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Chapter

Nyquist-Like Stability Criteria
for Fractional-Order Linear
Dynamical Systems
Jun Zhou

Abstract

In this chapter, we propose several Nyquist-like stability criteria for linear dynam-
ical systems that are described by fractional commensurate order linear time-invariant
(FCO-LTI) state-space equations (thus endowed with fractional-order transfer func-
tions) by means of the argument principle for complex analysis. Based on the standard
Cauchy integral contour or its shifting ones, the stability conditions are necessary and
sufficient, independent of any intermediate poles computation, domain transforma-
tion, and distribution investigation, which can be implemented graphically with locus
plotting or numerically without any locus plotting. The proposed criteria apply to both
single and multiple fractional cases as well and can be exploited in regular-order
systems without any modification. Case study is included.

Keywords: fractional-order, commensurate, stability, meromorphic/holomorphic,
argument principle, Cauchy integral contour

1. Introduction

Fractional-order calculus possesses a long history in pure mathematics. In recent
decades, its involvements in systems, control, and engineering have attracted
great attention; in the latest years, its significant extensions in various aspects of
systems and control are frequently encountered [1–8]. It turns out that phenomena
modeled with fractional-order calculus much more widely exist than those based on
regular-order ones. It has been shown that fractional-order calculus describes real-
world dynamics and behaviors more accurately than the regular-order counterparts
and embraces many more analytical features and numerical properties of the
observed things; indeed, many practical plants and objects are essentially fractional-
order. Without exhausting the literature, typical examples include the so-called
non-integer-order system of the voltage–current relation of semi-infinite lossy
transmission line [9] and diffusion of the heat through a semi-infinite solid, where
heat flow is equal to the half-derivative of the temperature [10].

One of the major difficulties for us to exploit the fractional-order models is the
absence of solution formulas for fractional-order differential equations. Lately, lots
of numerical methods for approximate solution of fractional-order derivative and
integral are suggested such that fractional-order calculus can be solved numerically.
As far as fractional-order systems and their control are concerned, there are mainly
three schools related to fractional-order calculus in terms of system configuration:
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(i) integer-order plant with fractional-order controller, (ii) fractional-order plant
with integer-order controller, and (iii) fractional-order plant with fractional-order
controller. The principal reason for us to bother with fractional-order controllers is
that fractional-order controllers can outperform the integer-order counterparts in
many aspects. For example, it has been confirmed that fractional-order PID can
provide better performances and equip designers with more parametrization
freedoms (due to its distributed parameter features [4, 11–13]).

An important and unavoidable problem about fractional-order systems is stabil-
ity [13–15]. As is well known, stability in integer-order LTI systems is determined
by the eigenvalues distribution; namely, whether or not there are eigenvalues on the
close right-half complex plane. The situation changes greatly in fractional-order LTI
systems, due to its specific eigenvalue distribution patterns. More precisely, on the
one hand, eigenvalues of fractional-order LTI systems cannot generally be com-
puted in analytical and closed formulas; on the other hand, stability of the
fractional-order LTI systems is reflected by the eigenvalue distribution in some
case-sensitive complex sectors [13, 15], rather than simply the close right-half
complex plane for regular-order LTI systems. In this paper, we revisit stability
analysis in fractional commensurate order LTI (FCO-LTI) systems by exploiting the
complex scaling methodology, together with the well-known argument principle
for complex analysis [16]. This work is inspired by the study for structural and
spectral characteristics of LTI systems that is also developed by means of the
argument principle [17–19]. The complex scaling technique is a powerful tool in
stability analysis and stabilization for classes of linear and/or nonlinear systems; the
relevant results by the author and his colleagues can be found in [20–25]. Also
around fractional-order systems, the main results of this chapter are several
Nyquist-like criteria for stability with necessary and sufficient conditions [26],
which can be interpreted and implemented either graphically with loci plotting or
numerically without loci plotting, independent of any prior pole distribution and
complex/frequency-domain facts.

Outline of the paper. Section 2 reviews basic concepts and propositions about
stability in FCO-LTI systems that are depicted by fractional commensurate order
differential equations or state-space equations. The main results of the study are
explicated in Section 3. Numerical examples are sketched in Section 4, whereas
conclusions are given in Section 5.

Notations and terminologies of the paper. R and C denote the sets of all real and
complex numbers, respectively. Ik denotes the k� k identity matrix, while Cþ is the
open right-half complex plane, namely, Cþ ¼ s∈ C : Re s½ �>0f g. �ð Þ ∗ means the
conjugate transpose of a matrix �ð Þ. N �ð Þ, Nc �ð Þ, and Nc �ð Þ stand for the net, clock-
wise, and counterclockwise encirclements of a closed complex curve �ð Þ around the
origin 0; j0ð Þ. By definition, N �ð Þ ¼ Nc �ð Þ �Nc �ð Þ. In particular, N �ð Þ ¼ 0 means that
the number of clockwise encirclements of �ð Þ around the origin is equal to that of
counterclockwise encirclements.

