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Chapter

Introductory Chapter: Dynamical
Symmetries and Quantum Chaos
Paul Bracken

1. Introduction

Chaos and many ideas from the study of this area have permeated a very large
number of areas of science especially those which rely on mathematics. It is hoped
this will illustrate how deeply and powerfully these ideas have influenced such areas
as chemistry and physics.

Nature seems to be far too complicated to be linear at all levels all of the time.
The exact laws of nature cannot be linear, nor can they be derived from such, to
quote Einstein. Quantum mechanics, which is formally linear, is believed to be the
underlying system to understand nature [1–3]. These seemingly conflicting views
urge one to ask whether quantum mechanics can encompass nonlinear phenomena
as well. This question is related to the study of classical nonlinear phenomena [4, 5].
This leads one to wonder about the behavior of a quantum system if the classical
version is chaotic. To understand chaos in quantum mechanics requires a more
rigorous formulation of the fundamental structures of quantum theory [6, 7]. To do
this, one needs to formulate the quantum-classical correspondence, and at present,
such a formulation is lacking.

In classical mechanics a Hamiltonian system with N degrees of freedom is
defined to be integrable if a set of N constants of motion Fif g exist which are in
involution, so the Poisson bracket satisfies Fi;Fj

� �

¼ 0, with i, j ¼ 1,…, N.

When the system is integrable, motion is restricted to an invariant N torus in
2N-dimensional phase space and so is regular. If the system is perturbed by a small
nonintegrable term, the Kolmogorov-Arnold-Moser (KAM) theorem states that its
motion may still be restricted to the N-torus but be deformed. Chaos appears when
such perturbations increase to such a degree that some tori are destroyed, and their
behavior is characterized by positive Lyapunov exponents.

Attempts to investigate quantum chaos have focused on the quantization of
classical nonintegrable systems. Since the former in principle is only a limiting case
of the latter and most realistic quantum systems do not have a classical counterpart,
the latter approach is more general and natural. The classical limit is most often
approached by using Ehrenfest’s theorem, and three popular ways to study the
classical limit are given as follows. The Schrödinger approach is to develop a wave
packet whose time evolution follows classical trajectories, so the time evolution of
the coordinate and momentum expectation values solves not only Hamilton’s equa-
tions but also Schrödinger’s equation. Dirac’s approach is to construct a quantum
Poisson bracket such that the basic structure of classical and quantum mechanics is
placed in one-to-one correspondence. The third approach is the Feynman path
integral formalism, which expresses quantum mechanics in terms of classical
concepts by integrating overall possible paths for a given initial and final state.

The problem may be reviewed based on the axiomatic structure of quantum
mechanics, out of which the quantum dynamical degrees of freedom are defined
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and permit the construction of quantum phase space. This allows us to propose an
idea for what quantum integrability is as well as its relationship with dynamical
symmetry.

Quantum chaos is related to the question of the quantum-classical correspon-
dence at two levels, kinematical and dynamical. The kinematical quantum-classical
correspondence is a kind of reconciliation of the quantum and classical degrees of
freedom and their associated geometrical structures.

Consistency of quantum theory implies there must exist a fundamental structure
which can be used to determine the system’s Hilbert space structure before solving
the quantum dynamical equations. The axiomatic structure of quantum mechanics
implies such a fundamental structure is simply the given algebraic structure of the
system. The quantum mechanical Hilbert space is realized as a unitary irreducible
representation of an algebra denoted as g. For example, the harmonic oscillator is
mentioned described by the Heisenberg algebra h4 and specified by the operators
a; a†; a†a; If g. Here a, a† are creation and annihilation operators for the oscillator.

There is the spin system given by su(2) and spin operators S�; Sþ; S0f g and other
systems such as the hydrogen and helium atoms. The associated covering group
G of g carries a natural geometric manifold, and all representations of quantum
mechanics can be represented on such a geometrical manifold. Consequently, the
kinematical correspondence can be constructed out of the dynamical group
structure of the system, and the general solution is as follows.

A quantum system possesses a well-defined dynamical group G over a Hilbert
spaceH. This can be regarded as an irrep space. The number of quantum dynamical
degrees of freedom of the system is just the same number as the M independent
non-fully degenerate quantum numbers necessary to specify the space H. The
quantum phase space P is realized uniquely on a 2M- dimensional coset space G=H
where H⊂G is the maximal stability subgroup of a fixed state ∣ψ0i∈H of the
system. The coset space G=H and its global properties give a precise realization to
the kinematical quantum-classical correspondence sought after. The fixed state
∣ψ0i∈H is the lowest (highest) weight state of H when G is compact. When G is a
non-compact group, it is the lowest bound state of H.

