
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900

6

Testing Methods for Decision Support Systems

Jean-Baptiste Lamy1, Anis Ellini1, Jérôme Nobécourt1,
Alain Venot1 and Jean-Daniel Zucker2

1Laboratoire d’Informatique Médicale et Bioinformatique (LIM&BIO), UFR SMBH,
Université Paris 13

2LIM&BIO, UFR SMBH, Université Paris 13; Institut de Recherche pour le
Développement

France

1. Introduction

Decision support systems (DSS) have proved to be efficient for helping humans to make a

decision in various domains such as health (Dorr et al., 2007). However, before being used in

practice, these systems need to be extensively evaluated to ensure their validity and their

efficiency. DSS evaluation usually includes two steps: first, testing the DSS under controlled

conditions, and second, evaluating the DSS in real use, during a randomised trial. In this

chapter, we will focus on the first step.

The test of decision support systems uses various methods aimed at detecting errors in a

DSS without having to use the DSS under real use conditions; several of these methods were

initially developed in the field of expert systems, or software testing (Meyer, 2008). DSS

testing methods are usually classified in two categories (Preece, 1994):

• static methods do not require to use the DSS. They usually consist in the review of the

DSS’ knowledge base (Duftschmid & Miksch, 2001), either manually by human experts,

or automatically, using programs that search for syntactic, logical or semantic errors in

the knowledge base. Static methods are sometimes called verification, as they consist in

checking whether the DSS meets the requirements specified by the users (are you

building the system right?) (Preece, 1998).

• dynamic methods do require the use of the DSS. They consist in using the DSS to solve a

set of test cases. Various methods have been proposed for (a) choosing test cases that

are meaningful for testing purpose, and then (b) for determining whether the DSS

outputs are considered as erroneous or not, generally by asking human experts to solve

the test cases by hand. Dynamic methods are sometimes called validation, as they aim at

verifying whether the DSS satisfies the actual users’ requirement (are you building the

right system?) (Preece, 1998).

Recently, we have proposed a dynamic method for testing almost exhaustively a DSS

(Lamy et al., 2008); it involves a very large set of test cases, including potentially all

possible cases. Consequently, the DSS outputs are very numerous and cannot be

reviewed directly by a human expert. Thus, the method relies on learning or

visualization algorithms (Andrews, 2002) to help reviewing the DSS outputs.

Source: Decision Support Systems, Book edited by: Chiang S. Jao,
 ISBN 978-953-7619-64-0, pp. 406, January 2010, INTECH, Croatia, downloaded from SCIYO.COM

www.intechopen.com

 Decision Support Systems

88

Fig. 1. General schema of a DSS.

In this chapter, we will first propose a classification of the errors that can be found in DSSs.
Then, we will describe the various DSS testing methods that have been proposed, and
finally we’ll conclude by giving advice for choosing DSS testing methods.

2. Classification of errors in DSS

DSSs are usually built from a non-structured knowledge source, for instance a clinical
practice guideline (a textual guide that provides recommendations to the physicians about
the diagnosis or the therapy for a given disease), a set of cases (for a system using case-based
reasoning) or a group of domain experts; this knowledge source is then structured into a
knowledge base, for instance a set of rules or a case database, and finally, an inference
engine applies the knowledge base to the system’s input and determines the output (Fig. 1).
Consequently, we can distinguish four main types of error:

• Errors in the knowledge source, e.g. the French clinical practice guideline for arterial
hypertension (HAS, 2005) says “For diabetic patient, angiotensin converting enzyme
inhibitors or angiotensin II antagonists are recommended, from the stage of
microalbuminuria. For diabetic type 2 patient with other risk factors, angiotensin
converting enzyme inhibitors are recommended”. The recommendation is ambiguous
because it is not clear whether it is “other risk factors than diabetes type 2” or “other
risk factors than microalbuminuria”, and this can lead to interpretation errors.

• Errors in the knowledge base, i.e. the structured knowledge base does not exactly
translate the knowledge source, e.g. the following rule “if patient is diabetic and patient
has microalbuminuria, then recommend angiotensin converting enzyme inhibitors or
angiotensin II antagonists” does not correspond exactly to the first sentence of the
previously cited guideline for hypertension. In fact, the guideline says “from the stage
of microalbuminuria”, and thus also includes the stages above (such as proteinuria),
whereas the rule does not.

