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Chapter

Astrocytes in Pathogenesis of 
Multiple Sclerosis and Potential 
Translation into Clinic
Izrael Michal, Slutsky Shalom Guy and Revel Michel

Abstract

Astrocytes are the most abundant glial cells in the central nervous system (CNS) 
and play a pivotal role in CNS homeostasis and functionality. Malfunction of astro-
cytes was implicated in multiple neurodegenerative diseases, including amyotrophic 
lateral sclerosis (ALS), Parkinson’s disease (PD), Alzheimer’s disease (AD), and 
multiple sclerosis (MS). The involvement of astrocytes in the pathology of neuro-
degenerative disorders supports the rationale of transplantation of healthy human 
astrocytes that can potentially compensate for diseased endogenous astrocytes. In 
this review, we will focus on the roles of astrocytes in the healthy CNS and under 
MS conditions. We will describe the cell sources and current cell-based therapies for 
MS with a focus on the potential of astrocyte transplantation. In addition, we will 
cover immerging early-stage clinical trials in MS that are currently being conducted 
using cell-based therapies.

Keywords: astrocytes, multiple sclerosis, neurodegenerative diseases, autologous 
hematopoietic stem cells (AHSC), mesenchymal stem cells (MSC)

1. Multiple sclerosis

Multiple sclerosis (MS) is a chronic, immune-mediated, demyelinating, and 
degenerative disease of the CNS. The disease leads to permanent neurological 
disability, including limb weakness, sensory loss, vision disturbances, pain, and 
muscle spasms [1]. MS is affecting more than 2 million people worldwide, most of 
them are females between the age of 20 and 40 years. The most prevalent clinical 
course of the disease (approximately 80% of the cases) is relapsing-remitting MS 
(RRMS), characterized by a period of functional disability (relapses) and fol-
lowed by spontaneous improvements (remissions) [1]. With the progression of 
the disease, most of the patients will develop a course of secondary progressive MS 
(SPMS), characterized by a steady decline in neurological function, with no phases 
of remissions [2]. A less common form of MS is primary progressive MS (PPMS), 
representing approximately 10% of MS cases. PPMS is characterized by a develop-
ment of gradual progressive disease with no remission phases [2, 3]. Currently, 15 
disease-modifying treatments (DMTs) are approved by the FDA for the treatment 
of MS [4]. The mechanisms of action of these DMTs are diverse; however, they all 
aim to modulate or suppress the immune system. The current DMTs have benefit in 
reducing frequency and severeness of relapses and buildup of disability in RRMS; 
nevertheless, they have only limited impact on the progressive forms of MS [2, 5, 6].
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2. Astrocytes in the naive CNS

Although the major players in the onset and development of MS are immune 
cells, oligodendrocytes, and neurons, astrocytes also play a crucial role in all stages 
of the pathogenesis of the disease [7]. Astrocytes are the most abundant glial cells 
in the CNS, making at least 30% of its cell mass in mammalians, having a pivotal 
role in maintaining the physiologic functions in the CNS [8–10]. Astrocytes can 
be classified based on their morphological and structural characteristics into two 
subtypes, namely, protoplasmic and fibrous. Protoplasmic astrocytes are widely 
distributed in the gray matter, extending processes from their soma to neurons and 
blood vessels [11]. Their extended end feet are associated with blood vessels to form 
the glial limiting membrane of the blood-brain barrier (BBB). They also interact 
with synapses and play an important role in modulation of synaptic functions 
and uptake of glutamate [12–14]. Conversely, fibrous astrocytes have a starlike 
appearance, and they are found mainly in the white matter, sending long and thin 
processes through axonal bundle [15]. Fibrous astrocytes express higher levels of 
the intermediate filament glial fibrillary acidic protein (GFAP) as compared to 
protoplasmic astrocyte. Despite the differences in morphology and distribution, 
both subtypes of astrocytes share many similar functions [16–18].