To see what can be extracted from this statement, consider now some nontrivial
examples. In particular, let us clarify the idea of quantum dynamical degrees of
freedom. The non-fully degenerate quantum numbers are defined by the
nonconstant eigenvalues of a complete set of commuting operators in the associated
basis.

The harmonic oscillator whose dynamical group is the Heisenberg-Weyl
group H4 and Hilbert space is the Fock space with ∣ni as its basis is specified by the
non-fully degenerate quantum number n.

Next consider the spin system whose dynamical group is SU 2ð Þ. In its Hilbert
space, a given irrep space of SU 2ð Þ labeled ∣j, mi, the total spin quantum number is a
constant. The only non-fully degenerate quantum number to specify the basis is m,
and the quantum dynamical degree of freedom is one, as its Hilbert space, which is
an irrep space of SU 2ð Þ often denoted as j j;mf ig, has total quantum number one.

In the central potential problem, the dynamical group is SU 1; 1ð Þ, and its quan-
tum degree of freedom is one. The Hilbert space of SU 1; 1ð Þ is specified by two
quantum numbers k and n. The first is related to angular momentum, and the
second is the principal quantum number. Since the angular momentum is con-
served, the quantum number k is fully degenerate.

The hydrogen atom and the relativistic free Dirac particle are perhaps the
simplest and most realistic both having the dynamical group SO 4; 2ð Þ. For hydrogen
the three quantum dynamical degrees of freedom correspond to three non-fully
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degenerate quantum numbers, the principle quantum number n, angular momen-
tum quantum number j, and z-component m. These label the Hilbert space
completely, jn; j;mf ig.

For the harmonic oscillator, to construct the phase space, the fixed state used is
the vacuum state. The phase space is then H4=U 1ð Þ⊗U 1ð Þ, where U 1ð Þ⊗U 1ð Þ is
invariant with respect to the vacuum. The phase space structure is determined by
coherent state ∣zi of H4=U 1ð Þ⊗U 1ð Þ:

D αð Þ∣zi ¼ ∣zþ αi, D αð Þ∈H4=U 1ð Þ⊗U 1ð Þ:

The phase space is not complicated, just a one-dimensional complex space or
two-dimensional real space.

For a spin system, the dynamical group is SU 2ð Þ, and in an irrep space j j;mf ig,
the fixed state is ∣ j, � ji. The phase space is SU 2ð Þ=U 1ð Þ, and is isomorphic to a two-
sphere, and there is the coherent state:

∣Ωi ¼ D zð Þ∣ j, � ji ¼ exp zSþ � z ∗ S�ð Þ∣j, � ji, (1)

where s� are spin raising and lowering operators. In a geometrical representa-
tion, D zð Þ is

exp
0 z

�z ∗ 0

� �� �

¼
cos ∣z∣

z

∣z∣
sin ∣z∣

� z ∗

∣z∣
sin ∣z∣ cos ∣z∣

0

B

B

@

1

C

C

A

¼
xo x

�x ∗ xo

� �

, (2)

where xo is real and x ¼ x1 þ ix2. Unitarity of D zð Þ∈ SU 2ð Þ=U 1ð Þ requires
x2o þ x21 þ x22 ¼ 1, which describes a two-sphere. The phase space is nontrivial, and
canonical coordinates can be obtained from the coherent state basis as

q ¼
ffiffiffiffiffiffiffi

4jℏ
p

sin
θ

2
cosϕ, p ¼ �

ffiffiffiffiffiffiffi

4jℏ
p

sin
θ

2
sinϕ:

2. Quenched quantum mechanics

The dynamical correspondence of quantum-classical mechanics is a fundamental
idea which should be addressed. In order to study the resultant singularity struc-
tures which result in a transition to chaos, it must be stated more precisely what this
limit entails. Quenched quantum mechanics suggests a possible origin for a param-
eter which maps out this limit. Instead of considering ℏ ! 0, it involves allowing a
parameter referred to as the quenching index τ, which is dimensionless, to tend to
infinity. In cases where τ turns out to be a fixed parameter, the system does not
possess a classical limit. To understand properties of τ, let us consider the case in
which the associated Lie algebra splits up in the form g ¼ h⊕ k with
h; h½ �∈ h, h; k½ �∈ k, k; k½ �∈ h, where h is the Lie algebra of H and the explicit form of
K z; zð Þ is

K z; zð Þ ¼ det I � Z†Z
� ��τ

(3)

In Eq. (3), þ �ð Þ refers to the case where G is compact (non-compact) and Z a
matrix with elements z and τ is related to the matrix element 0jhij0h i with hi ∈ h.
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This gives rise to a geometrical interpretation for τ. This can be seen by looking at
the propagator on G=H.

