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Chapter

Appearance of Catastrophes and
Plasticity in Porous and Cracked
Media
Boris Sibiryakov

Abstract

This chapter is devoted to study the properties of structured continuum, with
specific surface and characteristic size of structure. This linear dimension means the
absence of automatic transforming difference relations into differential equations.
It is impossible to apply conservation laws at any point of the real structural body,
because any closed points in vicinity of inner surface can represent both solid and
liquid (gas) phases. We need use some representative minimal volume, which
characterized the complicate body at hole. This approach leads to differential equa-
tions of motion of the infinite order. Solutions of them, along usual P and S waves,
contain many waves with abnormally low velocities, which are not bounded
below. It is shown that in such media, weak perturbations can increase or decrease
without limit. The reason of the infinite order of differential equations is many
degrees of freedom in such media. Catastrophes correspond to unstable solutions
equations of motion. Plasticity begins in elastic state like continuous phenomenon,
and there is a finite distance between the sliding lines on the contrary with classic
plasticity, where distances between sliding lines are infinitely small.

Keywords: structure of pore space, porous and cracked media, instability, plasticity

1. Introduction

The main idea of continuous mechanics is that any volume is the representative
one. It means that the integral of loadings, which concentrates on the surface and
bounds mentioned volume, is equal to zero in statics or to inertial forces in dynam-
ics. The evident disagreement that the surface forces and inertial ones apply to
different points (inertial forces apply to center of gravity of volume) overcomes due
to an assumption about infinite small sizes of the mentioned volume. This assump-
tion gives us a possibility to equal the volume forces (divergence of the stress
tensor), which was created by the internal stresses, and the inertial forces,
according to the second Newton law. Mathematical technique is based on the Gauss
theorem about relation between the field flux across surface and divergence of this
field in the volume, which is bounded by closed surface. However, in the structured
bodies, there is a fundamentally different situation. The representative volume
must contain some set of elementary structures. Otherwise, a small volume will
contain only one of the phases, for example, liquid in the pores or the solid skeleton
without liquid, and will not characterize the properties of the structured body. The
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characteristic size of the structure leads to fact that the average distance is between
one of the cracks to another and one pore to another given by the specific surface of
the sample. It is necessary to connect the integral geometric properties of a medium
with physical processes of such bodies deforming. On the contrary with a classic
continuum of Cauchy and Poisson, the new continuum for structured or blocked
media must contain many degrees of freedom. It is evident because elementary
blocks may translate the motion by contact interactions, by rotations, and by group
of particle’s motion. It means that the energy contents not in first derivatives
(strains) only. The potential energy contents in the second derivatives (curvatures)
and other orders of ones. It means that the equation of motion of a blocked medium
should contain many derivatives; in other words, the equation of motion may have
been very high, probably, the infinite order. The static and dynamic processes in the
classic continuum are divided by the Great Wall of China from each other. The
equation of equilibrium never will pass in the equation of motion. However, it is
evident that the dynamic processes often arise very slow and are quasi-static
motions. It would be nice to destroy this mentioned wall by a newly structured
continuum. It would be a good idea to destroy the abovementioned wall by means
of justification of the newly structured continuum. The seismic emission, which
causes due to static loading, maybe not a bad example of such phenomena, which
are existed between statics and dynamics.

2. Equations of motion for structured media

In Figure 1, an element of the volume of structured body is shown, in which l0 is
the average distance between one pore and another. Earlier presented was the result
about the relation between the specific surface and the average length between
cracks and pores. There is a theorem of integral geometry, which relates the specific
surface σ0 and l0, namely [1]

σ0l0 ¼ 4 1� fð Þ (1)

where f is the porosity. Hence, if there is a specific surface of sample, there is
automatically the average range of microstructure l0.

