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Chapter

Zebrafish Photoreceptor 
Degeneration and Regeneration 
Research to Understand 
Hereditary Human Blindness
Maria Iribarne

Abstract

Humans with mutations in photoreceptor-related genes develop forms of retinal 
degeneration, such as retinitis pigmentosa, cone dystrophy, or Leber congenital 
amaurosis. Similarly, numerous photoreceptor mutant animal models present phe-
notypes that resemble retinal degeneration. Zebrafish retina manifests anatomical 
organization and development remarkably conserved in humans, making these fish 
a good model to study photoreceptor development and disease. Zebrafish are ideal 
for forward genetic screens to isolate mutants with visual defects. More recently, 
CRISPR/Cas system-mediated genome editing has enabled establishment of spe-
cific zebrafish photoreceptor mutants. Here, I review zebrafish models of inherited 
retinal diseases, focusing on rod versus cone photoreceptor mutants. Because 
zebrafish possess robust regeneration capacity to replace the lost photoreceptors, 
here I review the current understanding of molecular mechanisms underlying this 
response.

Keywords: photoreceptor, degeneration, genetic mutant, regeneration, Müller glia, 
genome editing, CRISPR/Cas9 system, zebrafish

1. Introduction

Photoreceptor degeneration includes a heterogeneous group of diseases char-
acterized by death of photoreceptors and progressive loss of vision. Photoreceptor 
degeneration is a major cause of blindness in developed countries, for which 
there is currently no effective treatment [1]. Zebrafish are a good model to study 
photoreceptor development and disease, because the anatomical organization and 
development of the retina are remarkably conserved among vertebrates. In con-
trast to the mammalian retina, which is rod-rich, zebrafish have cone- and rod-
rich retinas, facilitating the study of cones. Cone visual acuity can be evaluated 
by simple optokinetic response (OKR), even at very early stages of development. 
In this review, I discuss why the zebrafish model is useful to unravel mechanisms 
of photoreceptor loss. In addition, unlike mammals, zebrafish have the capacity 
to fully regenerate dead photoreceptors, raising the hope of future treatments for 
this disorder. Here I summarize our current understanding of this regeneration 
response.
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1.1 Photoreceptors in the zebrafish retina

Zebrafish neural retina, like those of other vertebrates, comprises three nuclear 
layers, separated by two synaptic layers (Figure 1). The outer nuclear layer (ONL) 
comprises rod and cone photoreceptors, the light-sensing neurons. The inner 
nuclear layer (INL) consists of bipolar, horizontal, and amacrine neurons, the 
second-order neurons. The ganglion cell layer is formed by ganglion cells, axons 
of which exit the retina, forming the optic nerve, which connects with the tectum. 
These neurons interconnect by synapses in the plexiform layers. The neural retina 
is located adjacent to the retinal pigment epithelium (RPE), which supports general 
homeostasis of photoreceptors, such as recycling 11-cis retinal for visual pigment 
regeneration [2, 3].

Photoreceptors are polarized neurons with characteristic morphology. They 
display very specialized cell regions, including outer segments (OSs), connecting 
cilia, cell bodies, and terminal synapses. OS structure is important for phototrans-
duction. The cell bodies possess the machinery to support all cell functions, and 
their synaptic termini transduce signals to bipolar neurons. OSs are formed by 
hundreds of cell membrane discs stacked horizontally and associated with a high 
concentration of proteins for phototransduction. These proteins are synthetized in 
cell bodies, and then are transported to the OS through connecting cilia.

Photoreceptors are sensory neurons that produce electrical responses when 
stimulated by light. In the OS, photons are captured by photopigment molecules to 
initiate phototransduction cascades [4]. Phototransduction is a complex signaling 
process that results in closing of voltage-gated ion channels, producing a change 
in membrane potential. Then, this electrical signal is amplified by other cell types 
in the inner retina and conducted to the brain. Although this signaling pathway is 
common to both rods and cones, signaling proteins are mostly encoded by distinct 
sets of rod- and cone-specific genes. Cone and rod photoreceptors have different 
sensitivity to light. Rods are extremely sensitive to low-intensity light, while cones 
function at higher light intensity, and enable color discrimination. In zebrafish, 
four different subtypes of cones are organized in a precise mosaic pattern. Cones are 

Figure 1. 
Zebrafish retinal organization. (A) Semi-thin section of a zebrafish retina at 7 days post-fertilization (dpf). 
The neural retina is organized into 3 layers. The ONL is formed of cone and rod photoreceptors. (B) Schematic 
representation of all components of the retina. ONL: outer nuclear layer; INL: inner nuclear layer; GCL: 
ganglion cell layer; RPE: retinal pigmentary epithelium; h: horizontal; b: bipolar; a: amacrine; g: ganglion 
neuron.
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abundant throughout the zebrafish retina, unlike that of humans, in which cones 
are at high density in the fovea. Like humans, zebrafish are diurnal.