To study quenched quantum mechanics, the propagator is expressed as

U ¼
ð

Dx exp
i

ℏ
S

� �

: (4)

In Eq. (4), Dx is the integration measure and S is the effective action given as

S ¼ θ �Hdt:

where v is the one-form of G=H and H the expectation value of the Hamiltonian
operator H ¼ H Tið Þ, Ti ∈G, that is,

V ¼ i
ℏ

2

∂lnK

∂zi
dzi � ∂lnK

∂z
dzi

� �

, H ¼ ΩjH Tið ÞjΩh i: (5)

The quantum equations depend on τ. Upon expanding with respect to this
parameter and not ℏ, the semi-quantal equations describing a classical-like system
result. This arises from purely quantum structures and provides a way to achieve a
classical limit:

lim
Q!∞

H ¼ HC ¼ H ΩjHjΩh ið Þ: (6)

This limit may be divergent, since the phase space derived from the quantum
geometry has not been scaled. Scaled canonical coordinates must be introduced to
obtain a convergent limit as

1
ffiffiffiffiffiffiffiffi

2τℏ
p qþ ipð Þ ¼ Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

I þ Z†Z
p : (7)

Expectation values of observables in coherent states can have correct dimensions
in terms of p and q in such a coordinate system, and the semi-quantal dynamics in
terms of p; qð Þ in (7) is determined by the Hamilton equations:

dqi
dt

¼ ∂ p; qð Þ
∂pi

,
dpi
dt

¼ � ∂ℋ

∂qi
(8)

The difference between semi-quantal dynamics and classical mechanics is called
the quantum fluctuation or correlation H�Hc ¼ f z; z ∗; ηð Þ, which is clearly an
explicit function of η. Once the quantum fluctuation is fixed in a quantum system,
its dynamical evolution is determined by H not Hc.

3. Dynamical symmetry

Let us discuss now some basic concepts related to chaos. One way to proceed is
to study the behavior of quantum systems at the semi-quantal level by explicitly
exploring the dynamical effects of quantum fluctuations on classical chaos. It would
be good to find some general set of conditions which determine without great effort
whether systems become chaotic and when.

The central idea of quantum integrability is dynamical symmetry. Integrability
is a fundamental concept in the study of dynamical systems. Usually, the function
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of symmetry restricts the possible forms of Lagrangian, but not the associated
dynamics.

A quantum systemwith dynamical group G has a dynamical symmetry if and only
if the Hamiltonian of the system can be written in terms of the Casimir operators of

any particular subgroup chain Gα of G: H ¼ f Cα
ki

� �

, where k ¼ sα,…, 1; i ¼ 1,…, lαk.
Here α is fixed and labels the particular subgroup chain, Cα

ki is the i-th Casimir
operator of subgroup Gα

k and lαk the rank of subgroup Gα
k.

Dynamical symmetry is less restrictive on the system than pure, since the Ham-
iltonian and ground state are not necessarily invariant under a transformation of G.
Quantum integrability can be formulated from the classical definition once dynam-
ical degrees of freedom are specified and the quantum-classical correspondence of
dynamics is elaborated. The Heisenberg equation, the quantum dynamical equa-
tion, has a similar structure to the classical dynamical system.

A quantum system with M independent dynamical degrees of freedom and 2M-
dimensional quantum phase space is integrable if and only if there are M quantum
constants of the motion or good quantum numbers. The corresponding constants of
the motion have operators which commute with the Hamiltonian. From the defini-
tion of dynamical symmetry and quantum integrability, it can be shown that a
quantum system with a dynamical group G is integrable if such a system possesses a
dynamical symmetry of G.

Consider the example of an N-independent level system to illustrate the consis-
tency of quantum and classical integrability. Introduce annihilation and creation

operators for the state ∣ii such that ∣ii ¼ b†i ∣0i, ∣0i ¼ bi∣ii and bi; b†j

h i

¼ δij,

b†i ; b†j

h i

¼ bi; bj
	 


¼ 0, . Then the general form of the Hamiltonian is

H ¼
X

n

i, j¼1

Hijb
†
i bj: (9)

The generators of the dynamical group SU Nð Þ are given as Eij ¼ b†i bj, and H is
a linear operator composed of the Eij. From group theory, it is always possible

to assume there is a U Nð Þ transformation such that H ¼ ~H ¼ gHg�1 where
g∈U Nð Þ and

~H ¼
X

N

i¼1

~HiiEii: (10)

It follows that ~H and H have the following dynamical symmetry

U Nð Þ⊃ … ⊃C ¼ U 1ð Þ⊗U 1ð Þ⊗…⊗U 1ð Þ, (11)

where C represents the Cartan subalgebra which is defined to be a product of N
factors of U 1ð Þ with the generators Eii. This implies the system is integrable. Con-
sider now the phase space representation of this operator from quenched quantum
mechanics, with phase space representation of Eij:

E11 ¼ N � 1

2
p2 þ q2
� �

,

E1j ¼
1

2
qj þ ipj

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2N � p2 � q2
q

j 6¼ 1, E ij ¼
1

2
qj þ ipj

� �

pi þ iqi
� �

,

E ji ¼ E ij

� �†
, i, j 6¼ 1:

(12)
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where

p2 þ q2 ¼
X

N

i¼2

p2i þ iq2i
� �

: (13)

The E ij has the same algebraic structure as the Eij, and the Hamiltonian function

is only a decoupled function of p2i þ q2i in quadrature. All of this implies that the
system is integrable, as might be expected on account of dynamical symmetry.