Astrocytes provide functional support to neurons by maintaining levels of 
glutamate, extracellular ions, energetic metabolism, pH, and water homeostasis 
[10, 19]. Astrocytes are also involved in the creation, elimination, and modulation 
of synapses [20–22]. They modulate the synaptic transmission of neurons by the 
formation of tripartite synapses that regulate the release of neurotransmitters such 
as glutamate, d-serine, and gamma-aminobutyric acid (GABA) and by buffering 
extracellular potassium ions [23–26]. They can also regulate synaptic activity by 
uptake of neurotransmitters from the synaptic cleft [27, 28]. Astrocytes are impor-
tant in maintaining the survival of neurons in the CNS, as they secrete neurotrophic 
and neuroprotective factors such as glial cell line-derived neurotrophic factor 
(GDNF) and brain-derived neurotrophic factor (BDNF) that directly support neu-
ronal survival [29, 30]. Astrocytes play a pivotal role in formation and maintenance 
of the blood-brain barrier (BBB), a highly selective physical border that separates 
the CNS parenchyma from blood circulation through extension of processes of an 
end-foot membrane that surrounds CNS capillaries [31]. The end-foot membrane 
contains the channel protein aquaporin-4 (AQP4) and the gap junction protein 
connexin 43 (Cx43) that allow astrocytes to tightly regulate the selective exchange 
of water-soluble molecules and ions with blood vessels [32]. In a healthy state, 
astrocytes constitutively secrete low basal levels of the anti-inflammatory cytokines 
including transforming growth factor-β (TGF-β) [33] and interleukin-10 (IL-10) 
[34] to maintain a stable noninflammatory environment. In an inflammatory state, 
astrocytes change the permeability of the BBB by releasing cytokines such as IL-6, 
IL-1β, and tumor necrosis factor-α (TNF-α), specifically acting on the endothelial 
tight junctions of the BBB [35–37]. The close vicinity to blood vessels also allows 
astrocytes to transfer glucose from the blood to neurons as a source of energy [38]. 
Astrocytes can also protect neurons from oxidative stress by secretion of antioxi-
dants, such as glutathione and thioredoxin to their coupled neurons [39, 40].

3. Reactive astrocytes

Activation of astrocytes, known also as astrogliosis, is a process that is charac-
terized by proliferation of astrocytes, accompanied by profound morphological 
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and functional changes [41]. Astrocytes become active in response to changes 
in the CNS homeostasis or under pathological conditions. Cues that lead to 
astrogliosis include (i) CNS injury that causes the release of damage-associated 
molecular patterns (DAMPs), (ii) pro-inflammatory cytokines in response to 
damaged CNS tissue, (iii) pathogen-associated molecular patterns (PAMPs) 
produced by microbial infection, and (iv) oxidative or chemical stress [42–44]. 
Although all reactive astrocytes share similar attributes, they can still be distin-
guished by two different phenotypes, A1 and A2, resembling the M1/M2 states 
of macrophages [45]. The A1 astrocytes are neurotoxic and induced in response 
to inflammatory microglia, e.g., those found in neurodegenerative disease such 
as Huntington’s disease (HD) and Parkinson’s disease (PD) but also in MS [45, 
46]. The A2 reactive astrocytes are formed in response to ischemic damage and, 
in contrast to the A1-type astrocytes, exhibit anti-inflammatory properties and 
secrete neurotrophic factors such as BDNF and nerve growth factor (NGF) [93, 
45]. Yet, the definition of these two types of reactive astrocytes may be quite elu-
sive, as intermediate phenotypes with mixed characteristics of A1/A2 states were 
also observed [41]. A1 and A2 astrocytes can appear during different phases of a 
pathological process and sometimes may even coexist. Their distinct functions 
allow to attract microglia and T cells by A1 astrocytes at the first stages of the 
pathology and to support tissue repair by inhibiting inflammation and secreting 
neurotrophic factors at a later recovery stage [41].

Depending on the severity of the injury, astrogliosis can lead to the formation 
of a glial scar. The glial scar isolates the inflamed area, restricts the damage to the 
lesion, and provides structural support to the CNS parenchyma [16]. Based on 
their environmental cues, reactive astrocytes produce pro- and anti-inflammatory 
cytokines including IL-1, IL-6, TNF-α, IL-10, and TGF-β [47]. They can also attract 
circulating leukocytes by secreting chemokines such as CXCL8, CXCL10, CCL2, 
CCL5, and CCL20 from their end feet at the surface membrane of blood vessels of 
the BBB [47–49]. Reactive astrocytes also present cell adhesion molecules such as 
intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion protein 1 
(VCAM-1), which are important for migration of T cells [50]. Reactive astrocytes 
can also protect neurons by secretion of neurotrophic factors such as NGF, BDNF, 
GDNF, and VEGF [51–53]. Although the morphology and activities of reactive 
astrocytes are well defined, there is no exclusive marker that clearly distinguishes 
between reactive and nonreactive astrocytes. The major marker of astrogliosis is 
the intermediate filament GFAP, which is abundant in all astrocyte populations but 
upregulated upon activation. However, the functional contribution of GFAP in the 
activation process is still not clear yet [54]. In addition to GFAP, expression of other 
astrocytic markers is also upregulated in reactive astrocytes, including glutamine 
synthetase 1, aldehyde dehydrogenase 1 (ALDH1), and S100β [55, 56].