• Errors in the inference engine, which include both errors in the strategy for executing
the knowledge base, e.g. in a rule based-system, an engine that does not apply the rules
in the desired order, and software bugs in the inference engine.

• Errors in the use of the DSS, i.e. errors when the user enters the system’s input, and
errors when the user reads and interprets the system’s output. These errors are not
located in the DSS itself. However, as DSS are expected to help a human user to make a
decision, it sometimes make sense to evaluate the user-DSS couple. Moreover, a badly-
designed DSS can mislead the user, for instance, by providing uncommon or incoherent
default values for some input. E Coiera et al. have studied these errors in the medical
context (Coiera et al., 2006); in particular, errors during data entry seem to be quite
frequent, and represent an important cause of medication errors.

www.intechopen.com

Testing Methods for Decision Support Systems

89

Errors in the knowledge source are the most problematic, but as they can only be detected
and fixed by referring to another source of knowledge, typically human experts, there is few
works on them. Errors in the inference engine are less problematic, as the inference engine is
normally domain-independent, it can be tested as any other software. As a consequence,
most works focus on the errors in the knowledge base.
The errors in the knowledge base are divided in several categories:

• Syntax errors occur when the knowledge base does not respect the expected grammar,
e.g. unbalanced parentheses in a rule database.

• Logical anomalies; we speak of “anomaly” and not “error”, because a logical anomaly
does not always lead to an error in the output of a DSS (Preece & Shinghal, 1994), for
instance duplicating a rule in a rule-based system is an anomaly, but it has no influence
in the system behavior. However, logical anomalies are often clues of other errors in the
knowledge base, such as knowledge errors (see below), for instance a duplicated rule can
actually be the same that another rule because a part of the rule has been forgotten. Four
types of logical anomalies are considered (Santos et al., 1999; Preece & Shinghal, 1994):
- Inconsistency (also called ambivalence) occurs when the knowledge base can lead

to incompatible conclusions for a given input. For instance, a rule-based DSS
having the following rules: “if the patient’s diastolic blood pressure is inferior to 90
mmHg, the patient does not suffer from hypertension” and “if the patient is
diabetic and his diastolic blood pressure is superior to 80 mmHg, the patient suffer
from hypertension”, because, for a diabetic patient with diastolic blood pressure
between 80 and 90 mmHg, the rules conclude that the patient both suffers from
hypertension and does not.

- Deficiency occurs when there is missing knowledge in the knowledge base, i.e.
there are some situations for which the knowledge base leads to no conclusion.

- Redundancy occurs when there is useless elements in the knowledge base, i.e.
removing these elements from the knowledge base does not affect the DSS’s
behavior at all. In particular, redundancy includes (but is not limited to) duplicated
elements and unsatisfiable conditions, e.g. a rule that can never be triggered.

- Circularity occurs when the knowledge base includes some statements that depend
only on themselves. For example, the following rules define a circular dependency:
“if patient is treated by insulin, then patient’s glycemia should be monitored” and
“if patient’s glycemia is monitored, then patient should be treated by insulin”.

The importance of the various types of anomaly depends of the application domain (Preece
& Shinghal, 1994).

• Semantic errors occur when the knowledge base includes elements that are correct
from the logic point of view, but conflicting with domain-specific knowledge. For
example, it is a semantic error to conclude that a male patient is pregnant, or to consider
a human body temperature of 60°C.

• Knowledge errors occur when the knowledge base does not correspond to the
knowledge source, although it is syntactically, logically and semantically correct. For
example, a clinical guideline says “For diabetic type 2 patient, then it is recommended
to start the treatment by a diet”, and the associated rule-based knowledge base states
that “If patient is diabetic type 2, then start the treatment by prescribing metformin”.
The example given in the “Errors located in the knowledge base” paragraph is also a
knowledge error.

www.intechopen.com

 Decision Support Systems

90

Errors in a DSS can have a more or less important impact, both in term of frequency and
gravity. However, the importance of errors is domain dependent. For example, when
computerizing a clinical guideline, the guideline is assumed to be the “gold standard”, and
therefore errors in the knowledge source are not considered, since the source is considered
as being the truth. On the contrary, when using a patient database in case-based reasoning,
the patient database may be biased and not representative of the new patients for which the
DSS is used.

