on the current situation and on the selected action and 
express the desired optimization goal. In our approach, the global action a is a vector of 
single action made by distributed agents each associated with one of the n routers.  
Learning here means iteratively improving the selection policy according to the 
maximization of the global reward. This is done by a Q-learning rule adapted to the local 
selection process (eq. 19). The learning rule relates the local scheduling process of agent i to 
the global optimization goal by considering the global reward R.  

If Q
i
converges the Q

i,
* predicts if the action a

i
would be selected next. This action will be 

chosen by a policy greedy.  
In a single-agent learning case, Q-learning converges to the optimal action independent of 
the action selection strategy. However, in a multi-agent situation, the action selection 
strategy becomes crucial for convergence to any joint action. A major challenge in defining a 
suitable strategy for the selection of actions is to make a trade-off between exploration of 
new policies and exploitation of existing policies.  
In our research, we use a Boltzmann distribution (Katanakis & Kudenko, 2002) for the 
probability of choosing an action by each agent. In this strategy, each agent derive a 

scheduling policy from the current value of Q
i
matrix and then update Q

i
using the rewards 

from actions chosen by the current scheduling policy according to a probability distribution 
i
(s, a

i
): 

(24)

where exp is the exponential function and T is a parameter called temperature. The value of 
the temperature determines the possibility for an agent to balance between exploration and 
exploitation. For high temperature, even when an expected value of a given action is high, 
an agent may still choose an action that appears less desirable. In contrast, low temperature 
values support more exploitation, as the agent is more expected to have discovered the true 
estimates of different actions. The three important settings for the temperature are the initial 
value, the rate of decrease and the number of steps until it reaches its lowest limit. This 
lower limit must be set to a value close enough to 0 to allow the learners to converge by 
stopping their exploration.  
In our work, we start with a very high value for the temperature to force the agents to make 
random moves until the temperature reaches a low enough value to play a part in the 
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learning. This is done when the agents are gathering information about the environment or 
the other agents. The temperature defined as a function of iterations is given by: 

 (25) 

where x is the iteration number, s is the rate of decay and T
max 

is the starting temperature.  

In this section we present an algorithm called DEMAL (Decentralized Multi-Agent 
Learning) that uses Q-learning and decentralization on the level of the action. 

Algorithm DEMAL 
Repeat

Initialize s = ( s
1
, ….., s

n
)

Repeat
For each agent i  

Choose a
i
using Boltzman formula  

Take action a
i
, observe reward r

i
and state s’

Q
i
(s, a

i
)  Q

i
(s, a

i
)+ {R+  max [Q

i
(s’, a

i
’) +  B(s’, a

i
’)]  Q

i
(s, a

i
)}  

a
i
’

s  s’  
until s is terminal  

until algorithm converges 

6.5.2 Approximation  

In this model, we define the optimal policy by using optimal action value function Q*of the 

multi-agent MDP as the sum of the optimal action value functions Q
i,
*learned by a 

decentralized multi-agent MDP for each agent. We can apply this learning algorithm 
directly to solve multi-agent MDP but this method would not be very efficient because of 
the state and action spaces dimension that can be huge since they increase exponentially 
with the number of agents. This increase influences the complexity of the learning algorithm 

since this one depends on the number of states and actions. In tabular methods, Q
i
values 

were assumed to be stored in lookup tables which can be large since each one depends on 

the number of states and actions. In order to approximate the tabular Q
i
function, a feed-

forward multilayer neural network like the MLP can be used. Its structure is a three-layered 
model containing an input layer, a hidden layer, and an output layer. The input variables of 

the NN are the states of the system and the set of actions A
i
for each agent, which have n and 

m dimensions respectively. The output of the network corresponds to the Q
i
value for the 

current states and actions. Each node in every layer subsequently calculates its activation as 
the weighted sum over its inputs according to: 

(26)
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where x
i
is the i

th 
input to node j and w

ij
is the weight of the synapse connecting node i with 

node j from a higher level. A common activation function for MLPs is the sigmoidal function 
which is applied to the hidden layer and which will also be used for our specific 
implementation.