4. Reactive astrocytes in MS

Astrocytes are involved in all stages of the formation and development of the 
plaques in MS. Their contribution starts already at a very early stage of the lesion, 
before demyelination is actually seen [57].

Lesions in MS can be classified in four categories.

i. Early pre-active lesions do no not show demyelination damage yet. However, 
the presence of reactive astrocytes and microglia is the indication for a 
development of pathological process in the area [58]. Studies in experimental 
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autoimmune encephalomyelitis (EAE) mice suggest that activation of 
astrocytes can actually occur even before the immune cells cross the BBB into 
the CNS parenchyma [59].

ii. Active-acute lesions contain hypertrophic astrocytes with enlarged soma 
and processes comprising high levels of GFAP filaments. In the active-acute 
plaque, the astrocytes are in close proximity to oligodendrocytes, probably 
interacting with them. Although the nature of this oligodendrocyte-astro-
cyte interaction is not completely understood [60–62], it is suggested that 
astrocytes clear debris of myelin by phagocytosis [63]. Reactive astrocytes 
in MS may also lose their surface contact with blood vessels of the BBB, 
enhancing the infiltration of leukocytes to the CNS [57]. The hypertrophic 
astrocytes also recruit T cells, macrophages, and microglia to the lesion by 
expressing a set of cell adhesion molecules and chemokines such as ICAM-1 
and CCL2 [64–67].

iii. Active-chronic lesions contain a plaque core with a profound active demy-
elination, which is accompanied by remyelination activity and infiltration 
of immune cells, especially at the periphery of the lesion. Astrocytes in this 
type of lesions can be of either A1 or A2 types, and it is suggested that they 
contribute to the clearance of tissue debris from damaged areas and protect 
remaining intact regions [45].

In the lesion, reactive astrocytes produce matrix metalloproteinases (MMP), 
extracellular matrix-remodeling proteins, that changes BBB permeability, allow-
ing immune cell infiltration to the CNS parenchyma and thus inhibiting repair 
processes [68]. On the other hand, reactive astrocytes also secrete tissue inhibitors 
of metalloproteinases (TIMPs) in the lesioned area that inhibit the activity of 
MMPs, help to stabilize BBB permeability, and eventually to promote remyelination 
[69–71]. Thus, the balance between TIMP and MMP expression can influence the 
ratio between demyelination and remyelination.

Reactive astrocytes in MS also express a variety of trophic factors that mediate 
protective and repairing processes in the lesion. Examples of neurotrophic factors 
which are secreted by astrocytes include neuroprotective factors such as vascular 
endothelial growth factor (VEGF), brain-derived neurotrophic factor (BDNF), 
neurotrophin-3 (NT3), and insulin-like growth factor-1 (IGF-1) [72, 73]. Reactive 
astrocytes secrete the cytokine IL-6 that, in addition to its pro-inflammatory activ-
ity, also promotes remyelination and neuroprotection [74, 75].

iv. Inactive lesions contain astrocytes with a small cytoplasm and elongated thin 
processes. The astrocytes in the inactive lesion are rich in GFAP and form a 
glial scar around the core of the plaque, while occasionally they can be found 
also within the core [76].

With the progression of MS pathogenesis, reactive hypertrophic astrocytes 
form a glial scar, which is the most severe grade of astrogliosis, around the core 
of the demyelinated plaque [10]. The astrocytes in the glial scar form a compact 
structure that is held by tight junctions on their filament-rich processes [77, 78]. 
The scar primarily serves as a physical barrier surrounding the demyelinated 
area, and this prevents widespread of the damage to the surrounding paren-
chyma [79, 80]. The glial scar also maintains the structure of the BBB, provides 
structural support, and prevents immune cell infiltration [10, 57]. The glial 
scar is generally considered as a non-supporting environment for remyelination 
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since it prevents oligodendrocyte progenitor cells (OPCs) from approaching the 
demyelinated axons surrounded by the glial scar [81, 82].