3. Static methods

Static methods test a DSS without requiring to use the DSS. They usually consist in the
inspection of the DSS’ knowledge base (Duftschmid & Miksch, 2001), either manually by
human experts, or automatically. By definition, static methods cannot detect errors in the
inference engine or in the use of the DSS.

3.1 Manual approaches

Manual static methods consist in the inspection of the knowledge base by one or more
domain experts. Expert inspections can detect errors in the knowledge source or in the
knowledge base, however, since humans are not error-proof, they do not guarantee to detect
all errors of these categories.
Usual recommendations for expert inspections of the knowledge base are the following
(Wentworth et al., 1995):

• If the knowledge base has been designed with the support of some domain experts, the
inspection should not be done by the same experts, for detecting errors in the
knowledge source.

• If possible, the inspection should be done by more than one expert. To obtain an error
rate of about 5%, it is required to have at least 4 experts that all agree on the knowledge
base content.

• The knowledge base content should not be presented to the experts by someone they
know well, for instance a well-known expert of their field (because it could bias their
opinion on the knowledge base).

When setting up an expert inspection, several choices must be done. First, a way of
presenting the knowledge base should be chosen. The formal representation of the
knowledge base is usually not understandable by domain experts. Thus, the knowledge
base should be translated into a more human-readable form, such as a set of “if-then” rules
expressed in natural language or a decision tree. A more original presentation consists in a
set of machine-generated examples for verifying intention-based definitions in the
knowledge base (Mittal & Moore, 1996). When the knowledge base is complex, it is often
possible to split it into several parts, for instance several decision trees corresponding to
various situations. However, one should also verify that the knowledge base and its human-
readable translation are really equivalent.
Second, the “gold standard” the knowledge base is compared to, can be either the expert’s
own knowledge, or the knowledge source used to build the DSS. In the first case, both errors
in the knowledge source and in the knowledge base are detected, usually with a stress on
the first ones, whereas in the second case, only errors in the knowledge base are detected.
For instance, when computerizing a clinical guideline, the experts can be asked to check the
knowledge base against their own knowledge, or against the paper guideline.

www.intechopen.com

Testing Methods for Decision Support Systems

91

Finally, if several experts are inspecting the knowledge base, one must decide how to deal
with expert disagreements. Disagreements are usually treated by searching a consensus
between all the experts, however other methods such as voting have also been proposed.
In conclusion, expert inspections are very interesting for detecting errors in the knowledge
source. However, the main drawback of these methods are the difficulties to express the
knowledge base in a human-readable way, and to find the experts, since experts are often
more motivated by the testing of the complete DSS (especially if the DSS is potentially
useful for the expert), than the tedious reading of the DSS’s knowledge base.

3.2 Automatic approaches
Automatic static methods rely on programs that search the knowledge base for syntactic,
logical or semantic errors. They are sometimes called verification. Many of these methods
have been proposed for verifying rule-based knowledge bases in expert systems, in the 1980
decade. More recently, some of these methods have been adapted for the verification of
other forms of knowledge, such as ontologies (Gómez-Pérez, 1999) or structured clinical
guidelines (Duftschmid & Miksch, 2001).

3.2.1 Check for syntax errors
Syntax errors can be found using traditional grammars, such as BNF (Backus-Naur Forms).
Pre-formatting tools can also be used when writing the knowledge base, to help preventing
syntax errors.

3.2.2 Check for logical anomalies
For rule-based systems, three algorithms have been proposed for detecting logical anomalies
(Preece & Shinghal, 1994).
• Integrity check considers each rule individually, and checks its validity. It can detect

only a few anomalies, such as unsatisfiable conditions.
• Rule pair check considers each pair of rules separately. It can detect all anomalies that

involve only two rules, such as two inconsistent rules. However, some inconsistency
may involve more than two rules, and are not detected.

• Extension check considers all the possible paths in the rule of the knowledge base. It
can detect all logical anomalies.