2. Preliminaries and properties in FCO-LTI systems

2.1 Preliminaries to fractional-order calculus

Based on [13, 15], fractional-order calculus can be viewed as a generalization of
the regular (integer-order) calculus, including integration and differentiation. The
basic idea of fractional-order calculus is as old as the regular one and can be traced
back to 1695 when Leibniz and L’Hôpital discussed what they termed the half-order
derivative. The exact definition formula for the so-called r-order calculus was well
established then by Riemann and Liouville in the form of
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αD
r
t f tð Þ ¼

1

Γ n� rð Þ

dn

dtn

ðt

α

f τð Þ

t� τð Þr�nþ1 dτ (1)

where α≥0 and r≥0 are real numbers while n≥ 1 is an integer; more precisely,
n� 1≤ r< n and n is the smallest integer that is strictly larger than r. Γ n� rð Þ is the
gamma function at n� r; by ([16], p. 160), Γ n� rð Þ ¼

Ð∞

0 e�ττn�r�1dτ and it is
convergent for each n� r>0.

Basic facts about fractional-order calculus are given as follows [13]:

• If f tð Þ is analytical in t, then αD
r
t f tð Þ is analytical in t and r.

• If r≥0 is an integer and n ¼ rþ 1, then αD
r
t f tð Þ reduces to the rþ 1ð Þth-order

derivative of f tð Þ with respect to t; namely, αD
r
t f tð Þ ¼ drþ1f tð Þ=dtrþ1.

• If r ¼ 0 and thus n ¼ 1, the definition formula for αD
r
t f tð Þ ¼ αD

0
t f tð Þ yields the

identity relation αD
0
t f tð Þ ¼ f tð Þ.

• Fractional-order differentiation and integration are linear operations. Thus

αD
r
t af tð Þ þ bg tð Þ½ � ¼ a αD

r
t f tð Þ f tð Þ

� �

þ b αD
r
tg tð Þ

� �

:

• Under some additional assumptions about f tð Þ, the following additive index
relation (or the semigroup property) holds true:

αD
r1
t αD

r2
t f tð Þ

� �

¼ αD
r2
t αD

r1
t f tð Þ

� �

¼ αD
r1þr2
t f tð Þ

• If f kð Þ tð Þ
�

�

�

t¼α
¼ 0 for k ¼ 0, 1,⋯, m with m being a positive integer, then

fractional-order derivative commutes with integer-order derivative:

dm

dtm
αD

r
t f tð Þ

� �

¼ αD
r
t

dm

dtm
f tð Þ

� �

¼ αD
rþm
t f tð Þ

The fractional-order calculus (1) and its properties are essentially claimed in the
time domain. Therefore, it is generally difficult to handle these relations directly
and explicitly. To surmount such difficulties, the Laplace transform of (1) is
frequently used, which is given by

L 0D
r
t f tð Þ

� �

¼

ð∞

0
e�st

0D
r
t f tð Þdt ¼ srF sð Þ �

X

n�1

k¼0

sk0D
r
t f tð Þ

�

�

�

�

�

t¼0

(2)

where F sð Þ ¼ L f tð Þf g and s is the Laplace transform variable. Under the
assumption that the initial conditions involved are zeros, it follows that

L 0D
r
t f tð Þ

� �

¼ srF sð Þ. To simplify our notations, we denote 0D
r
t f tð ÞS byDr

t f tð Þ in the
following if nothing otherwise is meant.

2.2 Definition and features of FCO-LTI state-space equations

A scalar fractional-order linear time-invariant system can be described with a
fractional-order state-space equation in the form of

Dr
tx tð Þ ¼ Ax tð Þ þ Bu tð Þ

y tð Þ ¼ Cx tð Þ þDu tð Þ

	

(3)

where x tð Þ ¼ x1 tð Þ;⋯; xn tð Þ½ �T ∈Rn, u tð Þ∈R, and y tð Þ∈R are the state,
input, and output vectors, respectively. In accordance with x tð Þ, u tð Þ

3

Nyquist-Like Stability Criteria for Fractional-Order Linear Dynamical Systems
DOI: http://dx.doi.org/10.5772/intechopen.88119



and y tð Þ, A∈Rn�n, B∈Rn�1, C∈R1�n, and D∈R1�1 are constant matrices. We
denote:

Dr
tx tð Þ ≕

Drn
t x1 tð Þ

⋮

Dr1
t xn tð Þ

2

6

4

3

7

5
∈Rn

For simplicity, we employ r to stand for the fractional-order indices set rn;⋯; r1f g
with 0≤ ri < 1 with a little abuse of notations. The corresponding transfer function
follows as