5. Cell-based therapy

Currently, the available DMTs for MS focus on targeting inflammation pro-
cesses. These therapies can be divided into two main groups: drugs for the treatment 
of acute relapses (corticosteroids) [83] and drugs which affect the course of the 
disease [84]. The second group can be further subdivided into immunosuppressive 
drugs (e.g., methotrexate and mitoxantrone) and drugs with immunomodulatory 
activity (e.g., interferon-β [84] and antibodies) [85]. Although these treatments 
are effective in treating relapsing-remitting MS (RRMS), they show no significant 
therapeutic benefits in the progressive forms of the disease. A new therapeutic 
approach with a dual mode of action that is based on tissue repair in addition to 
immunomodulation has an enormous potential to further attenuate the progression 
of the disease and to prevent the transition to the progressive course. Cell-based 
therapies might serve as promising candidates for such a therapy.

The mechanisms of action (MOA) by which therapeutic cells can exert their 
activities in the CNS include (i) secretion of neurotrophic factors that promote 
neuronal survival and outgrowth, (ii) reduction of oxidative stress in lesioned 
areas, (iii) clearance of toxic factors from the CNS environment, (iv) promotion 
of remyelination, and (v) immunomodulation. In this context, astrocytes hold a 
promising therapeutic potential, as they share these mechanisms of action [86].

During the last two decades, cell-based therapies from different cell sources 
were tested in EAE models, and some of them have been further evaluated in clini-
cal trials.

6. Sources of cells for treatment of MS

6.1 Autologous hematopoietic stem cell (AHSC)

Increasing scientific evidence demonstrate that antigen-specific immune 
response mediates the inflammation process in MS. The immune milieus that depict 
MS inflammation include (i) immunoglobulins (oligoclonal Igs) that are found 
in the CSF of the majority of MS patients, but not in their serum [87]; (ii) com-
mon clonal T-cell populations in the peripheral blood, cerebrospinal fluid (CSF), 
and CNS parenchyma [88]; (iii) MHC class II HLA-DRB1 that plays a role in the 
development of MS [89, 90]; and (iv) specific T-cell receptor (TCR) repertoire in 
distinct lesions as found in postmortem brains of MS patients [91]. Silent nucleotide 
exchanges within the V-CDR3-J region of TCR suggest that the corresponding T-cell 
clones were recruited and stimulated by particular antigens. It was demonstrated 
that some of the pervasive T-cell clones belonged to the CD8+ compartment, sup-
porting the pathogenic relevance of this T-cell subset [88, 91, 92]. Studies in EAE 
models and the presence of Th1 and Th17 cells contributed to the notion that self-
reactive lymphocytes induce inflammation in response to myelin epitopes [93–95].

One of the approaches to reset the immune system in MS is to use a myeloabla-
tive protocol and transplant autologous hematopoietic stem cells (AHSC) similarly 
to those used in hematologic malignancies [96, 97]. However, immunoablation 
and reconstitution of the immune system that reset the autoreactive immuno-
inflammatory process and restore self-tolerance are still considered as an intensive 
approach as compared to the current DMTs in MS [97, 98].
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6.1.1 Clinical data

One explanation for the therapeutic effect by autologous hematopoietic stem cell 
transplantation (AHSCT) is reset of the immune system by immune reconstitution 
following their transplantation. This effect is obtained through deletion of patho-
genic clones by a combination of direct ablation and induction of a lymphopenic 
state. Another explanation might be that the immunosuppression regimen depletes 
T-cell populations for a long period. AHSCT therapy after immunoablation has been 
studied for the last 20 years [98]. The results of thousands of patients who have 
received AHSCT for different types of MS were collected by international trans-
plant registries and showed benefits in a subset of patients with highly active relaps-
ing forms of MS. For instance, recently, a study that was performed in 110 RRMS 
patients who received AHSCT along with cyclophosphamide (immunosuppressant) 
and anti-thymocyte globulin, or disease-modifying treatments, was found to 
prolong the time to disease progression. In the first year, mean of expanded disabil-
ity status scale (EDSS) scores decreased (improved) from 3.38 to 2.36 in the AHSCT 
group and increased (worsened) from 3.31 to 3.98 in the DMT group [99]. Other 
recent trials in MS, mainly in RRMS [99–102], demonstrated a degree of disease sta-
bilization after AHSCT. In addition, recent publications showed a sustained disease 
attention following AHSCT in a subset of patients with highly active inflammatory 
disease [103].