 (27) 

The technique used to learn the Q-function is the back propagation algorithm [18, 19, 20]. 
The weight update can be expressed by gradient descent, where the weights are added, at 
each iteration by the value of: 

(28)

where  is a small learning rate.  
The network error is backpropagated through the network from output to input space, 
where at each node we aim to match the node’s output o as closely to the target t as possible. 
The network error 

k
for the output nodes k, can be calculated as: 

 (29) 

For the hidden nodes h 
h

can be calculated as: 

(30)

The error terms are directly derived from the mean-squared error (MSE) which is defined 
according to formula: 

(31)

The approximate state-action value function Q
i
is proven to converge to the optimal function 

Q
i,
* (and hence 

i
to

i,
*) given certain technical restrictions on learning rates.  

6.6 Performance evaluation.  

We carried out our evaluation in two stages. The first stage consists to realizing the 
scheduling on level of one router. For that, we just consider in this stage a single agent MDP. 
In the second stage, we solve the whole problem which concerns the optimization of the end 
to end queuing delay through the global scheduling. Hence, we apply our algorithm based 
on the multi-agent MDP in its decentralized version. We start to describe the context of the 
first phase.  
In each router, an agent deals with scheduling N classes of traffic, where each traffic class 
has its own queue q

i
, for i = 1…N. Let q

N
denote the queue for best-effort traffic, which has 

no predefined delay requirements and R
1
, R

2
,..…,R

N-1
denote the delay requirements of the 

remaining classes. Let M
1
, M

2
,…,M

N-1
denote the measured delays of these classes observed 

over the last P packets. We assume that all packets have a fixed size. We consider also that a 
fixed length timeslot is required for transmitting a packet and at most one packet can be 
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serviced at each timeslot. The arrival of packets is described by a Bernoulli process, where 
the mean arrival rate 

i
for q

i
is represented by the probability of a packet arriving for q

i
in

any timeslot. Our goal is to learn a scheduling policy that ensures M
i

 R
i
for i=1,…,N-1. For 

the simulation, we used a three queue system that is Q
1
, Q

2
and the best effort queue and the 

parameters of this simulation are given in table 3. We have considered two cases according 
to the availability of resource. For investigating the case where the output link capacity of 
the router is sufficient we assume that this capacity is 500 Kbps. In this case, a sufficient 
amount of capacity is provided for each queue so our algorithm satisfied the mean delay 
requirements for Q

1
and Q

2
(see fig.9). We have also observed that our approach requires 1.5 

x 10
4

timeslots in terms of convergence time. In the second scenario (table 4) we consider the 
case where the output link capacity of the router is small and equal to 300 Kbps. The result 
of this case is shown in fig. 10. We observe that an allocation of a share of the available 
bandwidth is given to the delay-sensitive class Q

1
and then to Q

2
and the best effort queue. 

This is carried out on the basis of information gathered by a mobile agent. Also,  = 0.2;  = 
0.5.
In the second part of our evaluation, we consider a network with several routers connected 
to each other like in (Bourenane et al., 2007). We introduce also the mobile agents to gather 
and distribute necessary and complete information in order to help the agents to update 
their knowledge of the environment. The figures 10 and 11 show that in both scenarios, the 
presence of mobile agents provides a better queuing delay for all routers. 

Queue
Arrival Rate 

(packets/timeslo
t)

Mean Delay 
Requirement

eBi
Kbps

Q
1 0.30 8 64 

Q
2 0.20 2 128 

BE 0.40 Best-effort Best-effort 

Table 3. Simulation Parameters: Scenario 1 

Queue
Arrival Rate 

packets/timeslot 
Mean Delay 
Requirement

eBi
Kbps

Q
1 0.30 4 128 

Q
2 0.20 6 256 

BE 0.40 BE BE 

Table 4. Simulation Parameters: Scenario 2 
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Fig. 9. Mean Delay for three classes 

Fig. 10. Average throughput of three queues 

Fig. 11. Average queuing delay (scenario 1) 
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Fig. 12. Average queuing delay (scenario 2) 