G sð Þ ¼ C diag srn ;⋯; ; sr1½ � � Að Þ�1BþD ¼
bms

βm þ bm�1s
βm�1 þ⋯þ b1s

β1

ansαn þ an�1sαn�1 þ⋯þ a1sα1
(4)

which is the fractional-order transfer function defined from U sð Þ to Y sð Þ. In (4),
diag srn ;⋯; sr1½ �∈ C

n�n stands for a diagonal matrix. Also, ak k ¼ 1;⋯; nð Þ and
bk k ¼ 1;⋯;mð Þ are constants, while αk k ¼ 1;⋯; nð Þ and βk k ¼ 1;⋯;mð Þ are
nonnegative real numbers satisfying

αn > αn�1 >⋯> α1 ≥0

βm > βm�1 >⋯> β1 ≥0

	

In the following, the fractional-order polynomial

Δ s; rn;⋯; r1ð Þ ¼ det diag srn ;⋯; sr1½ � � Að Þ ¼ ans
αn þ an�1s

αn�1 þ⋯þ a1s
α1 (5)

is called the characteristic polynomial of the state-space equation (3).
We note by complex analysis ([16], p. 100) that sα is well-defined and satisfies

sα ¼ eα log s, ∀s∈ C\ 0f g, ∀α∈ C (6)

where log s is the principal branch of the complex logarithm of s or the principal
sheet of the Riemann surface in the sense of �π < args≤ π. In view of (6), we see
that Δ s; rn;⋯; r1ð Þ as fractional-order polynomial and G sð Þ as fractional-order frac-
tion are well-defined only on C\ 0f g for all ri, αi, βi ∈ C, whenever at least one of rif g,
αif g, and βif g is a fraction number. Both are well-defined on the whole complex

plane C, if all rif g, αif g, and βif g are integers.
Bearing (6) in mind, our questions are (i) under what conditions Δ s; rn;⋯; r0ð Þ is

holomorphic and has only isolated zeros and (ii) under what conditions G sð Þ is
meromorphic and has only isolated zeros and poles?

To address (i), let us return to (6) and observe for any s∈ C\0 and α∈ C that

d

ds
sα ¼

d

ds
eα log s ¼

d

ds

X

∞

k¼0

1

k!
α log sð Þk

" #

¼
X

∞

k¼0

1

k!

d

ds
α log sð Þk

¼
X

∞

k¼0

1

k� 1ð Þ!
α log sð Þk�1

α
d

ds
log s

¼ α
X

∞

k¼1

1

k� 1ð Þ!
α log sð Þk�1s�1

¼ αeα log ss�1 ¼ αeα log se� log s

¼ αe α�1ð Þ log s ¼ α e log s

 �α�1

¼ αsα�1
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where we have used d
ds log s ¼ s�1 for any s 6¼ 0 (see [27], p. 36). The deductions

above actually say by the definition ([16], p. 8) that each term in Δ s; rn;⋯; r1ð Þ on
C\ 0f g is holomorphic. Thus, Δ s; rn;⋯; r1ð Þ is holomorphic on C\ 0f g.

To see under what conditions Δ s; rn;⋯; r1ð Þ (respectively, G sð Þ) possesses only
isolated zeros and poles, let us assume that there exists 0< r≤ 1 such that

αn ¼ knr> αn�1 ¼ kn�1r>⋯> α1 ¼ k1r

βm ¼ lmr> βm�1 ¼ lm�1r>⋯> β1 ¼ l1r

(

(7)

where kn > kn�1 >⋯> k1 ≥0, lm > lm�1 >⋯> l1 ≥0, and kn ≥ lm are integers.
Then, if we set z ¼ sr, then G sð Þ and Δ s; rn;⋯; r1ð Þ can be re-expressed as

G z; rð Þ ¼
bmz

lm þ bm�1z
lm�1 þ⋯þ b1z

l1

anzkn þ an�1zkn�1 þ⋯þ a1zk1

Δ z; rð Þ ¼ anz
kn þ an�1z

kn�1 þ⋯þ a1z
k1

8

>

<

>

:

(8)

Obviously, G z; rð Þ is a so-called rational function on the z-complex plane
and possesses only finitely many isolated zeros and poles. More precisely, G z; rð Þ is
a special meromorphic function that is determined up to a multiplicative constant
by prescribing the locations and multiplicities of its zeros and poles ([16], p. 87);
or equivalently it is in the form of a complex fraction with regular-order
polynomials as its nominator and denominator. Also, Δ z; rð Þ is a regular-order
polynomial that is holomorphic on the whole z-complex plane and
has finitely many isolated zeros. Thus, G z; rð Þ and Δ z; rð Þ can be written in the
form of

G z; rð Þ ¼
bm
Q

l zþ zlð Þμl

an
Q

k zþ pk

 �νk

Δ z; rð Þ ¼ an
Q

k zþ pk

 �νk

8

>

<

>

:

(9)