The distinction between classic and structured continuums is clear, see Figure 1.
In the volume, which is inside into surface C, there is equation of equilibrium,
because all forces delete to each other. In the volume, which is inside into surface D,
there is equilibrium, because forces do not compensate to each other (on the one

Figure 1.
Representative element of structured body for granular medium (left) and average distance l0 from one crack to
another (right). On surface C, the equation of equilibrium is complied, and on surface D, it is not satisfied.
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side of grain, we have forces; and on the other part of boundary surface D, we have
no forces).

The idea of creation of the new model of space is as follows: consider some finite
volume of the body (a sphere on a figure with radius l0). Surface forces act on a
sphere of radius l0, while inertial forces applied at the center of the structure. There
is no way for the volume element to tend to zero and to match the points of
application of surface forces and inertial forces, as in the classical continuum.
Therefore, since we must consider the representative finite volume, we have a
problem of different positions of surface and inertial forces.

We need to translate the surface forces to the center of the structure by a special
operator, and after this, it is possible to apply the law of conservation for some
structural image continuum and to act as in a typical classical model of space. The
main feature of this approach is to fill all the space, including the pores and cracks
by field force. Because of it, we have a continuous image of a very complex media
and a possibility to apply the physical laws into an image of the media.

The one-dimensional operator of field translation from point x into point x � l0
is given by the symbolic formula [1]

u x� l0ð Þ ¼ exp l0Dxð Þ (2)

The operator is Dx ¼ ∂

∂x. The difference operator ∆1 xð Þ is a difference between

two translation operators

∆1 ¼
1

l0
u xþ l0

2

� �

� u x� l0
2

� �� �

¼ u xð Þ
l0

exp
l0
2
Dx

� �

� exp � l0
2
Dx

� �� �

¼ u xð Þ sinh
l0
2 Dx

� �

l0
2

� � (3)

This is a first difference for finite distance between two points. The second
difference may be represented as quadrate of the first difference,

∆2 ¼ u xð Þ sinh
l0
2 Dx

� �2

l0
2

� �2 (4)

The formally expansion in Taylor’s series gives a finite increment of field. This
expansion contains the infinite number of derivatives with different powers of l0.
The factor l0 relates with the specific surface of the sample. The three-dimensional
operator of field’s translation for some cube with length of l0 may be constructed as
follows:

P u xð Þ½ � ¼ u xð Þ
6

cosh
l0
2
Dx

� �

þ cosh
l0
2
Dy

� �

þ cosh
l0
2
Dz

� �� �

(5)

The analogous operator of translation for some spheres is given by expression

P l0Dx; l0Dy; l0Dz

� �

¼ 1

4π

ð

2π

0

ð

π

0

exp l0 DxsinθcosφþDysinθsinφþDzcosθ
� �� 	

sinθdθdφ

(6)

Because there is a Poisson formula [2]
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ð

2π

0

ð

π

0

f αsinθcosφþ βsinθsinφþ γcosθð Þ½ �sinθdθdφ ¼ 2π

ð

π

0

f Rcospð Þsinpdp ¼ 2π

ð

1

�1

f Rtð Þdt

(7)

In the formula (7), parameters α, β, and γ are some quantities. However, in
Eqs. (6) and (7), parameters play the role of differential operators. The relation
between quantities and operators is established by Maslov [3]. Hence, P operator
maybe rewritten as follows [4]

P l0Dx; l0Dy; l0Dz

� �

¼ 1

2

ð

1

�1

exp l0
ffiffiffiffi

∆

p
; t

� �

dt ¼
ð

1

0

cosh l0
ffiffiffiffi

∆

p
; t

� �

dt

¼ sinh l0
ffiffiffiffi

∆
p� �

l0
ffiffiffiffi

∆
p ¼ Eþ l20

3!
∆þ l40

5!
∆∆þ…

(8)