Rule pair check requires more computation time than integrity check, and extension check
requires even more time. However, it has been shown that even extension check can be
achieved in an acceptable computation time on real-world knowledge bases for medical
diagnosis, fault diagnosis, and product selection (Preece & Shinghal, 1994), and for power
system control centers (Santos et al., 1999). Specific methods have also been proposed for
verifying temporal constraints (Duftschmid et al., 2002).

3.2.3 Check for semantic errors
Checking semantic errors requires that the testing program includes some domain-specific
knowledge. This additional knowledge typically consists in parameters’ possible values (e.g.
the human body temperature should be within 36°C and 43°C), and combinations of
incompatible parameters values (e.g. the following combination sex=male and
pregnant=true is incompatible) (Duftschmid & Miksch, 2001).
The detection of semantic errors is usually performed at the same time than the detection of
logical anomalies (Preece & Shinghal, 1994), for instance integrity check can verify the

www.intechopen.com

 Decision Support Systems

92

parameters’ values, and rule pair check or extension check can detect sets of rules that lead
to conclusions that are semantically inconsistent. The additional knowledge considered for
semantic error can also be taken into account in the detection of logical anomalies; for
example it is not a deficiency anomaly to consider only three possible cases, a female
pregnant patient, a female non-pregnant patient and a male non-pregnant patient, because
the fourth case, a male pregnant patient, is not semantically correct.
In conclusion, automatic static verification methods are very interesting for detecting
syntactic, logical or semantic errors and anomalies. Their main advantage is their automatic
nature: it is easy to perform the test again when the DSS has been modified, and they ensure
to detect all anomalies of a given type in the knowledge base (whereas an expert that
manually reviews a knowledge base might not see an error). However, they also have
several drawbacks. First, they cannot detect errors in the knowledge sources, the inference
engine, and knowledge errors in the knowledge base. In many situations, such as the
implementation of clinical practice guidelines, the main difficulty is to structure the
knowledge source, and therefore knowledge errors are the more problematic ones. In these
situations, automatic static methods are not helpful. Second, these methods work only on
declarative knowledge, but not on procedural knowledge, and it is not always easy to
transform a procedural knowledge into a declarative one. Finally, the detection of semantic
errors requires the addition of domain-specific knowledge, which makes these methods less
automatic (a domain expert may be necessary) and raise the question of the verification of
this additional knowledge. For all these reasons, automatic static methods are no longer the
more active field in DSS verification.

4. Dynamic methods

Dynamic methods test the DSS by running it over some test cases, and they often require the
intervention of domain experts for checking the results obtained in the test cases.

4.1 Test bases

Traditional dynamic methods, sometimes called empirical testing, involve the use of a test
base that includes a limited number of test cases (compared to the usually very high number
of possible cases). To set up such a study, the first step is to build the test base; several
methods have been proposed for choosing the cases in the test base.
First, when they are available, real cases can be used, e.g. from a patient database for a
medical DSS, or a server log for a network monitoring DSS. However, it may be difficult to
obtain all the input values required by the DSS, and it is sometimes required to complement
the cases.
Second, the test cases can be arbitrarily chosen. A group of final users or domain experts can
be asked to write a set of test cases, or, during evaluation, each evaluator can be asked to
enter test cases of his choice. DSS designers can also choose and propose test cases that
correspond to the difficulties they encountered during the design of the DSS, such as test
cases for ambiguous situations or for situations that previously lead to an error in the DSS’s
outputs (to ensure that these errors have not been reintroduced).
Third, test cases can be generated at random. A basic method consists in creating a case by
randomly choosing a value for each DSS input variable. More sophisticated methods can
involve semantic constraints (e.g. to avoid generating test cases involving a male pregnant
patient).