Under the assumption that (7) and suppose that G z; rð Þ and Δ z; rð Þ have no zero,
zeros, and zero singularities, it holds that zl 6¼ 0, pk 6¼ 0∈ C. In addition,
μl ≥ 1, νk ≥ 1 are integers such that

P

lμl ¼ lm and
P

kνk ¼ kn.
Based on (6) and (9), the s-domain relationships can be rewritten by

G sð Þ ¼
bm
Q

l s
r þ zlð Þμl

an
Q

k sr þ pk

 �νk

Δ s; rn;⋯; r1ð Þ ¼ an
Q

k sr þ pk

 �νk

8

>

<

>

:

(10)

By (10), it is not hard to see that G sð Þ ¼ 0 as sr ! zl (or equivalently by (6),

s ! exp log zl
r

n o

) and ∣G sð Þ∣ ! ∞ as sr ! pk (or equivalently, s ! exp
log pk
r

n o

). The

latter says specifically by Corollary 3.2 of [16] that s ¼ exp log pk=r
� �

is a pole of

G sð Þ. Then, G sð Þ is holomorphic on C\ exp log pk=r
� �� �

k
and has only finitely

many isolated zeros and poles. It follows by ([16], pp. 86–87) that G sð Þ is
meromorphic on C\ 0f g. Confined to the discussion of this paper, G sð Þ may or
may not be rational.

In the sequel, when the assumption (7) is true and Δ z; rð Þ and G z; rð Þ have no
zeros and poles at the origin, then Δ s; rn;⋯; r1ð Þ and G sð Þ are well-defined on C\ 0f g
with respect to fractional commensurate order r. Only fractional commensurate
systems are considered in this study.
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2.3 Closed-loop configuration with FCO-LTI systems

Consider the feedback system illustrated in Figure 1, in which we denote by ΣG

and ΣH, respectively, an FCO-LTI plant and an FCO-LTI feedback subsystem that
possess the following fractional-order state-space equations.

ΣG :
Dr

tx ¼ Axþ Be

y ¼ CxþDe
, ΣH :

D
q
t ζ ¼ Λζ þ Γμ

η ¼ Θζ þ Πμ

((

(11)

where A∈Rn�n, B∈Rn�m, C∈Rl�n, and D∈Rl�m, respectively, are constant

matrices, while Λ∈Rp�p, Γ∈Rp�l, Θ∈Rm�p, and Π∈Rm�l are constant.
Fractional-order transfer functions for ΣG and ΣH are given as follows:

G sð Þ ¼ C diag srn ;⋯; ; sr1½ � � Að Þ�1BþD

≕C In s; rð Þ � Að Þ�1BþD ≕ Ĝ sð Þ þD

≕
C adj In s; rð Þ � Að ÞBþ det In s; rð Þ � Að ÞD

det In s; rð Þ � Að Þ

≕ �G sð Þ=det In s; rð Þ � Að Þ

H sð Þ ¼ Θ diag sqp ;⋯; ; sq1½ � � Λð Þ
�1
Γþ Π

≕Θ Ip s; qð Þ � Λ

 ��1

Γþ Π ≕ Ĥ sð Þ þ Π

≕
Θ adj Ip s; qð Þ � Λ


 �

Γþ det Ip s; qð Þ � Λ

 �

Π

det Ip s; qð Þ � Λ

 �

≕ �H sð Þ=det Ip s; qð Þ � Λ

 �

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

(12)

where Ĝ sð Þ, Ĥ sð Þ, �G sð Þ, and �H sð Þ are obvious and adj �ð Þ is the adjoint. Also

In s; rð Þ ¼ diag srn ;⋯; sr1½ �, Ip s; qð Þ ¼ diag sqp ;⋯; sq1½ �

Now we construct the state-space equations for the open- and closed-loop sys-
tems of Figure 1. The open-loop system can be expressed by the fractional-order
state-space equation:

ΣO :

Dr
tx

D
q
t ζ

" #

¼
A 0

ΓC Λ

" #

x

ζ

" #

þ
B

ΓD

" #

u

η ¼ ΠC Θ½ �
x

ζ

" #

þ ΠDu

8

>

>

>

>

>

<

>

>

>

>

>

:

(13)

Figure 1.
FCO-LTI feedback configuration.
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In the closed-loop system, we can write the closed-loop state-space equation as

ΣC :

Dr
tx

D
q
t ζ

" #

¼
A� BΞΠC �BΞΘ

ΓC� ΓDΞΠC Λ� ΓDΞΘ

" #

x

ζ

" #

þ
BΞ

ΓDΞ

" #

u

η ¼ ΞΠC ΞΘ½ �
x

ζ

" #

þ ΠDΞu

8

>

>

>

>

>

<

>

>

>

>

>

:

(14)

where Ξ ¼ Im þ ΠDð Þ�1. To explicate the Nyquist approach, we begin with the
conventional return difference equation in the feedback configuration ΣC.