In the classic continuum, we apply the impulse conservation law to any
element of the medium. In this situation, we need to fill all pores over space by a
force field. Instead of real stresses, which are changing very fast from one point to
another, we can construct the continual image of real stresses. Namely, we use a
continuous field, which is constructed by the application of the operator P to the
real complicated force field. For this continuous image of real stress, P σikð Þ,we can
apply the impulse conservation law. In the classic continuous model, this operation
is made by nature itself. This model of a continuum requires some mathematical
operations in order to create the continuum medium. Using operator P, we can
write the equation of motion of micro-inhomogeneous body, because for an
average stresses in structure, the law of impulse conservation takes the usual
form, namely [4]

∂

∂xk
P σikð Þ½ � ¼ ρ€ui (9)

In a more detailed form Eq. (9) can be rewritten as follows

∂

∂xk
Eþ l20

3!
∆þ l40

5!
∆∆þ…

 !

σik

" #

¼ ρ€ui (10)

No wonder that Eq. (9) contains derivatives of the infinite order. This circum-
stance is due to many degrees of freedom for structured bodies. At l0 ! 0, we have
the usual equations of motion for classic continuous model of space.

3. Fundamental solutions

We can pass to the image space, following Hooke’s law and applying the Fourier
transform along three coordinates, as [5]

ui x; y; zð Þ ¼ 1

2πð Þ3
∭
∞

�∞
exp i nxxþ nyyþ nzz

� �� 	

Ui nx; ny; nz
� �

dn (11)

where n2 ¼ n2x þ n2y þ n2z; dn ¼ dnxdnydnz. The operator P leads to
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Pui x; y; zð Þ ¼ 1

2πð Þ3
∭
∞

�∞

sinh l0nð Þ
l0n

exp i nxxþ nyyþ nzz
� �� 	

Ui nx; ny; nz
� �

dn (12)

This allows us to calculate the Fourier transform for the fundamental solution of
the system Eq. (9):

Gij ¼
1

μn2 � ρω2 l0n
sin l0nð Þ

δij �
λþ μð Þninj

λþ 2μð Þn2 � ρω2 l0n
sin l0nð Þ

" #

l0n

sin l0nð Þ (13)

At very small values, l0n, the sine and argument ratio approaches unity, and the
Fourier transform becomes an ordinary equation for Green’s tensor in an elastic
continuum. The inverse Fourier transform is obtained by integration of Eq. (13)
which includes simple poles corresponding to P and S waves and a set of simple
poles where the sine in the denominator of Eq. (13) becomes zero. The residuals are

in the simple poles, n2 ¼ k2Sl0n, where k2S is the wave number of both P and Swaves.

At very small l0, the ratio
l0n

sin l0nð Þ ! 1 and denominators in Eq. (13) become the

classical equations that define the poles corresponding to compression and shear
waves velocities (Figure 2). Assuming n/ks = m and ksl0 = ε, we obtain the equation
for complex roots that describe waves from a focused source in porous and cracked
solids as

msin εmð Þ ¼ ε (14)

If m = x + iy is assumed to be a complex value, for the real and imaginary parts,
we have the transcendental equations

xsinεxcoshεy� ysinhεycosεx ¼ ε2

ysinεxcoshεyþ xsinhεycosεx ¼ 0 (15)

We can rewrite Eq. (15) in a different form with x* = εx and y* = εy as new
variables

tan x ∗

x ∗ ¼ � tanhy ∗

y ∗
; sin 2x ∗ þ sinh 2y ∗ ¼ ε4

x ∗ 2 þ y ∗ 2
(16)

Figure 2.
Wave number ratio as a function of dimensionless ratio ε = 2πl0/λs. Curves: 1—wave number ratio ks(ω)/
ks(0), i.e., S-wave velocity decreasing with frequency; 2—γ = Vs/Vp increasing with frequency; and 3—wave
number ratio ks(ω)/ks(0) of P waves.
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Equation (15) obviously has many real roots corresponding to у = 0. Indeed, at
small ε, Eq. (15) gives the solution m = 1, which corresponds to the ordinary P- or
S-wave velocity. At large values of m, Eq. (15) is satisfied only if εm approaches a
value divisible by n, i.e., at near-zero sine that defines the characteristic anomalous
velocity. The unbounded value of the wave number means that normal P and S
waves coexist with arbitrarily small P and S velocity anomalies. The existence of
these anomalies in a micro-heterogeneous medium has its physical explanation:
energy is stored in strain (first derivatives of displacement) as well as in the curva-
ture of higher derivatives. Therefore, there appear as velocities related to flexural
and torsion waves and to numerous waves associated with oscillation of groups of
particles (blocks) (Figure 3).