www.intechopen.com

Testing Methods for Decision Support Systems

93

Fourth, various methods have been proposed for the automatic generation of “optimal” test
cases, using heuristics. A first approach is to partition the input domain in several
subdomains, each of them associated to a sub-domain of the output domain, and then to
generate one or more test cases for each sub-domain. A. Preece reviewed the methods for
partitioning (Preece, 1994): in equivalent class partitioning, the input domain is partitioned in
subdomains that lead to the same output; in risk-based partitioning, input and output
domains are partitioned in ten partitions according to the level of risk they can cause in real
life, in particular, various metrics can be used to determine which test cases are the more
complex to deal with; in structure-based partitioning, one partition is created for each path in
the DSS (the definition of path being DSS-dependent, and potentially subject to discussion).
Vignollet et al. (Vignollet & Lelouche, 1993) proposed another “optimal” approach for
rulebased systems, which take into account the inference engine strategy, and generate a test
base that triggers every rules of the knowledge base at least once during the test. Sensitivity
analysis (Sojda, 2007) is a third approach, which considers cases that test the behaviour of
the DSS for extreme input values, and ensure that the output evolves as expected when an
input value increases or decreases. For instance, in a DSS for diabetes type 2 therapy,
glycosilated haemoglobin is a marker of the gravity of the disease, and therefore, when
glycosilated haemoglobin increases, the recommended treatment should not be weaker.
Finally, it is possible to build a test base by mixing several methods, e.g. by including both
real and random cases. For validating a DSS, a good test base should typically include (a)
realistic test cases (either real cases or cases written by final users or domain experts), (b) test
cases for ambiguous or problematic situations, written by DSS designers, (c) randomly
generated test cases, and (d) possibly “optimal” test cases.
Depending on how the right DSS output for each test case is determined and who runs the
DSS, there are several possible protocols for the evaluation:
1. For real test cases corresponding to past data, the expected DSS outputs can be

observed in the real life. In this case, the DSS designers can run the DSS and compare
the DSS outputs to the observed ones. For instance, a DSS for predicting the evolution
of bird populations have been tested on real past data (Sojda, 2007).

2. A group of experts is asked to determine the right output for each test case, according
to their own expertise. In case of disagreement between experts, a consensus should be
obtained. Then the DSS designers run the DSS and compare the DSS outputs to the
expert’s ones.

3. When a gold standard is available, such as a clinical guideline in the medical domain, a
group of experts is asked to interpret the gold standard and determine the right output
for each test case according to the gold standard (even if the experts disagree with it). In
case of disagreement between experts, a consensus should be obtained. Then the DSS
designers run the DSS and compare the outputs to the expert’s ones.

4. Each expert runs the DSS and compares the DSS outputs to his personal opinion.
In the three first protocols, the right outputs for each test case are determined first, and then
the DSS is run by the DSS designers (or a technician). In the last protocol, the DSS is run by
the experts and there is no absolute “right” output for each test case, since each expert is free
to compare the DSS output to his own opinion, possibly different from the ones of the other
experts. To avoid bias, the experts involved in the testing should not have been involved in
the DSS design.
Several measures have been proposed for quantifying the effectiveness of a DSS over a test
base (Guijarro-Berdiñas & Alonso-Betanzos, 2002): contingency tables (including false

www.intechopen.com

 Decision Support Systems

94

positive and false negative rates), percentage agreement and the Kappa statistic for pair tests
(i.e. comparing the DSS to a gold standard or a single expert), and Williams’ index, cluster
analysis and Multi-Dimensional Scaling (MDS) for group tests (i.e. comparing the DSS with
a group of several experts).
Depending on the choice done for generating the test cases, and the evaluation protocol,
validation over a test base can be used in various situations, and it can potentially discover
all types of errors listed in section 2. The main drawback of this method is that the number
of test cases is necessarily limited, and therefore it cannot ensure the absence of errors in the
DSS for other cases.

4.2 “Exhaustive” method

Recently, we have proposed a new dynamic testing method that runs the DSS over a very
high number of test cases, allowing an almost exhaustive testing (Lamy et al., 2008). As test
cases are far too numerous to let human experts review the DSS outputs for each test case,
the method relies on the use of learning algorithms or visualisation techniques to help
verifying the DSS’s outputs. The method includes three steps:
1. Generate an exhaustive (or almost exhaustive) set of the DSS input vectors, and run the

DSS on each input vector to obtain the associated output. It is possible to generate an
exhaustive set of input vectors by considering a set of variables expressing the various
elements of input for the DSS, and generating all possible combinations of the variables’
values. If the input vector includes continuous variables, they should be limited to a
few values. Semantic constraints can be added to exclude impossible or infrequent
cases.