The process of immunoablation and reconstitution of the immune system is 
complicated and includes multiple steps: mobilization of hematopoietic stem cells 
(HSC), collection and preservation of CD34+ HSCs, immunoablative conditioning, 
infusion of HSCs, and posttransplant care [104]. It is important to note that immu-
noablation strategies are also associated with infertility and short-term higher rate 
of cerebral atrophy that might lead to neurological disability, and hence optimizing 
treatment regimen is required in order to minimize mortality and morbidity. In 
addition, this treatment was not found effective for the treatment of primary or 
secondary progressive MS [105].

6.2 Mesenchymal stem cells

Mesenchymal stem cells (MSCs) are multipotent, non-hematopoietic, 
stromal cells that can differentiate into mesodermal lineage including osteo-
blasts, chondrocytes, and adipocytes as well as into ectodermal cells (neurons 
and glia) and endodermal cells (hepatocytes) [106, 107]. Typically, the bone 
marrow is used as the source of MSCs. These bone marrow stem cells do not 
contribute to the formation of blood cells and do not express the hematopoietic 
stem cell marker CD34 [108]. Alternative tissues that can be used as a source 
for MSCs include umbilical cord cells that consist of young and most primitive 
MSCs, adipose tissue, developing tooth bud (molar cells), and the amniotic fluid 
[109–111]. MSCs present immunomodulatory properties such as activation of 
regulatory T cells, maturation of dendritic cells, suppression of B- and T-cell 
proliferation, and inhibition of natural killer functionality. The hypothesis is 
that the immunomodulatory effect is mediated by paracrine signals and homing 
of MSCs to the damaged area [112]. Injection of MSCs to EAE animal models 
demonstrated a slowdown in disease progression, lesser immune cell infiltra-
tion, and a decline in demyelination and axonal damage [113, 114]. MSCs were 
found to possess immunomodulatory effect when administered intraventricular 
(IVT), intravenously (IV), intrathecally (IT), and intraperitoneally (IP)  
[113, 115, 116].
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6.2.1 Clinical data

In 2007, Mohyeddin et al. were the first to publish their clinical results using 
MSCs for treatment of MS [117]. The aim of the study was to evaluate the safety 
and therapeutic potential of autologous MSCs to ameliorate clinical manifestations 
in MS patients. In this study, 10 MS patients were injected intrathecally with MSCs. 
The results of the study showed that the use of MSCs is safe, but no significant 
clinical benefits were observed. In order to provide MSCs with neuromodulatory 
properties, in addition to their immunomodulatory properties, a few groups differ-
entiated the MSCs into neural-like cells or glial-like cells that secrete neurotrophic 
factors. IT transplantation of these autologous cells to MS patients demonstrated 
their safety profile and tolerability [118–120]. Recently, Harris et al. [121] also 
reported that IT injection of neural-like cells derived from MSCs was safe and well 
tolerated. The 20 subjects in the clinical trial completed all 60 planned treatments 
without having serious adverse events. The minor adverse events included transient 
fever and mild headaches. Posttreatment disability score analysis demonstrated 
improvement in median EDSS. The beneficial affect was greater in a subset of 
SPMS patients and in ambulatory subjects (EDSS ≤ 6.5). In addition, 70 and 50% 
of the subjects demonstrated improved muscle strength and bladder function, 
respectively [121].