The growing of ratio γ = VS/VP causes a very interesting phenomenon, namely an
apparent negative Poisson value, for waves with the length not very small compared
to size of a grain. The growing value of γ = VS/VP means that the Poisson ratio is
decreasing up to negative values [6] (Figure 4).

At the same time, Eqs. (14) and (15) likewise have complex roots. The first
Eq. (15) shows that complex roots arise only at some values of e, which are not so
small, as they satisfy the inequality εx > π/2. Table 1 lists complex roots
corresponding to some relatively small ε. Note that the parameter ε can be
expressed via the linear size-to-wavelength ratio (l0/λs).

Complex roots can mean either damping or unlimited growth of wave ampli-
tude, of course, in the presence of an energy-unbounded source. The minimum
damping (growth) corresponds to (2.0288)�1 or about a half of the normal velocity.
The same process can be expected to cause both excitation and damping in porous
and cracked media, depending on the phase of stationary oscillations.

Figure 3.
The decreasing P-wave velocity (the upper line) and S-wave velocity (the middle curve) and the growth of their
ratio γ = VS/VP (the lower line) due to increasing size of microstructure. The ratio γ = VS/VP more than 0.705
corresponds to the negative Poisson ratio [6]. The vertical scale is the wave velocities (km/s) and a horizontal
scale is the ratio between the size of the microstructure and wavelength.
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4. One-dimensional case: plane wave and instabilities

In one-dimensional case, the Eq. (10) takes more simple expression

u
0 0

Eþ l20
3!
∆þ l40

5!
∆∆þ…

 !

þ k2Su ¼ 0 (17)

This equation by substitution u ¼ exp ikxð Þ gives us the dispersion equation for
an unknown wave number k, or for unknown wave velocity, which depends on the
size of structure l0 or specific surface of sample σ0:

sin kl0ð Þ
kl0

¼ k2S
k2

(18)

It is evident that by l0 ! 0, the wave number k ! kS, i.e., the wave velocity is
equal to VP or VS, elastic wave velocity. However, if l0 is not a very small value, the
wave velocity decreases up to zero by kl0 ! mπ, if m is the integer number. Hence,
this model describes along with usual seismic waves many waves of very small
velocities, which are not bound below.

Figure 4.
Gregory experimental data. Poison ratio (the vertical axis) versus pressure. Black color corresponds to water
saturated porous shales and gray color corresponds to dry shales with the same porosity. In this case, negative
Poisson ratios are possible.

ε x y

0.2147 2.0288 0.0548

0.2507 2.0645 0.5838

0.2771 2.1064 0.8880

0.3253 2.1560 1.1838

0.3918 2.2157 1.5122

Table 1.
The value epsilon means dimensionless product of structure size into wavenumber of usual S waves in
continuous medium. Value x means the real value of product of structural wavenumber into structure size.
Value y is the imaginary part of it.
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This effect is more for Pwaves than for S ones. Eq. (14) shows that if the Poisson
ratio is measured on samples by velocities VP and VS, their ratio VS/VP grows by
growing l0, and this effect can produce abnormally small Poisson’s ratio, up to
negative volume of it.