2. Extract knowledge from the set of (input vector, output result) pairs by applying
learning or generalization algorithms, or generate a graphical representation of the
(input vector, output result) pairs.

3. Let an expert review the knowledge or the graphical representation produced at step 2,
and compare them to the original knowledge source used to design the DSS, or to his
own opinion.

We applied this method for testing the ASTI critiquing module, a medical DSS
implementing therapeutical recommendations from clinical guidelines, and aimed at raising
alerts whenever a physician’s prescription does not follow the recommendations. The ASTI
critiquing module includes knowledge bases for six diseases: type two diabetes,
hypertension, tobacco addiction, dyslipaemia, atrial fibrillation and thrombo-embolic risk.
In a first study (Lamy et al., 2008), we used Quinlan C4.5 algorithm (Quinlan, 1993) to
generate a decision tree from an almost exhaustive set including hundreds of thousands
(input vector, output result) pairs for each disease. To ensure 0% of error in the decision
tree, pruning was disabled. However, for hypertension, the extracted decision tree was too
huge for being human reviewed, and thus this testing method has not been applied to this
disease.
To evaluate this approach, errors were introduced in the DSS. All the errors introduced were
clearly visible on the decision tree.
In a second time, we built tables from more limited set of about thousands (input vector,
output result) pairs. We divided the input vectors in two parts: the clinical profile (including
comorbidities, and various patient characteristics such as age or sex; each clinical guideline
lead to about ten profiles), and the treatments (including the current treatment, and the

www.intechopen.com

Testing Methods for Decision Support Systems

95

Table 1. Example of the use of table for the graphical visualisation of the inputs and outputs
of the ASTI critiquing module for patient with hypercholesterolaemia (a type of
dyslipaemia) with no other risk factors. The current treatment of the patient is shown
horizontally, and the treatment prescribed by the physician vertically. The DSS output is
indicated by the following symbols: means that the DSS considers the prescribed
treatment as conform to the recommendations, that the DSS considers the prescribed
treatment as non conform, and that the DSS considers the prescribed treatment as
conform only if the current treatment is poorly tolerated by the patient (but not if it is
inefficient). This table summarizes 338 test cases.

treatment prescribed by the physician). Then, for each clinical profile, we built a table
displaying the current treatment horizontally, the prescribed treatment vertically, and at the
intersections the corresponding DSS outputs, i.e. the conformity of prescribed treatment to
the recommendations. Table 1 show an example of such a table.
Although not as exhaustive as the decision trees of the previous approach, these tables
provided an interesting overview of the DSS behaviour. In particular, it is easy to visually
detect some patterns on the graphical presentation, for instance, it is easy to see in Table 1
that the DSS behaviour is the same if the current treatment is a statin (pravastatin,
simvastatin, atorvastatin or rosuvastatin). All the six diseases supported by the ASTI
critiquing module were tested using this approach, and it allowed us to find several errors
that were present but not discovered in the decision trees.
Compared to the standard dynamic methods that rely on small test bases, the “exhaustive”
method tests the system over a much larger number of test cases. However, it is more
complex to set up, and may not be suitable for all DSS.

www.intechopen.com

 Decision Support Systems

96

The first approach, based on learning algorithms, should be quite easy to adapt to other
DSSs. However, when the generated decision tree is too huge for being human-reviewed,
the method cannot be applied. In addition, if the DSS knowledge base includes rules that are
more complex that basic “if-then” rules with and / or operators, such as “if x out of y
statements are true, then...”, it might be necessary to use more sophisticated learning
algorithms than C4.5. Several knowledge representations can also be used as alternative to
decision trees, such as production rules or flowcharts; Wentworth et al. review them in the
chapter 6 of their book (Wentworth et al., 1995).
The second, graphical, approach can only be used if it is possible to represent the inputs and
outputs of the DSS in one or a few tables; this point is highly domain-dependent. Other
visualisation technics could be used as alternatives to tables, such as 2D or 3D bar charts, or
star-plot glyphs (Lanzenberger, 2003). Our experiments shew that both approaches are
complementary, as they allowed to find different errors.