1.2 Zebrafish as a model to study hereditary eye diseases in humans

Hereditary diseases of the retina involve heterogeneous mutations that result in 
progressive photoreceptor death, leading to blindness. Mutations in over 200 genes 
are currently known to be associated with retinal disorders [Retinal Information 
Network (RetNet): https://sph.uth.edu/retnet]. Retinal degeneration includes 
multifactorial diseases such as retinitis pigmentosa, Leber congenital amaurosis 
(LCA), cone-rod dystrophy, and age-related macular degeneration (AMD). In 
many cases, these diseases are similar in morphological pathogenicity, whereas their 
genetic origins may be due to mutations affecting different proteins, such as opsins, 
proteins of the transduction cascade, ciliary protein, or metabolic proteins.

Retinal degeneration can affect rods, cones, or both. Retinitis pigmentosa is a 
remarkable disease, caused by a mutation in rod photoreceptors that progresses to 
affect wild-type cone photoreceptors. It is characterized by progression from night 
blindness due to rod photoreceptor death, to dysfunction and degeneration of cones 
concentrated in the fovea at the center of the retina [5]. Retinitis pigmentosa is the 
most common inherited retinal dystrophy (IRD), affecting approximately 1 in 4000 
people [6]. AMD is a multi-factorial disease that affects RPE, and leads to the loss of 
central vision, sustained by cone photoreceptors. AMD is the leading cause of blind-
ness in industrialized countries [7]. Age and a positive family history of AMD are the 
two strongest risk factors for AMD. This disease is characterized by pigmentation 
changes at the level of the RPE and deposition of extracellular deposits called drusen, 
between the basal surface of the RPE and Bruch’s membrane in the macula [8].

Leber congenital amaurosis is a group of monogenic, inherited, retinal degen-
erative disorders that typically show early onset and severe visual dysfunction, 
with progressive degeneration [9]. At least 25 genes involved in the retinoid cycle 
and phototransduction, photoreceptor morphogenesis, and protein trafficking in 
the connecting cilia are associated with LCA. Cone and cone-rod dystrophies are a 
clinically and genetically heterogeneous group of inherited retinal diseases, involv-
ing as many as 30 genes. Initially cone photoreceptors degenerate, followed by rod 
photoreceptor loss. These disorders typically present progressive loss of central 
vision, color vision disturbances, and photophobia [10].

Why use zebrafish to research inherited retinal dystrophy? Zebrafish are small 
tropical fish that are easy to maintain, and that produce many eggs. They have 
transparent embryos that develop very rapidly, with a 3–4-month generation 
time. Zebrafish are also easy to modify genetically [11]. The visual system is highly 
conserved. It is already functional just 5 days post-fertilization (dpf), and it can 
be assessed by OKR [12]. The fish retina is cone-rich. Because several genes have 
extra paralogs caused by gene duplication in teleost fish, several genes are cone and 
rod-specific, making them suitable to study both types of photoreceptors indepen-
dently [13]. The pioneering work of Streisinger, which produced mutants using 
UV-irradiated sperm, hydrostatic pressure, heat shock, or gamma irradiation, proved 
that genetics could be studied using the zebrafish [14, 15]. Soon after that, wide-
ranging mutant collections that develop retinal degeneration were isolated, propelling 
zebrafish into ophthalmologic research.