It is evident that at kl ¼ mπ, m is the integer number and the value k ! ∞. It
means that there are waves with arbitrary small velocities not bounded below.
Beside it, Eq. (15) has complex roots too, because sin kl0ð Þ may be negative, while

the second term in Eq. (18) contains kS=kð Þ2. Eq. (18) means that the complex roots
do not by small values of x, because the right-hand expression is a negative value. In
order to be complex roots, an evident condition is necessary, i.e., tanx>π=2. The
physical sense of it means that the complex roots are possible, if the wavelength is
four times (or more than four times) more than the size of the structure. These
complex roots mean that amplitude of oscillations may be increasing or decreasing
up to infinity or, may be, to zero. These roots are responsible for catastrophe’s
behavior of structured bodies.

Hence, if there is a source of sufficient energy, even some small oscillations can
produce catastrophes. It is interesting that nonlinear deforming of samples
decreases this effect, because a wave velocity for rocks is decreasing, by growing
amplitude of wave. It means that the wave number is growing by the same fre-
quency in the pure elastic process. In Figure 6, the real roots of dispersion, Eq. (18)
are shown. The vertical axis shows a dimensionless frequency, namely ε, while
horizontal axis shows us the real and imaginary parts of wave numbers. In
Figures 5–7 [7], complex roots as a function of dimensionless frequency ε are
shown. Every point is a position of some root, namely a real part, an imaginary one,
and a dimensionless frequency. The more is the spreading of ε values, the greater is
the number of complex roots.

Figure 5.
The position of complex roots depends on the value ε. The more the value ε, the more numbers of roots. The first
value of ε corresponds to values of first row from Table 1.
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5. Pointing vector and equation of equilibrium for blocked media

The equation of equilibrium for micro-structured media can be written from
Eq. (9) as

Figure 7.
The position of complex roots depends on the value ε. The more the value ε, the more numbers of roots. The third
value of ε corresponds to values of third row from Table 1.

Figure 6.
The position of complex roots depends on the value ε. The more the value ε, the more numbers of roots. The
second value of ε corresponds to values of second row from Table 1.
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∂

∂xk
P σikð Þ½ � ¼ P

∂σik

∂xk

� �

¼ 0;
∂σik

∂xk
¼ P�1 0ð Þ (19)

The inverse operator P�1 0ð Þ contains zero, but not zero only. It contains some
periodic functions and the average value equal to zero. For example, such construc-
tion satisfies to Eq. (19)

P
X

Im exp in
π

l0
k1xþ k2yþ k3zð Þ

� � �

¼ 0



(20)

If n is integer number, k1 ¼ sinθcosφ; k2 ¼ sinθcosφ; k3 ¼ cosθ: Physical sense of it
means that volume forces are equal to zero in average sense, not at any point. Using
mentioned inverse operator, we can write the equilibrium equation for blocked
media in the form

∂σik

∂xk
¼ ϕσ20σ

0
iku

0
k

X

∞

n¼1

Im exp in
π

l0
k1xþ k2yþ k3zð Þ

� � �

(21)

In Eq. (21) σ20 is a quadrat of specific surface; σ
0
iku

0
k ¼ A0

i is the pointing vector of
usual continuous body, and ϕ is a dimensionless constant, which must be obtained.
These values we can put as constants in small structure volume. The integration
with respect to spherical angles gives us a result that the imaginary part of exponent
is zero in average sense, namely

1

4π

ð

2π

0

ð

π

0

exp
πn

l0
i xsinθcosφþ ysinθsinφþ zcosθð Þ

� �

sinθdθdφ

ð

π

0

exp ir
nπ

l0
cosp

� �

sinpdp ¼ 1

2

ð1

�1
exp ir

nπ

l0
t

� �

dt ¼ l0
nπr

sin
rnπ

l0

� �

þ i0 (22)

Partial solution of Eq. (22) is a convolution of Green tensor with right hand of
Eq. (21), that is,

u1i xð Þ ¼ ϕ
1

μ
σ20σ

0
mku

0
k xð ÞIm∭ Γmi x; yð Þ exp ikm xm � ym

� �� 	

dVy (23)