There is an important consequence of the results mentioned above.
Nonintegrability of a quantum system implies breaking of dynamical symmetry.
This means that if chaos is present, dynamical symmetry of the system must be
broken.

To develop this idea, if a system with l-rank, n-dimensional dynamical Lie group
G is nonautonomous, dynamical symmetry breaking implies the system becomes
nonintegrable. For an autonomous system, the energy is conserved, and it becomes
nonintegrable, and this means it is broken such that more than one of the
M≤ n � lð Þ=2 constants of motion are destroyed. It may be asked how much
dynamical symmetry needs to be broken so that perturbative expansions about the
dynamical symmetry basis will not converge.

Let us say that chaos will appear in a nonintegrable system when the breaking of
the dynamical symmetry is accompanied by a structural phase transition. So if a
structural phase transition takes place in a quantum system such that certain control
parameters are altered, then it passes from one dynamical symmetry limit to
another. Different dynamical symmetries connote different toroidal structures in
G=H, so the torus structure must also alter from one to another. Consequently,
dynamical symmetry breaking means that some or even all constants of motion are
destroyed along with the corresponding tori giving rise to chaotic phenomenon.

Let us present a simple model which consists of two-spin coupled system
governed by the Hamiltonian:

H ¼ 1� αð Þℏ S1z þ S2zð Þ þ αh2S1xS2x: (14)

In (14), α is a coupling constant. This system has the possible dynamical
symmetries:

SU1 2ð Þ⊗ SU2 2ð Þ⊃ SO1 2ð Þ⊗ SO2 2ð Þ , ið Þ
SU1þ2 2ð Þ⊃ SO1þ2 2ð Þ : iið Þ

(

(15)

The Hilbert space basis which carries the irreducible representations j1 j2
� �

of

SU1 2ð Þ⊗ SU2 2ð Þ are j j1; j2;m1;m2

� 


: m1 ¼ �j1;…; j1; m2 ¼ �j2;…; j2g and

j j1; j2; j;m
� 


; j ¼ j1 þ j2;…; j j1 � j2j; m ¼ �j… jg for the dynamical symmetry
chains (i) and (ii).

The dynamical symmetries of H are classified as: for α = 0, H has symmetries
(i) and (ii). For α = 1, the system is just in (i). However, when 0, α, 1, dynamical
symmetries are broken. The semi-quantal description can be used to see whether
there has been a structural phase transition in the symmetry breaking phase.

Coherent states are used to state the phase space is S2 ⊗ S2 and given as

∣p, qi ¼ exp
X

2

i¼1

ziJiþ � z ∗
i Ji�

� �

∣ j1, j2; � j1, � j2i: (16)
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where the canonical coordinates p; qð Þ are given as

1
ffiffiffiffiffiffiffiffi

4jiℏ
p qi þ ipi

� �

¼ zi
∣zi∣

sin ∣zi∣ ¼ sin
θi

2
e�iφi (17)

and p2i þ q2i ≤4jiℏ. The Hamiltonian determined by semi-quantal dynamics is

H ¼ p; qjHj p; qh i ¼ 1� αð Þ 1

2
p21 þ q21

� �

þ 1

2
p22 þ q22

� �

� j1ℏþ j2ℏ
� �

� �

þ α

4
q1q2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4j1ℏ� p21 � q21

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4j2ℏ� p22 � q22

q

:

(18)

Finally, it may be stated that to understand quantum chaos, one has to under-
stand the dynamical behavior of a nonintegrable system when it deviates from the
classical dynamics by taking into account nonvanishing quantum fluctuations. It
may be asked whether the global phase space structure of classical dynamics can
survive when quantum fluctuations are included. There is also the question of what
governs the evolution of quantum fluctuations. It is required to have on hand a
procedure which allows one to obtain the classical limit from a quantum system
when one can only compute the deviations of the dynamics both close to and far
from the classical limit. These deviations provide knowledge as to whether quantum
fluctuations may alter classical dynamics and in what way. This is also deepening
the understanding of the quantum-classical correspondence. Based on this, it may
be asked whether the global phase space structure of classical mechanics can survive
when quantum fluctuations are included and what actually governs the evolution of
quantum fluctuations.
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