1.2.1 Forward genetic screens to isolate mutants with visual defects

A special issue of Development in 1996 published 37 papers coming mainly from 
Nüsslein-Volhard’s lab in Tübingen and Wolfgang Driever’s lab in Boston. These 
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groups performed large-scale mutagenesis screens from founder fish chemically 
mutagenized with N-ethyl-N-nitrosourea (ENU) [16–18] to provide researchers 
with thousands of mutants (Figure 2). This special issue described roughly 1500 
mutations in more than 400 genes involved in processes that govern development 
and organogenesis [19]. These initial screens were based on evaluations of pheno-
type by stereomicroscope, without staining or complex microscopy. Additionally, 
behavioral screens to isolate visual mutants were carried out [12, 20–23]. In these 
cases, OKR and optomotor responses (OMR) of mutagenized larvae were measured 
during a three-generation screen for recessive mutations (Figure 2). Other screen-
ing used F1 generation fish (8–10 months old) derived by ENU mutagenesis, and 
evaluated their escape responses to a threatening object in order to isolate dominant 
mutants [24, 25].

The zebrafish genome has been sequenced, providing targets for reverse genet-
ics through use of morpholinos [26]. The use mutants identified from screening in 
combination with morpholino knock-down has been a widely employed strategy to 
understand mechanisms underlying many biological processes, including vision. 
Morpholinos are antisense oligonucleotides designed to temporarily downregulate 
gene function by blocking translation or splicing [27]. However, morpholinos limit 

Figure 2. 
Genetic strategies to isolate zebrafish visual mutants. (A) Three-generation forward screening. Male zebrafish 
are treated with the mutagenic drug, ENU, followed by 3 generations of crossing to isolate homozygous recessive 
mutants. Larvae are usually screened using visual behavior tests. (B) Reverse genetic screening based on Crispr/
Cas9 technology. 1–4 cell eggs are microinjected with gRNA and Cas9 mix to target a specific gene of interest. 
Founders need to be screened in the next generation according to the inheritance of the mutation. Homozygous 
recessive mutants are evaluated to find abnormal phenotypes.
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embryonic development. Usually 1 to 4-cell embryos are injected and effects can 
be studied up to 4–5 dpf. Mutagenic screening of zebrafish revealed conserved 
functions of numerous genes across vertebrate lineages and identified zebrafish 
orthologs for 82% of known human retinal disease genes.

1.2.2 Discerning specific signaling pathways between cone or rod photoreceptors

Genetic screens in zebrafish have shed light on the molecular bases of photore-
ceptor functions by isolation of visual mutants. Photoreceptor mutants have been 
isolated, characterized, and mapped. Cone function can be evaluated by OKR and 
OMR under normal light in 5–7-dpf larvae. A breakthrough discovery in retinal 
dystrophy was the identification of mutants of phosphodiesterase 6c (pde6c), a 
novel cone-specific phototransduction gene [12, 28]. Pde6c−/− was identified as a 
blind zebrafish mutant with rapid degeneration of cone photoreceptors having 
secondary, but transitory degeneration of rod photoreceptors. These two achro-
matopsia zebrafish mutants were the first visual disorders linked to cone-specific 
degeneration, and helped to identify human PDE6c mutations in patients [29, 30]. 
These findings indicated that like zebrafish pde6c mutants, cone-specific degenera-
tion also occurs in humans.

The maturation and functional integrity of PDE6 depends on aryl hydrocarbon 
receptor-interacting protein-like 1 (AIPL1) [31]. We reported an aipl1 mutant that 
was blind and developed cone photoreceptor degeneration accompanied by rod 
degeneration only at an early stage of development [32]. Retinal phenotypes of aipl1 
mutants are very similar to those of zebrafish hypomorphic pde6c mutants. Such 
results were not surprising, given the role of aipl1 in supporting pde6c functions. 
We confirm the absence of pd6c protein in the aipl1 mutant. Unexpectedly, the level 
of guanylate cyclase-3 (gc-3), another important cone-specific phototransduction 
molecule, was also affected. At the moment, the molecular mechanism underlying 
the coupling of Pde6 and Gc3 maintenance in photoreceptors remains unknown. gc3 
mutants have been isolated by OKR and OMR screening and they present abnormal 
visual behavior, although their retinal morphology is normal during larval stages 
[22]. It would be interesting to study gc3 mutants to elucidate the relationship 
between pde6c and gc3.