Taking into account that the sizes of area much more, than sizes of structure, the
area of integration is the infinite large one. In this case, integral Eq. (13) practically is
the Fourier transform of fundamental solution of usual elastic equilibrium equations

u1ni xð Þ ¼ ϕ
1

μ
σ2σ0mku

0
k xð Þ l0

nπ

� �2

δmi � 1� γ2
� �

kmki
� 	

exp
inπ klxlð ÞÞ

l0

� �

(24)

In Eq. (24) the imaginary part of the exponent is used. Hence, the additional
value in average sense is equal to zero. Using relation Eq. (1) σ0l0 ¼ 4 1� fð Þ, we get
a partial solution, which depends on porosity only

u1ni xð Þ ¼ ϕ
1

μ
σ0mku

0
k xð Þ 4 1� fð Þ

nπ

� �2

δmi � 1� γ2
� �

kmki
� 	

exp i
nπ klxlð Þ

l0

� �

(25)
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If these indexes coincide, i ¼ m, we get

< u1ni xð Þ> ¼ ϕ

μ
Ui0

4 1� fð Þ
nπ

� �2

1� 1� γ2

3

� �

exp
inπ klxlð ÞÞ

l0

� �

(26)

Take into account that the average value of a quadrat of cosine is < kmki> ¼ δkm
3 .

There is a summation with respect to n, and Ui0 is a Pointing vector for usual
continuous model of the medium. This value is a small one of the second order
compared to usual displacement, because a Pointing vector, divided on the shear
module is order to strain, multiplied to size of structure l0.

Strains. By differentiating of an integral Eq. (23) take into account that the main
part of the field contains in fast changing exponent, not in Green tensor itself, i.е.,

u1i, j xð Þ≈ϕ

μ
σ2σ0mku

0
k xð ÞikjIm∭ Γmi x; yð Þ exp ikl xl � yl

� �� 	

dVy (27)

e1nij ¼ i

2
u1i, j þ u1j, i

� �

¼ ϕ

2μ
σ0mk

u0k xð Þ
l0

4

π
4 1� fð Þ2 δmi � 1� γ2

� �

kmki
� 	

kj
�

þ δmj � 1� γ2
� �

kmkj
� 	

kig
1

n
exp i

nπ k1xþ k2yþ k3zð Þ
l0

� �

¼ ϕ
8γ2

3πμ

1

l0
U0ikj þ U0jki
� 	

1� fð Þ2 1
n
exp i

nπ klxlð Þ
l0

� � (28)

According to Eq. (9) the additional dilatation is

θ nð Þ ¼ ϕ
16γ2

3πμ

1

l0
U0n½ � 1� fð Þ2 1

n
exp i

nπ klxlð Þ
l0

� �

(29)

Let us integrate the normal component of the Pointing vector on the small
sphere with radius r. This integral must be equal to density of potential energy E
(divergence of Pointing vector) namely,

<U0n> ¼ E

σ0
¼ 4 1� fð ÞEl0 (30)

The average value of fast-changing exponent in Eqs. (28) and (29) on spherical
angles is

< exp
1

n
i
nπ klxlð Þ

l0

� �

> ¼ 4 1� fð Þ
πn2

ðnπ

0

sinx

x
dx ¼ 4 1� fð Þ

πn2
Si nπð Þ (31)

The additional dilatation due to randomly oriented volume forces (an average
value of these forces is zero) may be written as

θ ¼ ϕ
16γ2

3πμ

4 1� fð Þ3E
π

X

∞

n¼1

Si nπð Þ
n2

(32)

In Eq. (32) the symbol Si nπð Þ means an integral sine of argument nπð Þ. The left
hand in Eq. (32) is an additional expansion or compression, so called as dilatancy. It
depends on the potential energy of the continuous body E, which may contain shear
energy only, but it produces additional expansion or compression. It is a quadrat
effect too.
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More strong effect is related with product of high-changing volume force (equal
to zero in average) into displacement. This product in not equal to zero in average,
because it contains a quadrat of high-changing sine, which is equal to number one
third in three dimension space.