6.3 Neural stem cells and oligodendrocyte precursor cells

In the recent years, clinical trials using cell therapies in MS patients were mainly 
based on autologous transplantation of MSCs and AHSCs [122]. While showing 
promising clinical effects, the transplantation of autologous cells is limited to the 
donor. It would therefore be advantageous to develop allogeneic cell treatments as 
shelf-products that could be used for large populations of patients. In addition, the 
potential therapeutic effect of AHSCs and MSCs on MS is mostly mediated through 
immunomodulatory cues. Finding a cell source that triggers remyelination and 
tissue, in addition to immunosuppression properties, has a great DMT potential. 
Neural stem cells (NSCs) can migrate to demyelinated areas and differentiate into 
neurons and glial-restricted cells (i.e., oligodendrocytes and astrocytes) [7]. NSCs 
can differentiate to oligodendrocytes that can potentially remyelinate demyelinated 
axons in MS [123]. The benefits of NSCs might arise not only from their potential to 
differentiate into oligodendrocytes but also from their capacity to differentiate into 
astrocytes and neurons, the former having neurotrophic and immunomodulatory 
properties [86, 123]. Endogenous NSCs are found in germinal niches, such as the 
subgranular zone (SGZ) of the dentate gyrus and subventricular zone (SVZ) of the 
lateral ventricles [124, 125]. These NSCs play a pivotal role in early stages of MS, 
but fail to do so in later stages of the disease. Thus, replenishing endogenous NSCs 
with allogenic NSCs has a great therapeutic potential. Transplantation of NSCs in 
EAE animal models demonstrated that the cells can migrate into inflamed white 
matter plaques and differentiate into oligodendrocytes [126, 127]. Another study 
showed that transplantation of NSCs derived from induced-pluripotent stem cells 
(iPSCs) reduced T-cell infiltration as well as white matter damage [128]. To date, 
no clinical trial in MS evaluated NSCs in MS. A few groups used pluripotent stem 
cells (human embryonic stem cells or induced-pluripotent stem cells) as a source 
for neural lineage following an in vitro differentiating protocol [129]. Transplanted 
hESC-derived NSCs in EAE MS animal models demonstrated neuroprotective and 
immunosuppressive effect; however, remyelination was not observed  
[127, 130]. Another study showed that transplantation of iPSC-derived NSCs to 
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EAE model significantly reduced infiltration of T cells to the lesion and reduced 
demyelination areas. Consistent with this histopathological improvement, the 
clinical score of the disease was also rescued in the iPSC-NSC-treated group of 
mice [128]. Transplantation of hESC-derived OPCs (A2B5+) demonstrated that 
these cells remyelinate brains of shiverer mice and partially rescue their clinical 
deficiencies [131–133]. The platelet-derived growth factor α receptor (PDGFAR)-
positive OPCs presented even a greater myelinogenic potential [134, 135]. Similarly, 
intracortical implantation of iPSC-derived OPCs to a nonhuman primate model of 
progressive multiple sclerosis (MS) showed that the cells can migrate to the lesions 
and remyelinate denuded axons [136].

6.4 Astrocyte progenitor cells

As discussed above, astrocytes have multiple roles in maintaining the homeosta-
sis of the CNS. Some of the mechanisms of action, which are crucial for the main-
tenance of the CNS, are postulated to contribute also to the treatment in MS. The 
diverse modes of action of astrocytes may be more effective in treating MS compared 
to a single pathway-based drug. Transplantation of healthy astrocytes was proven 
effective in other neurodegenerative diseases such as ALS [137, 138]. In ALS animal 
model, it was shown that intrathecal injections of human astrocytes significantly 
delayed disease onset and improved motor performance compared to sham-injected 
animals. In this study, the astrocytes were found to secrete various neurotrophic fac-
tors and decrease glutamate neurotoxicity [138]. In spinal cord injury (SCI) model, 
it was demonstrated that transplantation of human astrocytes promotes functional 
recovery [139–141]. In addition, transplantation of subtype of astroglia was found to 
possess protective effects against ischemic brain injury [142, 143].

There are several cell sources for human astrocytes. Glial-restricted progenitors 
(GRPs) represent early cell population of the CNS that can self-renew and give rise 
to astrocytes and oligodendrocytes. GRPs can be isolated from human fetal tissues 
[144]. In vivo transplantation of human GRPs into the spinal cord-injured animals 
showed that the cells can survive and differentiate into astrocytes [139, 140]. 
However, human astrocytes from primary brain tissue, obtained from cadaveric 
donors, are challenging due to limited availability and robustness.