Though mutants isolated through OKR or OMR behavioral screening evaluate 
cone function, several mutants exhibited rod degeneration as well. Since rod and 
cone photoreceptor OSs are continually phagocytosed by the covering RPE, they 
need to be renewed actively by transport of molecules from the cell body to the OS 
through connecting cilia. This is called Intraflagellar Transport (IFT) [33]. Several 
genes have been identified as components of the IFT, such as ift52, ift57, ift80, 
ift88, and ift172 [23, 34]. In ift88 zebrafish mutants, cilia are generated, but not 
maintained, causing an absence of photoreceptor OSs [35]. ift57 mutant zebraf-
ish had short OSs whereas ift172 mutants lack OSs completely at 5 dpf [23, 36]. 
Degeneration of mutant photoreceptors is partly caused by ectopic accumulation of 
opsins. These results illustrate the unique mechanism of IFT, which is very different 
from cytosolic transport, and is important for OS formation and maintenance.

Intracellular vesicular transport is important for cytosolic distribution and 
recycling of molecules. β-SNAP cooperates with N-ethylmaleimide-sensitive factor 
(NSF) to recycle the SNAP receptor (SNARE) by disassembling the cis-SNARE 
complex generated during the vesicular fusion process. β-SNAP−/− presents photo-
receptors degeneration, in which photoreceptors undergo apoptosis in a BH3- only, 
protein BNip1-dependent mechanism due to failure to disassemble the SNARE. 
β-SNAP mutant was the first zebrafish mutant to link photoreceptor degeneration 
to vesicular transport defects [37].
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Unlike photopic cone-mediated vision mutants, which can easily be isolated by 
behavioral tests from genetic screens, rod mutant screens are much more laborious 
and time consuming. Scotopic vision needs to be evaluated under dim light, and rod 
maturation takes up to 3 weeks post-fertilization (wpf). The escape response has 
been used to screen adult male F1-generation zebrafish treated with ENU, looking 
for dominant inherited retinal mutants [24, 25, 38, 39]. When a fish is swimming 
in a circular container and is threatened, it reacts by turning away from the threat. 
Individuals that failed to show the escape response under dim light illumination 
were isolated, and named night blindness a-g. A spectrum of retinal phenotypes was 
observed, from photoreceptor degeneration in a patchy array (nba+/ −; nbe+/−), thin-
ner OSs or degenerated OSs (nbc+/−; nbd+/ −; nbg+/ −), to absence of photoreceptor 
degeneration (nbb+/ −). Homozygous mutant embryos of the F3 generation in most 
cases died after several days of development, indicating that these mutations are not 
photoreceptor-specific.

1.2.3 CRISPR/Cas editing genome technology to produce photoreceptor mutants

Forward genetic screens have proven very powerful for isolating mutants. 
However, they do not allow specific genes or pathways to be investigated. 
Programmable nucleases have revolutionized genetics by allowing precise targeted 
genome modifications to produce mutants. There are several types of tools for 
genome editing, such as zinc finger nucleases (ZFNs), transcription activator-like 
effector nucleases (TALENs), and clustered regularly interspaced short palin-
dromic repeat (CRISPR) systems. These tools have facilitated widespread DNA 
editing in various organisms, including zebrafish. High specificity and efficiency, 
flexible design and simple methodology are the most relevant features. CRISPR/
Cas enzyme stands out for its extremely utility based on RNA–DNA interaction, 
while ZFNs and TALENs recognize specific DNA sequences through protein–DNA 
interactions. Any researcher with basic skill in molecular biology can easily imple-
ment CRISPR technology. CRISPR/Cas can target virtually any gene of interest 
with a customizable short RNA guide to produce knock-out of individual genes [40, 
41]. CRISPR requires two key components, a nuclease, most commonly Cas9, and 
sgRNA (single-guide RNA) which targets the nuclease to a specific DNA location 
(Figure 2) [42]. By simply designing the sgRNA, CRISPR can be targeted to dif-
ferent genome locations. By expressing several sgRNAs, the system also enables 
multiplex genome editing with high efficiency [43].

1.2.4  Zebrafish photoreceptor-specific genes edited to model human retinal 
pathologies

Genome editing technologies have been employed in zebrafish for retinal 
studies. While it is quite easy to produce knock-outs, creating knock-in zebrafish 
remains challenging. Several photoreceptor knock-out mutants have been recov-
ered in zebrafish that showed the involvement of several genes in photoreceptor 
development and survival. Mutations in over 50 genes, such as RP2, have been 
identified as causes of retinitis pigmentosa. RP2 is a GTPase activator protein for 
ARL3 and participates in trafficking of ciliary proteins. Fei Liu et al. generated 
an RP2 knock-out zebrafish line using TALEN technology to understand the 
RP2 degeneration mechanism [44]. RP2 knock-out zebrafish display progressive 
retinal degeneration, with a degeneration of rod OSs, followed by degeneration of 
cone OSs. RP2 knock-down by morpholinos resulted in abnormal retinal local-
ization of GRK1 and rod transducin subunits, GNAT1 and GNB1. Furthermore, 
distribution of farnesylated proteins in zebrafish retina was also affected by 