En ¼ ϕ
1

μ
σ0mku

0
k xð Þ 4 1� fð Þ

nπ

� �2

δmi � 1� γ2
� �

kmki
� 	 1

3
ϕσ20U0i (33)

If indexes coincide, m ¼ i, we get the additional potential energy, due to
fluctuations

En ¼
ϕ2

3 λþ 2μð Þ U2
01 þ U2

02 þU2
03

� 	

σ20
4 1� fð Þ

nπ

� �2

(34)

The summation with respect to index n from unit up to infinity gives

E ¼ 8ϕ2

9 λþ 2μð Þ σ
2
0 U2

01 þ U2
02 þU2

03

� 	

1� fð Þ2 (35)

In spite of a fact that the Pointing vector is the small value of more high order,
than stresses, the high value σ20 (quadrat of specific surface) in Eq. (35) can produce
not small common effect. The indefinite factor ϕ depends on the real structure of
pore space and macro-stress-strain state. However, in some simple situations, it can
calculate elementary. For example, at rigid pressing of globe by spherical force
(radial displacements are constants), the stress-strain state is a hydrostatic state in
average, but not such state at any point. The compressional energy is proportional
to compress module of skeleton and its volume plus the incompressibility of fluid
and its volume, namely [8–11]

E ¼ λþ 2μ

3

� �

θ21
2

1� fð Þ þ ρc2
θ20
2
f (36)

Indexes unit and zero in Eq. (36) mean solid and liquid parameters. The dilata-
tion of two-phase body gives by the formula

θ ¼ 1� fð Þθ1 þ fθ0; θ0 ¼ θ1 (37)

If we have uniform random distribution of phases, the average energy is

E ¼ E1 1� fð Þ þ E0f (38)

In Eq. (38) f is the porosity and E1 and E0 are the energies of solid and liquid.
The dispersion of random value relates with random volume forces, i.e.,

E1 � E1 1� fð Þ þ E0fð Þ½ �2 1� fð Þ þ f E0 � E1 1� fð Þ þ E0fð Þ½ �2 ¼ E1 � E0ð Þ2f 1� fð Þ
(39)

Equation (39) gives the additional energy for very simple macro-hydrostatic
state in average. This is the additional of interphase acting. It is equal to additional
energy, which is given by Eq. (15). It is reasonable that at unit or zero porosity, an
additional energy is equal to zero. The second result is, if the phase energy is equal,

the mentioned additional one is equal to zero too. Hence, the indefinite factor ϕ2

given by the simple equation is
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1

μ
E1 � E0j j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f 1� fð Þ
q

¼ 8ϕ2

9 λþ 2μð Þ σ
2
0 U2

01 þ U2
02 þU2

03

� 	

1� fð Þ2 (40)

6. The arriving of plasticity

In spite of that, the additional average strains is small, does not means, that these
strains are small in the any point of the volume. Equations (28) and (29) show
that on the planes k1x� k2y� k3z ¼ 2l0q (q is an integer number), the exponent is
not a highly changed value, because it is equal to1 or �1.

In plane situation, the role of these planes plays orthogonal lines
k1x� k2y ¼ 2l0q.

Figures 8.
Successive process of strains localization due to decreasing strains inside of quadrats, making orthogonal lines
and increasing them near lines itself.
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The series Eqs. (28) and (29) with respect to n in vicinity of mentioned planes
are divergent (harmonic) series. It means that the field is decreasing inside of
quadrats, making planes, and concentrating in vicinity of planes. Mentioned planes
are analogs of slipping lines (lines of Luders) [12] in classic plasticity of the com-
pressible medium. In practical, the number n in Eqs. (28) and (29) is bounded by
the elastic limit of the second strain invariant. The field of strains is growing into
planes (lines) and decreasing inside of them. This process is called as localization of
strains. This localization begins in elasticity, with contrary of classic plasticity and
elasticity. The other specific feature of this process is the finite distance between
planes (lines). This distance is equal to l0 (the inverse value of specific surface of
sample), while in classic plasticity, this distance is infinitely small. The geological
sense of it is interesting. In order to transform the matter from elasticity to
plasticity, there is no necessary to have the plastic state at any point of the medium.
Plasticity may concentrated near planes, and the other volume can be in elastic
state. Rock may flow comparatively light, if they have pores and cracks. On the
Figure 8 shown successive process of localization of strains due to decreasing field
inside of quadrats, making by orthogonal lines and increasing them near lines itself.