By definition, the characteristic polynomial for the closed-loop system ΣC is

ΔC s; r; qð Þ ≔ det
In s; rð Þ 0

0 Ip s; qð Þ

" #

�
A� BΞΠC �BΞΘ

ΓC� ΓDΞΠC Λ� ΓDΞΘ

" # !

¼ det
In s; rð Þ � A 0

�ΓC Ip s; qð Þ � Λ

" # !

�det Inþp þ
In s; rð Þ � A 0

�ΓC Ip s; qð Þ � Λ

" #�1
BΞΠC BΞΘ

ΓDΞΠC ΓDΞΘ

" #

0

@

1

A

¼ ΔO s; r; qð Þdet Inþp þ
In s; rð Þ � A 0

�ΓC Ip s; qð Þ � Λ

" #�1
BΞΠC BΞΘ

ΓDΞΠC ΓDΞΘ

" #

0

@

1

A

(15)

where det �ð Þ means the determinant of �ð Þ and

ΔO s; r; qð Þ ≔ det
In s; rð Þ � A 0

�ΓC Ip s; qð Þ � Λ

" # !

¼ det In s; rð Þ � Að Þdet Ip s; qð Þ � Λ

 �

¼ ΔG s; rð ÞΔH s; qð Þ

(16)

with ΔG s; rð Þ ¼ det In s; rð Þ � Að Þ and ΔH s; qð Þ ¼ det Ip s; qð Þ � Λ

 �

. Clearly,

ΔO s; r; qð Þ is the characteristic polynomial for ΣO, while ΔG s; rð Þ and ΔH s; qð Þ are the
characteristic polynomials for the subsystems ΣG and ΣH, respectively, in the feed-
back configuration of Figure 1.

Let us return to (15) and continue to observe that

ΔC s; r; qð Þ

¼ ΔO s; r; qð Þdet Inþp þ
In s; rð Þ � Að Þ�1 0

Ip s; qð Þ � Λ

 ��1

ΓC In s; rð Þ � Að Þ�1 Ip s; qð Þ � Λ

 ��1

" # 

�
B 0

0 Γ

� �

ΞΠ Ξ

DΞΠ DΞ

� �

C 0

0 Θ

� �

Þ

¼ ΔO s; r; qð Þdet Ilþmð

þ
C 0

0 Θ

� �

In s; rð Þ � Að Þ�1 0

Ip s; qð Þ � Λ

 ��1

ΓC In s; rð Þ � Að Þ�1 Ip s; qð Þ � Λ

 ��1

" #
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�
B 0

0 Γ

� �

ΞΠ Ξ

DΞΠ DΞ

� ��

¼ ΔO s; r; qð Þdet Ilþm þ
Ĝ sð Þ 0

Ĥ sð ÞĜ sð Þ, Ĥ sð Þ

" #

ΞΠ Ξ

DΞΠ DΞ

� �

 !

¼ ΔO s; r; qð Þdet
Im þ ΠĜ sð ÞΞ ΠĜ sð ÞΞ

Ĥ sð ÞG sð ÞΞ, Im þ Ĥ sð ÞG sð ÞΞ

" # !

¼ ΔO s; r; qð Þdet
Im ΠĜ sð ÞΞ

�Im Im þ Ĥ sð ÞG sð ÞΞ

" # !

¼ ΔO s; r; qð Þdet
Im ΠĜ sð ÞΞ

0 Im þ Ĥ sð ÞG sð ÞΞþ ΠĜ sð ÞΞ

" # !

¼ ΔO s; r; qð Þdet Im þ Ĥ sð ÞG sð ÞΞþ ΠĜ sð ÞΞ
 �

¼ ΔO s; r; qð Þdet Ξð Þdet Im þ ΠDþ Ĥ sð ÞG sð Þ þ ΠĜ sð Þ
 �

¼ ΔO s; r; qð Þdet Ξð Þdet Im þH sð ÞG sð Þð Þ (17)

In deriving (17), the determinant equivalence det I1 þ XYð Þ ¼ det I2 þ YXð Þ is
repeatedly used, where X and Y are matrices of compatible dimensions and I1 and I2
are identities of appropriate dimensions. By (17), we have

ΔC s; r; qð Þ

ΔO s; r; qð Þ
¼

ΔC s; r; qð Þ

ΔG s; rð ÞΔH s; qð Þ
¼

det Im þH sð ÞG sð Þð Þ

det Im þ ΠDð Þ
(18)

which is nothing but the return difference relationship for the fractional-order
feedback system ΣC. By the definitions, it is clear that ΔO s; r; qð Þ, ΔO s; r; qð Þ, ΔG s; rð Þ,
and ΔH s; qð Þ are all fractional-order. It is based on (18) that Nyquist-like criteria will
be worked out. However, in order to get rid of any open-loop structure and spec-
trum, let us instead work with

ΔC s; r; qð Þ ¼ ΔG s; rð ÞΔH s; qð Þ
det Im þH sð ÞG sð Þð Þ

det Im þ ΠDð Þ
(19)

Remark 1. Recalling our discussion in Section 2.2 and assuming that there exists
a number 0< ρ≤ 1 such that ΣG and ΣH are fractionally commensurate with respect
to the same commensurate order ρ, it follows that G sð Þ and H sð Þ are meromorphic
on C\ 0f g, while ΔC s; r; qð Þ, ΔG s; rð Þ, and ΔH s; qð Þ are holomorphic on the whole
complex plane. These complex functional facts will play a key role for us to apply
the argument principle to (18) as well as (19).