Other sources for derivation of astrocytes include pluripotent stem cells (PSC) 
such as embryonic stem cells and induced-pluripotent stem cells (iPSCs) [145]. 
These sources potentially provide unlimited supply of cells for clinical use. Methods 
for producing neural precursor cells from PSCs and their further differentiation 
into glial lineage were demonstrated in pioneering studies in animal models of 
neurodevelopment. In these studies, the key steps for neural commitment in vivo 
were identified and recapitulated in a stepwise process in culture. Specific commit-
ment of pluripotent stem cells toward astrocytes can be achieved using factors such 
as sonic hedgehog (SHH), Wnt proteins, fibroblast growth factors (FGFs), epider-
mal growth factors (EGFs), retinoic acid (RA), and bone morphogenetic protein 
(BMP) [146–150]. Most recently, direct-reprogramming approaches of somatic cells 
into neural cells and astrocytes, including transduction of specified transcription 
factors or by using a combination of defined chemical, have been reported [151]. 
Caiazzo et al. [152] described a conversion of mouse fibroblast into astrocytes 
(iAstrocytes), which are comparable to endogenous astrocytes. This was carried out 
by transducing the transcription factors nuclear factors IA and IB (NFIA, NFIB) and 
SOX9. Another approach for direct conversion or reprogramming of mammalian 
fibroblasts into astrocytes is by culturing the cells in the presence of a cocktail of 
small molecules that includes histone deacetylase inhibitor VPA, TGFβ, and GSK3β 
inhibitor CHIR99021, among other factors [153].
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7. Conclusions

MS is a multifactorial disease involving dysregulation of molecular pathways 
and immunomodulatory processes. Transplantation of healthy functional cells 
that can affect the CNS via diverse mechanisms of action that work in parallel such 
as anti-inflammatory, immunomodulatory, clearance of the toxic environment, 
secretion of neurotrophic factors, and triggering remyelination has great therapeu-
tic potential in treating multiple sclerosis. Yet, bringing new cell-based therapies to 
the clinic faces a few challenges, e.g., what is the optimal injection site in the CNS, 
and what cell dose will be effective? In MS the demyelinated lesions are spread 
throughout the CNS, and it still not clear whether the transplanted cells have long-
distance migratory capacity to reach these plaques from their injection site. Once 
the cells reach to lesion, it is still questionable whether they can remyelinate axons 
under a hostile inflammatory environment. Finally, the safety profile of trans-
planted cells and their long-term tumorigenic potential should be further tested.

Abbreviations

AD Alzheimer’s disease
AHSC autologous hematopoietic stem cell
ALDH1 aldehyde dehydrogenase
ALS amyotrophic lateral sclerosis
AQP4 aquaporin-4
BBB blood-brain barrier
BDNF brain-derived neurotrophic factor
BMP bone morphogenetic protein
CCL2 chemokine C-C motif ligand
CNS central nervous system
CSF cerebrospinal fluid
Cx43 connexin 43
CXCL chemokine C-X-C motif ligand
DAMP damage-associated molecular pattern
DMT disease-modifying treatment
EAE experimental autoimmune encephalomyelitis
EDSS expanded disability status scale
EGF epidermal growth factor
FGF fibroblast growth factor
GABA gamma-aminobutyric acid
GDNF glial cell line-derived neurotrophic factor
GFAP glial fibrillary acidic protein
HD Huntington’s disease
HSC hematopoietic stem cells
ICAM-1 intercellular adhesion molecule 1
IGF-1 insulin-like growth factor-1
IL interleukin
IP intraperitoneally
iPSC induced-pluripotent stem cell
IT intrathecally
IV intravenously
IVT intraventricular
MMP matrix metalloproteinases
MOA mechanisms of action
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MS multiple sclerosis
MSC mesenchymal stem cells
NFI nuclear factor I
NGF nerve growth factor
NSC neural stem cell
NT-3 neurotrophin-3
PAMP pathogen-associated molecular pattern
PD Parkinson’s disease
PPMS primary progressive multiple sclerosis
PSC pluripotent stem cell
RA retinoic acid
RRMS relapsing-remitting multiple sclerosis
SCI spinal cord injury
SGZ sub granular zone
SHH sonic hedgehog
SPMS secondary progressive multiple sclerosis
SVZ subventricular zone
TCR T-cell receptor
TGF-β transforming growth factor-β

TIMP tissue inhibitors of metalloproteinases
TNF-α tumor necrosis factor-α

VCAM-1 vascular cell adhesion protein 1
VEGF vascular endothelial growth factor
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