7

Zebrafish Photoreceptor Degeneration and Regeneration Research to Understand Hereditary…
DOI: http://dx.doi.org/10.5772/intechopen.88758

RP2 ablation. The same lab also produced cerkl knock-out zebrafish, a model 
for a rod-cone dystrophy [45]. Progressive degeneration of rods and cones, with 
an accumulation of shed OSs in the interphotoreceptor matrix was observed, 
suggesting that cerkl may regulate phagocytosis of OSs by the RPE. In addition, 
the phagocytosis-associated protein, MERTK, was significantly reduced in cerkl 
mutants. Despite a number of genes that have been implicated in retinitis pigmen-
tosa pathogenesis, the mechanism of the disease remains unknown. Zebrafish 
have proven useful for modeling these ocular diseases.

Photoreceptor genesis requires precise regulation of progenitor cell compe-
tence, cell cycle exit, and differentiation. Several transcription factors that control 
photoreceptor-specific gene expression have been identified. The basic helix–loop–
helix transcription factor NeuroD governs photoreceptor genesis, but the signaling 
pathway through which it functions is unknown. NeuroD was knocked-down with 
morpholinos, and knocked-out with CRISPR/Cas9 [46]. NeuroD induces cell cycle 
exit and photoreceptor maturation through cell–cell signaling. NeuroD knock-
down resulted in failure to exit the cell cycle, but did not affect expression of photo-
receptor lineage markers, Nr2e3 and Crx. NeuroD increased Notch gene expression. 
Notch inhibition rescued the cell cycle exit, but not photoreceptor maturation. The 
nuclear receptor transcription factor, Nr2e3, is expressed in photoreceptors. It forms 
a complex with Crx, which enhances expression of rod-specific genes and represses 
expression of cone-specific genes in rods [47]. CRISPR-edited Nr2e3 knock-out ani-
mals displayed rod precursors undergoing terminal mitoses, but failed to differenti-
ate into rods. They did not express rod-specific genes and the OS fails to develop. 
Cone differentiation was normal; however, later, progressive degeneration of OS 
of double cones began, with a reduction of phototransduction proteins. Nr2e3 acts 
synergistically with Crx and Nrl to enhance rhodopsin gene expression, without 
affecting cone opsin expression [47].

A large number of genetic defects can disrupt OS morphology to impair photore-
ceptor function and viability. Kinesin family members and IFT motors are impor-
tant for trafficking proteins to photoreceptor OSs [33]. Edited-knock-out osm-3/
kif17 and cos2/kif7 mutants have comparable OS developmental delays, although via 
different mechanisms [48]. Cos2/kif7 mutant dysfunction depends on Hedgehog 
signaling, which leads to generalized, non-photoreceptor-specific delay of retinal 
neurogenesis, while osm-3/kif17 OS morphogenesis delays are associated with 
initial disc morphogenesis of photoreceptors. The ciliary protein C2orf71a/pcare1 
is almost exclusively expressed in photoreceptors, and modulates the ciliary mem-
brane through recruitment of an actin assembly module. Embryos and adult retinas 
of C2orf71a/pcare1−/− zebrafish display disorganization of photoreceptor OSs [49]. 
This mutant shows visual impairment assessed by OKR and OMR in larvae. Lack of 
pcare1 in zebrafish causes similar retinal phenotype to that in humans and indicates 
that the function of the pcare gene is conserved across species. When mutated, 
Eye shut homolog (EYS), another ciliary protein, causes retinitis pigmentosa and 
cone-rod dystrophy. Since eys is absent from several rodent genomes, including 
mice, zebrafish hold promise as a model for EYS-deficient patients. Several groups 
established an eys knock-out zebrafish model using CRISPR/Cas9 and TALEN 
technology [50–52]. Embryos and adult retinas showed disorganization of photore-
ceptor OSs. eys−/− zebrafish presented mislocalization of several OS proteins, such as 
rhodopsin, opn1lw, opn1sw1, GNB3 and PRPH2, and disruption of actin filaments 
in photoreceptors [50–52]. All these new zebrafish mutants present phenotypes 
that mimic clinical manifestations of patients, suggesting the utility of these animal 
models for studying the etiology of these retinopathies.