3. Main results

3.1 Nyquist contours in the z-/s-domains

As another preparation for stability analysis in fractional-order systems by
means of the argument principle for meromorphic functions, we need to choose
appropriate Nyquist contours.
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Firstly, the simply closed curve defined on the z-domain as illustrated by the
dashed-line in Figure 2 is the standard contour for a Nyquist-like stability criterion
in terms of Δ z; rð Þ. The contour portions ofN z along the two slopes actually overlap
the slope lines. Clearly, the contour N z is actually the boundary of the sector region
encircled by the dashed-line. The radiuses of the two arcs in the sector are suffi-
ciently small and large, respectively, or simply γ ! 0 and R ! ∞. The sector is
symmetric with respect to the real axis, whose half angle is π

2 r.
Secondly, the simply closed curve defined on the s-domain as illustrated by

Figure 3 presents the standard contour used for a Nyquist-like stability criterion in
terms of Δ s; rn;⋯; r1ð Þ. Again the contour is plotted with dashed-lines; in particular,
the contour portion along the imaginary axis is actually overlapping the imaginary
axis. More precisely, N s is the boundary of the open right-half complex plane
C
þ ¼ s∈ C : Re sð Þ>0f g in the sense that

N s ∪ C
þ ¼ s∈ C : Re sð Þ≥0f g, Int N sð Þ ¼ C

þ

where Int �ð Þ denotes the interior of a closed set. Similar to the contour N z, the
radiuses of the two half-circles in N s are sufficiently small and large, respectively,
namely, γ ! 0 and R ! ∞.

Remarks about the contours N z and N s:

• In both cases, the origin of the complex plane is excluded from the contours
themselves and their interiors. The reason for these specific contours is that G sð Þ
and Δ s; rn;⋯; r1ð Þ (respectively, G z; rð Þ and Δ z; rð Þ) are well-defined merely on
C\ 0f g due to the relation (6) and z ¼ sr.

Figure 2.
The standard z-domain contour N z.

Figure 3.
The standard s-domain contour N s.
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• One might suggest that in order to detour the origin, the small arc in N z and
the small half-circle in N s can also be taken from the left-hand side around the
origin so that possible sufficiency deficiency in the subsequent stability conditions
can be dropped. In fact, if the origin is in the interior of N s, G sð Þ and Δ s; rn;⋯; r1ð Þ
have no definition at the origin. Therefore, the argument principle does not apply
rigorously.

3.2 Stability conditions related to FCO-LTI systems

Stability conditions in terms of the zeros distribution of Δ s; rn;⋯; r1ð Þ ¼ 0 and
that of Δ z; rð Þ ¼ 0 are given by the following proposition [13, 15].

Proposition 1. Consider the fractionally commensurate system with commen-
surate order 0< r≤ 1 defined by the fractional-order differential equation (1) or
the fractional-order state-space equation (3). The system is stable if and only if all
the zeros of Δ s; rn;⋯; r1ð Þ ¼ 0, denoted by skf gk, have negative real parts or all the
zeros of Δ z; rð Þ ¼ 0, denoted by zlf gl, satisfy

∣Arg zlð Þ∣>
π

2
r, ∀zl (20)

where Arg �ð Þ is the principal branch argument of �ð Þ on the Riemann surface.

3.3 Stability criterion in FCO-LTI systems

In what follows, a fractional-order polynomial β s; rð Þ is said to be commensu-
rately Hurwitz if β s; rð Þ is fractionally commensurate order r with some 0< r≤ 1 in
the sense that all the roots of β s; rð Þ ¼ 0 possess negative real parts. More specifi-
cally, we write

β s; rð Þ ¼ cps
rlp þ cp�1s

rlp�1 þ⋯þ c1e
rl1

where lp > lp�1 >⋯> l1 ≥0 are integers and Re sð Þ<0 for any β s; rð Þ ¼ 0. It is
straightforward to see by definition that a fractionally commensurate order
Hurwitz polynomial must be holomorphic on the whole complex plane.

