
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900



1

Chapter

Introductory Chapter: Macular 
Degeneration: Mechanisms of 
Action
Giuseppe Lo Giudice

1. Introduction

Macular degeneration refers as a progressive condition in which patients are 
suffering of a disease that is a leading cause of blindness in the elderly worldwide. In 
particular age-related macular degeneration (AMD) is characterized by two forms, 
wet and dry, that are classified on the presence or absence of new blood vessels 
(CNV) [1]. However, there is emerging evidence that significantly overlap which 
exists in the underlying pathogenetic mechanisms of these clinical conditions. 
Clarification of the overlapping process that lead to wet and dry diseases will be 
crucial for the future development in the prevention and treatment of AMD.

By definition, early AMD is characterized by confluent regions of drusen, which 
are multicomponent, heterogeneous aggregates that lie both external and internal to 
the retinal pigment epithelium (RPE) cells [2–3]. They are located primarily at the 
macular region of the retina with relative sparing of the surrounding peripheral retina.

A slow growth of drusen occurs over years or decades with RPE cell death and 
synaptic dysfunction during the advanced stage of AMD, with the development of 
advanced AMD (CNV or geographic atrophy (GA)) [4]. All we know about patho-
genetic mechanism underlying AMD is that it has the RPE as the fulcrum of AMD 
pathogenesis. However, whereas, the stepwise development of certain maladies is 
relatively well-defined, no such hallmarks of disease progression have been identi-
fied in AMD.

2. The RPE: at the core of AMD disease

The RPE is the fulcrum of AMD pathogenesis. In general, in spite of interin-
dividual heterogeneity, RPE dysfunction and atrophy precedes the final stages of 
AMD [5–6]. The RPE cells integrate numerous stimuli to regulate its own health, 
while also receiving and broadcasting signals to and from the retinal microenviron-
ment. There are several human AMD samples displaying significant interindividual 
variation in RPE transcript expression, which supports the concept that heterogenic 
stress responses underlie a categorical AMD phenotype. The effect of specific 
AMD-associated stresses and AMD in retinal molecular composition have been 
cataloged by mean genome-wide stress-response transcriptome and proteome 
assays on whole-genome RPE gene. Such studies reveal common protective and 
deleterious RPE gene responses that could clarify the key molecular basis of the 
disease. One of the most important evidences involved in the AMD pathology is 
the crosstalk of RPE with immune and vascular system. Indeed there are numerous 
overlapping proangiogenic mechanisms that underlie AMD, many of which involve 
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the intersection of immune and vascular system. Whether this immunovascular 
axis modulates RPE cell is not clear. However in the presence of the AMD patho-
genesis, the critical event from which there is not return is RPE dysfunction and 
damage, although perturbations in other tissues (e.g., choroid, Bruch’s membrane, 
and photoreceptors) are important burdens [7–9].

3. RPE vascular response in neovascular AMD

Response to complement and oxidative stress represent the two major pathways 
by which the RPE secretes VEGF-A [10–12]. Oxidative stress is the oxidation of 
cellular macromolecules and complement system, if left unregulated, can directly 
damage host tissue and recruit immune cells to the vicinity of active complement 
activation. Also these stresses may act inducing complement-induced RPE secretion 
of VEGF-A and other vasculogenic molecules in response to oxidative stress and 
activated complement [13]. However, it is important to emphasize as RPE not be 
only source of proangiogenic factors, the latter ones could originate from various 
immune cells or other cell types but RPE is a central player in CNV developing by 
two important step: (1) the potential for multiple distinct stresses to converge to 
produce a common (proangiogenic) effect and (2) the diversity of response mol-
ecules produced by the RPE that could drive angiogenesis.

4. RPE and immune response in neovascular AMD

There are multiple pathways by which the RPE can regulate the retinal immune-
landscape, which in turn can regulate neovascularization in AMD:

1. Macrophages. The macrophages might be the hallmark of CNV [14]. Whether 
macrophages are critical for CNV development is not clear. The most macrophage 
activity in CNV development seems to be linked to complex local macrophage-
polarizing factors. The role of a complex local regulation of macrophage vascular-
modifying activity might be related to the vascular modeling during neovascular 
process. Among the many factors that control macrophage chemotaxis, VEGF-A 
has a well-defined role in recruitment of proangiogenic macrophages. However, 
there are still several questions, the answer to which has important therapeutic 
implications; whether suppression of VEGF-A dramatically increased the number 
of retinal macrophages within human neovascular membranes also increasing 
the activity of proangiogenic macrophages by inflammatory cell recruitment and 
leukocyte-endothelial adhesion, can this finding does explain the tachyphylaxis 
that occurs with multiple anti-VEGF-A treatments? Microenvironmental influ-
ences in CNV remains an area of needed research [15–16].