Gene target editing technologies enable production of rod-specific photore-
ceptor mutants, which were challenging to isolate using behavioral screening. 
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Mutations in rhodopsin are the most common cause of retinitis pigmentosa in 
humans [53]. The human rhodopsin mutation Q344X was expressed in zebrafish to 
study photoreceptor degeneration. Early mislocalization of hRho Q334X led to rod 
apoptosis, without affecting cone survival. Activation of phototransduction signal-
ing through transduction and adenylyl cyclase increased photoreceptor loss [54]. 
Recently, CRISPR/Cas9-induced mutations were used to target the major zebrafish 
Rho locus, rh1–1, and several mutants were recovered [55]. These mutants were 
characterized by rapid degeneration of rod photoreceptors, but not of cones. These 
novel lines will provide badly needed in vivo models to study pathology of retinitis 
pigmentosa.

All these examples of mutants recovered by reverse genetic approaches have 
been used to identify key molecular pathways required for photoreceptor develop-
ment and function. Nonetheless, they are generally limited in terms of the number 
of targets that can be evaluated. Reverse genetic screening techniques have been 
used with invertebrate animal models and cell culture systems to identify genes and 
pathways involved in various biological processes; however, their use with in vivo 
vertebrate model systems has been challenging [56]. Recently, several zebrafish labs 
have shown the feasibility of CRISPR/Cas-based mutagenesis assays to isolate high 
numbers of mutants focused on synapsis [56], thyroid morphogenesis and function 
[57], and the Fanconi Anemia pathway, which is involved in genomic instability 
syndrome, resulting in aplastic anemia [58]. One study screened 54 ciliary genes 
and isolated 8 mutants that were required for retinal development [59].

In summary, these descriptions of zebrafish phenotypic models isolated from 
forward mutagenesis screens and reverse genetic approaches targeting genes impor-
tant in retinal biology have shown how it is possible to advance studies of retinal 
degeneration through zebrafish research. There still remain several unknown genes 
associated with retinal degeneration. Their eventual exploration will provide a 
deeper understanding of molecular mechanisms underlying photoreceptor degen-
eration and death.

1.3 Therapeutic treatments for retinal degeneration in humans

Several photoreceptor diseases such as retinitis pigmentosa, Leber congenital 
amaurosis, and macular degeneration produce photoreceptor cell death which 
leads to blindness. Current treatments of such diseases are ineffective; thus, several 
different strategies to treat them are being pursued. Neuroprotective approaches 
with drugs have been evaluated with different degrees of success. These include 
cGMP analogue treatment [60], calcium-channel blockers [61], and rod-derived 
cone viability factor [62]. These strategies aim to treat patients during early stages 
of retinal degeneration, since the disease cannot be reversed. On the other hand, 
neuroprotective strategies do not depend on any specific mutation and may provide 
a longer time window for other treatments [63]. Gene therapy has been applied to 
improve vision in patients with LCA caused by mutations in RPE65. In 2008, three 
groups reported success in delivering a healthy RPE65 gene using an AAV2 vector to 
the retina of three LCA patients [64–66], but the improvement may not persist [67]. 
External devices have been used to electrically stimulate neurons in the inner part 
of the retina. High visual acuity cannot be achieved, but face and object recogni-
tion, and orientation in unknown environments are possible [63].

The most promising therapies are cell transplantation and regeneration based on 
Müller cells. Using induced-pluripotent stem cells (iPSCs) it is possible to produce 
eyecup-like structures [68]. These eyecups present a layered structure similar 
to a retina, with photoreceptor-like cells that contain outer segments, express 
phototransduction proteins, and some light response [69]. When photoreceptors 
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are transplanted, they need to integrate into and establish synaptic connections 
with the remaining retina. Animal experiments showed that few photorecep-
tors integrate to produce functional recovery of vision [70, 71]. Unexpectedly, 
recently research demonstrated that the improvement in vision is due to exchange 
of cytoplasmic material (RNA and/or proteins) between donor cells and the host 
retina, and not to integration of transplanted photoreceptors [70, 72, 73], making 
it unclear through which mechanism restoration of vision is achieved. The goal of 
regeneration is to replace photoreceptors through induction of endogenous pro-
genitor cells. Unfortunately, neurons in the mammalian central nervous systems 
cannot be replaced. In contrast, lower vertebrates such as reptiles, amphibians, and 
fish, have the capacity to regenerate lost neurons in brain, spinal cord, and sensory 
organs, such as the retina and ear [74]. Defining mechanisms of zebrafish retinal 
repair may offer a key to regenerative medicine.