Theorem 1. Consider the fractional-order system with commensurate order
0< r≤ 1 defined by the differential equation (1) or the state-space equation (3). The
concerned system is stable if and only if for any γ >0 sufficiently small and R>0
sufficiently large, any prescribed commensurate order Hurwitz polynomial β s; rð Þ,
the stability locus

f s; β s; rð Þð Þ s∈N s
≕

Δ s; rn;⋯; r1ð Þ

β s; rð Þ

�

�

�

�

�

�

�

�

s∈N s

(21)

vanishes nowhere over N s, namely, f s; β s; rð Þð Þ 6¼ 0 for all s∈N s; and the num-
ber of its clockwise encirclement around the origin is equal to that of its
counterclockwise ones, namely,

N f s; β s; rð Þð js∈N s

 �

¼ Nc f s; β s; rð Þð Þ s∈N s

�

�Nc



f s; β s; rð Þð Þ
�

�

�

�

�

�

s∈N s

� �

¼ 0

In the above, the clockwise/counterclockwise orientation of f s; β s; rð Þð Þjs∈N s
can

be self-defined.
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Proof of Theorem 1. By introducing any fractional-order commensurately
Hurwitz polynomial β s; rð Þ into Δ s; rn;⋯; r1ð Þ, we obtain

Δ s; rn;⋯; r1ð Þ

β s; rð Þ
¼ f s; β s; rð Þð Þ (22)

Under the given assumption about the concerned characteristic polynomial and
the fact that β s; rð Þ is holomorphic, we can assert that f s; β s; rð Þð Þ is well-defined in
the sense that it is meromorphic and without singularities at the origin. This says
in particular that the argument principle applies to (22) as long as f s; β s; rð Þð Þ 6¼ 0
over s∈N s. Apparently, Eq. (22) holds even if there are any factor cancelations
between Δ s; rn;⋯; r1ð Þ and β s; rð Þ. This says that all unstable poles in Int N sð Þ∪N s, if
any, remain in the left-hand side of (22).

Bearing these facts in mind, let us apply the argument principle to (22)
counterclockwisely with N s being the Cauchy integral contour, and then the
desired assertion in terms of (25) follows.

More precisely, since f s; β s; rð Þð Þjs∈N s
vanishes nowhere over s∈N s, we conclude

readily that

Nz Δ s; rn;⋯; r1ð Þð Þ �Nz β s; rð Þð Þ ¼ N f s; β s; rð Þð Þð js∈N s

�

(23)

where Nz �ð Þ denotes the zero number of �ð Þ in Int N sð Þ∪N s and N �ð Þ denotes the
net number of the locus encirclements around the origin.

Note that all the roots of β s; rð Þ are beyond Int N sð Þ. It follows that N β s; rð Þð Þ ¼ 0.
Together with N �ð Þ ¼ Nc �ð Þ �Nc �ð Þ, it follows by (17) that

Nz Δ s; rn;⋯; r1ð Þð Þ ¼ Nc f s; β s; rð Þð Þ s∈Cγ

�

�

�

�Nc f s; β s; rð Þð Þð js∈Cγ

 �

The above equation says that Nz Δ s; rn;⋯; r1ð Þð Þ ¼ 0 if and only if

N f s; β s; rð Þð Þð js∈Cγ

�

¼ 0. The desired results are verified if we mention that

Nz Δ s; rn;⋯; r1ð Þð Þ ¼ 0 is equivalent to the assertion that Δ s; rn;⋯; r1ð Þ ¼ 0 has no
roots in Int N sð Þ∪N s. This says exactly that Δ s; rn;⋯; r1ð Þ ¼ 0 has no roots in
Int N sð Þ∪N s, and thus the concerned system is stable.

Several remarks about Theorem 1.

• Theorem 1 is independent of the contour and locus orientations; or the locus
orientations can be alternatively defined after the locus is already drawn. The
fractionally commensurate Hurwitz polynomial β s; rð Þ can be arbitrarily prescribed
so that no existence issues exist. In addition, the stability locus is not unique. The
polynomial β s; rð Þ actually provides us additional freedom in frequency-domain
analysis and synthesis.

•When the stability locus with respect to the infinite portion ofN s is concerned,
it is most appropriate to let the commensurate degree of β s; rð Þ, namely, c-
deg β s; rð Þð Þ ¼ lp, satisfy lp ¼ kn, although β s; rð Þ can be arbitrary as long as it is
fractionally commensurate Hurwitz. For example, in the sense of (25),
if c-deg β s; rð Þð Þ> kn, the stability locus approaches the origin 0; j0ð Þ as s ! ∞. It
may be graphically hard to discern possible encirclements around 0; j0ð Þ; if
c-deg β s; rð Þð Þ< kn, the stability locus contains portions that are plotted infinitely far
from 0; j0ð Þ. When c-deg β s; rð Þð Þ ¼ kn and let β s; rð Þ ¼ Lβ0 s; rð Þ with L>0 be con-
stant and β0 s; rð Þ monic, it follows from (25) that
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lim
s!∞

f s; β s; rð Þð Þ ¼ lim
s!∞

Δ s; rn;⋯; r1ð Þ

Lβ
0
s; rð Þ

¼ 1=L<∞ (24)

Since f s; β s; rð Þð Þ is continuous in s, (27) says that ∣f s; β s; rð Þð Þ∣ ≤M over s∈N s for
some 0<M<∞ and f s; β s; rð Þð Þjs∈N s

can be plotted in a bounded region around the

origin. Thus, no prior frequency sweep is needed when dealing with the stability
locus (25).