7. Conclusions

1.The model of the structured continuum with specific surface of the blocked
medium or average size of structure, gives us the differential equations of
motion of the infinite order. This model includes collective properties of pore
space like the porosity and specific surface and predicts besides usual elastic
waves many unusual waves with very small velocities.

2.This model predicts the decreasing of the Poisson ratio (up to negative values)
due to finite size of microstructure. The reason for this is the decreasing of
wave velocity with finite specific surface of the rock.

3.The localization of stresses and strains in structured media begins in elastic
state of deforming.

4.The small areas of a stress-strain concentration looks like usual orthogonal
sliding lines in classic plasticity. However, they have a finite effective
thickness, which depends on the average size of the structure and the elastic
strain limit. Besides, there is a finite distance between analogs of sliding lines,
which is equal to the average distance from one pore to another one, or
between cracks.

14

Seismic Waves - Probing Earth System



Author details

Boris Sibiryakov
Trofimuk Institute of Oil and Gas Geology and Geophysics SB RAS,
Novosibirsk State University, Novosibirsk, Russia

*Address all correspondence to: sibiryakovbp@ipgg.sbras.ru

©2019 TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms
of theCreativeCommonsAttribution License (http://creativecommons.org/licenses/
by/3.0),which permits unrestricted use, distribution, and reproduction in anymedium,
provided the original work is properly cited.

15

Appearance of Catastrophes and Plasticity in Porous and Cracked Media
DOI: http://dx.doi.org/10.5772/intechopen.87014



References

[1] Santalo L. Integral Geometry and
Geometrical Probability. 2nd ed.
Cambridge University Press; 2004.
405 p

[2] Gradshteyn IS, Ryzhik IM. Table of
Integrals, Series, and Products. In:
Zwillinger D, Moll V, editors. Academic
Press; 2014. 1184 p

[3]Maslov VP. Operator Methods. Mir.
1976. 559 p

[4] Sibiryakov BP, Prilous BI. The
unusual small wave velocities in
structural bodies and instability of pore
or cracked media by small vibration.
WSEAS Transactions on Applied and
Theoretical Mechanics. 2007;7:139-144

[5] Fokin AG, Shermergor TD. Theory of
propagation of elastic waves in
nonhomogeneous media. Springer Link.
1990;25(5):600-609

[6] Gregory AR. Fluid saturation effect
on dynamic elastic properties of
sedimentary rocks. Geophysics. 1976;41
(5):895-921

[7] Sibiryakov BP, Prilous BI, Kopeykin
AV. The nature of instability of Blocked
Media and Distribution Law of Unstable
States. Physical Mesomechanics. 2013;
16:2:141-151. ISSN: 1029-9599

[8] Biot MA, Willis DJJ. Journal of
Applied Mechanics. 1957;24:594-601

[9] Biot MA. General solution of the
equations of elasticity and consolidation
for a porous material. Journal of Applied
Mechanics. 1941;12:155-164

[10]Gassman F. Uber die Elastizitat
Poroser Medien: Vier. der Natur.
Gesellschaft in Zurich. 1951;96:1-23

[11] Biot MA. Theory of propagation of
the elastic waves in a fluid saturated
porous solid. 1. Low-frequency range.

The Journal of the Acoustical Society of
America. 1956;28:168-178

[12] Kachanov LM. Fundamentals of the
Theory of Plasticity. North-Holland
Publishing Company, 1971. XIII, 482 p

16

Seismic Waves - Probing Earth System