1.3.1 Müller cell response to retinal injury

In response to injury, mammalian Müller cells exhibit signs of reactive gliotic, 
featuring cell hypertrophy and upregulation of glial fibrillary acidic protein (GFAP) 
[75, 76]. Initially this reactive gliosis is neuroprotective, but eventually leads to loss 
of retinal neurons and causes scarring. Unlike mammals, zebrafish retina responds 
to neuronal damage by proliferation of Müller glia, which can replace all neuron 
types, including photoreceptors. Müller glia are the major glial cell type in the retina 
and contribute to retinal structure and homeostasis [77]. Nuclei are located in the 
inner nuclear layer, and these cells present apical and basal projections that extend 
all through the retina (Figure 1). Apical feet form the outer limiting membrane. 
Müller glia are located so that they can monitor the entire retina and contribute to 
retinal structure and function.

When loss of neurons occurs, Müller glia respond by dedifferentiating, re-enter-
ing the cell cycle and producing neuronal progenitor cells (Figure 3). These progen-
itors amplify their numbers, and then migrate to the injured region. Then neuronal 
progenitor cells exit the cell cycle and differentiate into replacement neurons. All 
types of retinal neurons can be produced and replaced in injured zebrafish retina 
to achieve morphological and functional recovery of the retina [78–81]. Identifying 
molecular signals and pathways that drive this regeneration response is the focus of 
regenerative medicine.

Figure 3. 
Photoreceptor degeneration induces a regenerative response based on Müller cell activity. (A) Photoreceptor loss 
and/or other cells produce stress signals such as TNFα, growth factors, etc. to induce cell Müller activation. (B) 
Müller cells dedifferentiate to stem cells, and divide asymmetrically to produce one NPC and one Müller glial 
cell. Müller cells express Ascl1 and Stat3. (C) NPCs proliferate to increase the number of progenitor cells. (D) 
NPCs exit the cell cycle and differentiate into photoreceptor lineage cells to reverse loss of these neurons. NPC: 
neuronal proliferative cells.
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1.3.2  Positive and negative signaling to modulate Müller cell proliferation in the 
regenerative response

Understanding mechanisms by which zebrafish can regenerate injured retina 
may provide strategies for stimulating retinal regeneration in mammals. Given the 
similarity of anatomy, cell types, and gene conservation between teleost fish and 
mammals, the regenerative approach offers hope for clinical treatment. Both species 
present Müller cells that are the primary cell type responsible for regeneration.

Acute injury models have been useful for dissecting many signaling pathways, 
and great progress has been achieved. Several secreted signaling molecules that 
participate in Müller glia dedifferentiation and proliferation have been identified. 
These include TNFα [82], HB-EFG [83], Wnt [84], TFGb [85], insulin, and Fgf2 
[86] (Figure 3). In addition, Müller cells activate different transcription factors, 
and initiate signaling essential to differentiation and/or proliferation, such as Ascl1b 
[87], Stat3 [88, 89], Pax6 [90, 91], PCNA [90], Lin-28 [87]. Interestingly, it still has 
not been confirmed that these transcription factors and signaling molecules are also 
expressed and activated in genetic mutants with slow degeneration.

When a regeneration response occurs, around 50% of Müller cells dedifferenti-
ate and proliferate in the injured region, while the other Müller cells remain as dif-
ferentiated glia. Let-7, Notch and Insm1a [87, 92, 93] are involved in this quiescent 
Müller cell population. It may be important that some Müller cells remain quiescent 
to avoid an excessive neurogenesis and remodeling of the retina, as well to maintain 
homeostasis of healthy neurons.

Important results have come from uninjured retinas in relation to the external 
delivery of activation signals or transcription factors that are able to generate a 
regenerative response. For example, Tnfα intravitreal injection into adult fish 
induced a moderate proliferative response [82]. Tnfα combined with repressing 
Notch (γ-secretase inhibitor) via intravitreal injection produced a much stronger 
proliferative response [92]. These results suggest that identifying key molecules for 
the regenerative response, and modulating them can induce a proliferative response 
by Müller cells.