2. Microglia. Microglia are another immune cell type that might modulate human 
CNV pathogenesis. However, while macrophages accumulate in human CNV, 
it is not known whether microglia do. In the largest histopathologic charac-
terization of microglia in AMD, which observed microglia at various stages 
of AMD pathology, there was a change in microglia morphology, but not in 
number AMD compared to nondiseased retinas. Interestingly, one-third of 
all infiltrating cells (immune and nonimmune cells) in experimental CNV 
are not classified, and immune cells besides macrophages and microglia could 
modify CNV. Future work could provide a comprehensive assessment of the 
composition of cellular infiltrate in CNV specimens. Full understanding of the 
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immunopathology of CNV will require an assessment of all potential vascular-
modifying immune cells and their subsets, in health, disease, and following 
therapeutic intervention [17].

5. Dry AMD

Toxic accumulations, either within the RPE cell or at the RPE-Bruch membrane 
interface, are the molecular hallmarks of dry AMD [18]. Dry AMD may be considered 
as a form of a metabolic storage disease; two approaches to preventing their formation 
or removing them after formation are attempts to prevent RPE damage. AMD and 
other neurodegenerative disorders occur when a particular cell or group of cells die. In 
this scenario, AMD might share some pathogenetic mechanisms with several common 
neurodegenerative diseases of aging, such as Alzheimer’s disease, Parkinson’s disease, 
amyotrophic lateral sclerosis, and Huntington’s disease in which mitochondrial defects, 
DNA mutations, impaired structural integrity, and defective mitochondrial function. 
Other toxins accumulate in AMD; an excessive amount of “lipofuscin,” which is non-
degradable debris that accumulates in the RPE with age, is associated with AMD. In the 
presence of light, lipofuscin forms ROS and is toxic to RPE cells [19–20].

6. Autophagy and damage control

Cells are equipped with machinery to discard toxic accumulations with a 
self-cleansing process called macroautophagy. Autophagy of the mitochondria and 
other cellular debris could rejuvenate cells by disposing defunct organelles, a con-
cept which has been reviewed for AMD. Autophagy may also regulate RPE health 
by reducing cytotoxicity that is secondary to a primary insult. Future work should 
address several basic questions about this cell survival mechanism in AMD [21–23].

7. Environmental risk factors

Smoking of cigarette confers the greatest numerical risk for AMD with two to 
three times likely than nonsmokers to develop AMD (smoking cessation reduces 
the risk of developing AMD) [24]. Several nutritional deficiencies are associated 
with AMD risk. In a recent epidemiologic study, omega-3 fatty acid (FA) intake was 
associated with a lower risk of AMD [25]. The protective effect of statins on AMD is 
not well established and would require long-term prospective interventional studies 
to confirm its relevance to AMD pathogenesis.

8. Genetics

One prevailing approach in AMD research was the genome-wide associa-
tion studies (GWAS) that have been used in attempt to predict risk of disease, 
understand pathogenesis, and identify potential therapeutic target [26]. GWAS 
have indeed identified several genetic loci, which harbor genetic variants known 
as single nucleotide polymorphisms (SNPs) that are associated with an increased 
risk of AMD. Factor H (CFH) represents the complement gene variant conferring 
the greatest quantitative statistical AMD risk. CFH inhibits a key activation step 
in complement activation, thereby reducing complement-induced host cell dam-
age and inflammation [27]. The predictive power of AMD risk assessment can be 
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augmented greatly by considering genetic information from multiple loci in com-
bination with epidemiologic and environmental risk factors. In contrast taking into 
consideration disease prevalence, the positive predictive value of genetic variation 
to assess AMD risk is inconclusive, even when multiple genetic loci are considered. 
Next-generation sequencing technologies combined with rigorous biological defini-
tion of mechanistic implications of the identified variants are likely to yield more 
valuable insights both into disease pathogenesis and rational development of novel 
diagnostics and therapeutics in the coming decade.
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