5. Conclusion: How to choose a testing method?

In the preceding sections, we have presented four main categories of testing methods:
manual static methods, automatic static methods, test bases, and “exhaustive” dynamic
methods. We have seen that all these methods have their own advantages and drawbacks:
there is no perfect or ideal DSS testing method. In addition, it has been shown that the
various methods do not detect the same errors (Preece, 1998). Therefore we recommend to
apply several methods.
Table 2 shows the types of errors that can be found by the various testing methods. One
should combine several testing methods so that the combination of methods covers all types
of errors. In addition, one should typically:

• combine both static and dynamic methods,

• combine both automatic methods and methods relying on domain experts, and

• in a test base, mix test cases chosen randomly or by the system developers and test
cases as close as possible to real cases (either real test cases or test cases written by final
users).

In table 2, automatic static methods cannot detect knowledge errors in the knowledge base.
As a consequence, these methods are not very useful when knowledge errors are frequent,
which typically occurs when the knowledge source used to create the DSS is complex and
difficult to interpret.
Another important element to take into account when choosing DSS testing methods is
whether there is a “gold standard” knowledge source in the field covered by the DSS, or not.
For instance, when designing a DSS to implement a clinical practice guideline, the decisions
recommended by the guideline are assumed to be the best possible decisions, and therefore
it is a “gold standard” knowledge source. In this case, errors in the knowledge source are
not to be considered, and consequently one should favor protocol #3 for test base
evaluation.
Finally, another question is related to the order in which the various testing methods should
be applied. It is usually admitted that verification and static methods should be performed
before validation and dynamic methods. Another advice is to perform automatic methods
before methods relying on experts, because, if the DSS was heavily modified consequently
to the first test, it is usually easier to perform again automatic testing rather than the work
with the experts.

www.intechopen.com

Testing Methods for Decision Support Systems

97

Table 2. The various types of error in a DSS, and the test methods that can be used to detect
them. “-” indicates that the method cannot detect error of this type. “+” indicates that the
method can detect the errors of this type and covers only a part of the knowledge source,
knowledge base or inference engine functionalities. “++” indicates that the method can
detect the errors of this type and covers the whole knowledge source, knowledge base or
inference engine functionalities.123

In conclusion, many methods have been proposed for testing DSS, each of them having its
own advantages and weaknesses. Correctly used, these methods can detect a lot of errors in
a DSS. After testing the DSS thoroughly, the next step in the DSS evaluation is to set up a
randomized trial in real use conditions, in order to ensure that final users really perform
significantly better with the DSS than without, but also that the use of the DSS does not
introduce other sources of errors (Coiera et al., 2006), such as automation bias, i.e. the user
follows the DSS recommendations without question at all, or on the contrary errors of
dismissal, i.e. the user totally ignore the DSS recommendations (or deactivate the system, if
the user is allowed to).

6. References

Andrews, K. (2002). Information visualisation: tutorial notes, Graz University of Technology.
Coiera, E., Westbrook, J. & Wyatt, J. (2006). The safety and quality of decision support

systems., Yearbook of medical informatics pp. 20–25.

1 only if the gold standard is the expert knowledge, and not the knowledge source.
2 protocols #1, #2 and #4 only (see section 4.1).
3 protocol #4 only.

www.intechopen.com

 Decision Support Systems

98

Dorr, D., Bonner, L., Cohen, A., Shoai, R., Perrin, R., Chaney, E. & Young, A. (2007).
Informatics systems to promote improved care for chronic illness: a literature
review, J Am Med Inform Assoc 14(2): 156–163.

Duftschmid, G. & Miksch, S. (2001). Knowledge-based verification of clinical guidelines by
detection of anomalies, Artif Intell Med 22: 23–41.

Duftschmid, G., Miksch, S. & Gall,W. (2002). Verification of temporal scheduling constraints
in clinical practice guidelines, Artif Intell Med 25(2): 93–121.

Gómez-Pérez, A. (1999). Evaluation of taxonomic knowledge in ontologies and knowledge
bases, Proceedings of the North American Workshop on Knowledge Acquisition, Modeling,
and Management (KAW), Vol. 2, Banff, Alberta, Canada.