Recently, some exciting results came from studies in adult mice [94]. NMDA-
damaged retinas, with injury to the inner part of the retina, were treated with a 
histone deacetylase inhibitor and overexpressed Ascl1. Under these conditions, 
Müller glia were induced to produce functional neurons via a trans differentiation 
mechanism. Gnat1rd17Gnat2cpfl3 double mutant mice, a model of congenital blind-
ness, were treated by gene transfer of β-catenin, and subsequent gene transfer of 
transcription factors essential for rod cell fate specification and determination. 
Müller glia-derived rods restored visual responses [95].

1.3.3 Genetic mutant models to investigate regeneration mechanisms

Most current studies use acute approaches to injure adult retinas, like light dam-
age [79, 96], retinal puncture [80], chemical injection [81], or loss of specific cell 
populations due to activation of a toxic transgene (nitroreductase: NTR) [97, 98]. 
Light damage and toxic transgene NTR induce photoreceptor death, while retinal 
puncture kills specific neurons. These animal models use powerful, rapid damage 
that resembles traumatic injury in human patients. To model inherited photorecep-
tor degeneration diseases, better models need to be used.

Only a few studies have employed zebrafish photoreceptor genetic mutants 
[32]. Iribarne et al. used cone- or rod-specific mutants with a very rapid loss 
of photoreceptors, and observed that regeneration started as early as 1 wpf. 
Cone-specific mutant regeneration relied on Müller cell proliferation, while rod 
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photoreceptor-specific mutant regeneration was based on rod progenitor prolifera-
tion [99]. Another cone mutant, Aipl1−/−, which developed a slower and progressive 
degeneration, surprisingly did not show an increase in Müller cell or rod progenitor 
proliferation, even though cell death was detected [32]. Both studies used larval 
animals (1 and 2 wpf) and lacked the information of later stages and the adult regen-
erative response. Further investigation during development and adulthood should be 
performed to gain a better understanding of the response of Müller cells to damage.

Interestingly, all these injury models elicited a Müller cell response that was 
similar overall. However, some molecules revealed injury-dependent induction. 
Hbegf was necessary for retinal regeneration following a mechanical injury, 
but it was not necessary for regeneration following photoreceptor damage by 
light [82, 83]. These adult acute models have proven to be powerful in revealing 
many of the molecular signals that drive the regenerative response. However, for 
modeling human photoreceptor genetic diseases, which usually proceed from 
embryogenesis or childhood to adulthood to completely degenerate, a more 
specific model needs to be used.

1.3.4 CRISPR/Cas system screening to isolate defective regenerative retinal processes

The high efficiency and multiplexing capabilities of CRISPR enable high-
throughput, forward screening of “genotype to phenotype” functions in various 
model systems [43]. So far, several zebrafish labs have utilized CRISPR/Cas system 
screening (check Section 2.2.4 in this chapter). However, few screening studies have 
focused on regeneration. A screening method for hair cell regeneration identified 
7 genes involved in this response [100]. To evaluate genes important for retinal 
regeneration, large-scale, reverse genetic screening has been established by apply-
ing a multiplexed gene disruption strategy [101]. This screening used an automated 
reporter quantification-based assay to identify cellular regeneration-deficient phe-
notypes in transgenic fish. Over 300 regeneration genes were targeted, and so far, 
data have been obtained from 120 targeted genomic sites. This screening is ongoing, 
and regeneration-defective mutants still have not been published. It will be interest-
ing to see what types of new genes are associated with the regeneration response.

2. Conclusions

Inherited retinal degenerative diseases are characterized by photoreceptor 
death that leads to blindness. The underlying genetic causes of these disorders are 
numerous and diverse, and most involve photoreceptor-specific genes. Zebrafish 
are amenable to large-scale genetic manipulation and genome editing technology, 
which as I have illustrated, can generate a great mutant collection. These mutants 
are helping to uncover molecular mechanisms underlying retinal degeneration 
disorders. Currently, there are no effective treatments for these diseases in humans 
to reduce or impede the progression of degeneration; thus, different approaches 
have been investigated to develop medical interventions for the patients. Zebrafish 
exhibit extraordinary neuronal regeneration, including retinal photoreceptors, 
making them an excellent model to develop regenerative therapies to treat photore-
ceptor degeneration.
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