7. Conclusion  

Due to the growing needs in telecommunications (VoD, Video-Conference, VoIP, etc.) and 
the diversity of transported flows, communication networks does not meet the requirements 
of the future integrated-service networks that carry multimedia data traffic with a high QoS. 
The main drivers of this evolution are the continuous growth of the bandwidth requests, the 
promise of cost improvements and finally the possibility of increasing profits by offering 
new services. First, it does not support resource reservation which is primordial to 
guarantee an end-to-end Qos (bounded delay, bounded delay jitter, and/or bounded loss 
ratio). Second, data packets may be subjected to unpredictable delays and thus may arrive at 
their destination after the expiration time, which is undesirable for continuous real-time 
media. In this context, for optimizing the financial investment on their networks, operators 
must use the same support for transporting all the flows. Therefore, it is necessary to 
develop a high quality control mechanism to check the network traffic load and ensure QoS 
requirements. It’s clear that the integration of these QoS parameters increases the 
complexity of the used algorithms. Anyway, there will be QoS relevant technological 
challenges in the emerging hybrid networks which mixed several different types of 
networks (wireless, broadcast, mobile, fixed, etc.).  
QoS management in networking has been a topic of extensive research in a last decade. As 
the Internet network is managed on a best effort packet routing, QoS assurance has always 
been an open issue. Because the majority of past Internet applications (email, web browsing, 
etc.) do not used strong QoS needs, this issue is somewhat made less urgent in the past. 
Today, with the development of internet real-time application and the convergence of voice 
and data networks, it is necessary to develop a high quality control mechanism to check the 
network traffic load and ensure QoS requirements. Constraints imposed by QoS 
requirements, such as bandwidth, delay, or loss, are referred to as QoS constraints, and the 
associated routing is referred to as QoS routing which is a part of Constrained-Based 
Routing (CBR).
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Several methods have been proposed to integrate QoS constraints and to reduce their 
complexity. However, for a network node to be able to make an optimal routing decision, 
according to relevant performance criteria, it requires not only up-to-date and complete 
knowledge of the state of the entire network but also an accurate prediction of the network 
dynamics during propagation of the message through the network. This problem is 
naturally formulated as a dynamic programming problem, which, however, is too complex 
to be solved exactly. Reinforcement learning (RL) is used to approximate the value function 
of dynamic programming. In these algorithms, the environment is modeled as stochastic, so 
routing algorithms can take into account the dynamics of the network. However no model 
of dynamics is assumed to be given.  
The second part of this chapter was devoted the study of our system based on reinforcement 
learning for different network communication domains.  
First of all, we have focused our attention in some special kind of Constrained Based 
Routing in wired networks which we called QoS self-optimization Routing. Our algorithm 
is based on a multi-path routing technique combined with the Q-Routing algorithm and is 
tested for improving distribution of traffic on N-Best paths. The learning algorithm is based 
on founding N-Best paths in term of hops router and the minimization of the average packet 
delivery time on these paths. The performance of our algorithm is evaluated experimentally 
with OPNET simulator for different levels of traffic’s load and compared to standard 
optimal path routing algorithms. Our approach prove superior to a classical algorithms and 
is able to route efficiently in networks even when critical aspects are allowed to vary 
dynamically. The fact that the reinforcement signal is continuously updated, parameter’s 
adaptation of our system take into account variations of traffic.  
Secondary, we study the use of reinforcement leaning in AMDR algorithm in the case of 
Mobile Ad Hoc Networks. It is shown from simulation results that combining proactive 
exploration agents with the on-demand route discovery mechanism, the AMDR routing 
algorithm would give reduced end-to-end delay and route discovery latency with high 
connectivity. This is ensured because of the availability of alternative routes in our 
algorithm. The alone case where our approach can provide more important delay is the first 
connection where any route is yet established. On the other hand, the use of delay-MPR 
mechanism, guarantees that the overhead generated will be reduced.  
In the last part, we address the problem of optimizing the queuing delay in several routers 
of a network, through a global packet scheduling. We formulated this problem as a multi-
agent MDP and used the decentralized version since multi-agent MDPs usually have huge 
state and action spaces (because they grow exponentially with the number of agents). This 
decentralized MDP is improved by ant-like mobile agent on the level of each router to 
guarantee a global view of the system’s state. We presented a modified Q-learning 
algorithm in the decentralized approach. Our simulation shows that the proposed approach 
leads to better results than when the multi-agent system acts alone.  
Finally, extensions of the framework for using these techniques across hybrid networks to 
achieve end-to-end QoS needs to be investigated, in particular on large scalable networks. 
Another challenging area concerns the composite metric used in routing packets (especially 
residual bandwidth) which is so complex and the conditioning of different models in order 
to take into account other parameters like the information type of each flow packet (real-
time, VBR, …).  
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