Guijarro-Berdiñas, B. & Alonso-Betanzos, A. (2002). Empirical evaluation of a hybrid
intelligent monitoring system using different measures of effectiveness, Artif Intell
Med 24(1): 71–96.

HAS (2005). Prise en charge des patients adultes atteints d’hypertension art´erielle
essentielle, Available at http://www.has-sante.fr/portail/display.jsp?id=c 269118.

Lamy, J.-B., Ellini, A., Ebrahiminia, V., Zucker, J.-D., Falcoff, H. & Venot, A. (2008). Use of
the C4.5 machine learning algorithm to test a clinical guideline-based decision
support system, Stud Health Technol Inform 136: 223–228.

Lanzenberger, M. (2003). The interactive stardinates - design considerations, Proceeding of
Human-Computer Interaction (INTERACT’03), IOS Press, Zurich, Switzerland, pp.
688–693.

Meyer, B. (2008). Seven principles of software testing, IEEE Computer 41(10): 99–101.
Mittal, V. & Moore, J. (1996). Detecting knowledge base inconsistencies using automated

generation of text and examples, Proceeding of the 16th conference on Artificial
Intelligence (AAAI-96), Portland, Oregon, pp. 483–488.

Preece, A. (1994). Validation of knowledge-based systems: The state-of-the-art in north
america, Journal of communication and cognition - Artificial intelligence 11: 381– 413.

Preece, A. (1998). Building the right system right - Evaluating V&V methods in knowledge
engineering, Proceedings of the eleventh workshop on Knowledge Acquisition, Modeling
and Management (KAW’98), Voyager Inn, Banff, Alberta, Canada.

Preece, A. D. & Shinghal, R. (1994). Foundation and application of knowledge base
verification, Int J Intell Syst 22(8): 23–41.

Quinlan, J. R. (1993). C4.5: Programs for machine learning, Morgan Kaufmann.
Santos, J., Faria, L., Ramos, C., Vale, Z. & Marques, A. (1999). Multiple approaches to intelligent

systems, Vol. 1611/2004 of Lecture Notes in Computer Science, Springer Berlin /
Heidelberg, chapter Verification of knowledge based-systems for power system
control centres, pp. 316–325.

Sojda, R. (2007). Empirical evaluation of decision support systems: Needs, definitions,
potential methods, and an example pertaining to waterfowl management,
Environmental Modelling & Software 22: 269–277.

Vignollet, L. & Lelouche, R. (1993). Test case generation using KBS strategy, Proceedings of the
International Joint Conference on Artificial Intelligence (IJCAI’93), Chamb´ery, France,
pp. 483–488.

Wentworth, J., Knaus, R. & Aougab, H. (1995). Verification, validation, and evaluation of expert
systems, Vol. 1, A FHWA Handbook.

www.intechopen.com

Decision Support Systems

Edited by Chiang S. Jao

ISBN 978-953-7619-64-0

Hard cover, 406 pages

Publisher InTech

Published online 01, January, 2010

Published in print edition January, 2010

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Decision support systems (DSS) have evolved over the past four decades from theoretical concepts into real

world computerized applications. DSS architecture contains three key components: knowledge base,

computerized model, and user interface. DSS simulate cognitive decision-making functions of humans based

on artificial intelligence methodologies (including expert systems, data mining, machine learning,

connectionism, logistical reasoning, etc.) in order to perform decision support functions. The applications of

DSS cover many domains, ranging from aviation monitoring, transportation safety, clinical diagnosis, weather

forecast, business management to internet search strategy. By combining knowledge bases with inference

rules, DSS are able to provide suggestions to end users to improve decisions and outcomes. This book is

written as a textbook so that it can be used in formal courses examining decision support systems. It may be

used by both undergraduate and graduate students from diverse computer-related fields. It will also be of

value to established professionals as a text for self-study or for reference.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Jean-Baptiste Lamy, Anis Ellini, Jérôme Nobécourt, Alain Venot and Jean-Daniel Zucker (2010). Testing

Methods for Decision Support Systems, Decision Support Systems, Chiang S. Jao (Ed.), ISBN: 978-953-7619-

64-0, InTech, Available from: http://www.intechopen.com/books/decision-support-systems/testing-methods-for-

decision-support-systems

© 2010 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