• Each and all the conditions in Theorem 1 can be implemented only by numer-
ically integrating ∠f s; β s; rð Þð Þ for computing the argument incremental
∇∠f s; β s; rð Þð Þ along the Cauchy integral contour N s, and then checking if
∇∠f s; β s; rð Þð Þ=2π ¼ 0 holds. In this way, numerically implementing Theorem 1
entails no graphical locus plotting. This is also the case for the following results.

• The clockwise/counterclockwise orientation of f s; β s; rð Þð Þjs∈N s
can be self-

defined. This is also the case in all the subsequent results.

Next, a regular-order polynomial α z; rð Þ is said to be πr-sector Hurwitz if all the
roots of α z; rð Þ ¼ 0 satisfy (20). More specifically, we write

α z; rð Þ ¼ cpz
lp þ cp�1z

lp�1 þ⋯þ c1z
l1

where lp > lp�1 >⋯> l1 ≥0 are integers and Arg zð Þ<0 for any α z; rð Þ ¼ 0. It is
easy to see that a πr-sector Hurwitz polynomial is holomorphic.

Theorem 2. Consider the fractional-order system with commensurate order
0< r≤ 1 of the differential equation (1) or the state-space equation (3). The system
is stable if and only if for any γ >0 small and R>0 large sufficiently, any prescribed
πr-sector Hurwitz polynomial α z; rð Þ, the stability locus

g z; α z; rð Þð Þ z∈N z
≕

Δ z; rð Þ

α z; rð Þ

�

�

�

�

�

�

�

�

z∈N z

(25)

vanishes nowhere over N z, namely, g z; α z; rð Þð Þ 6¼ 0 for all z∈N z; and the
number of its clockwise encirclement around the origin is equal to that of its

counterclockwise ones, namely, N g z; α z; rð Þð jz∈N z

 �

¼ 0.

Proof of Theorem 2. Repeating those for Theorem 1 but in terms of g z; α z; rð Þð Þ
rather with f s; β s; rð Þð Þ, while the contour N s is replaced with N z.

Remark 2. The proof arguments can also be understood by using the transfor-
mation z ¼ sr to (22) and then applying the argument principle to the resulting z-
domain relationship. Note that z ¼ sr is holomorphic on C\ 0f g. The angle preserving
property ([16], pp. 255–256) leads immediately that the stability conditions of
Theorem 2 are equivalent to those of Theorem 1.

3.4 Stability criteria for closed-loop FCO-LTI systems

Based on the return difference equation (31) claimed in the feedback configura-
tion of Figure 1, together with the argument principle, the following s-domain
criterion follows readily.

Theorem 3. Consider the feedback system as in Figure 1 with the fractional-
order subsystems ΣG and ΣH defined in (22). Assume that both subsystems are
fractionally commensurate with respect to a same commensurate order 0< ρ≤ 1.
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Then, the closed-loop system is stable if and only if for any s-domain contourN s � ϵ

with R>0 sufficiently large and γ >0, ϵ≥0 sufficiently small, any prescribed com-
mensurate order Hurwitz polynomial β s; rð Þ; the locus

fC s; β s; ρð Þð Þ s∈N s�ϵ ≕
ΔG s; ρð ÞΔH s; ρð Þ

β s; ρð Þ

det Im þH sð ÞG sð Þð Þ

det Im þ ΞDð Þ

�

�

�

�

�

�

�

�

s∈N s�ϵ

(26)

satisfies: (i) fC s; β s; ρð Þð Þ 6¼ 0 for all s∈N s � ϵ; (ii) N


fC s; β s; ρð Þð Þ
�

�

�

s∈N s�ϵ

�

¼ 0.

Here, N s � ϵ stands for the contour by shifting N s to its left with distance ϵ.
Proof of Theorem 3. Under the given assumptions, the return difference equation

(19) is well-defined on N s � ϵ and Int N s � ϵð Þ. Then, applying the argument
principle to (19) and repeating some arguments similar to those in the proof for
Theorem 1, the desired results follow readily.

To complete the proof, it remains to only show why we must work with the
contourN s � ϵ in general, rather than the standard contourN s itself directly. To see
this, we notice that the shifting factor ϵ≥0 is introduced for detouring possible open-
loop zeros and poles on the imaginary axis but excluding the origin. Since all zeros and
poles, if any, are isolated, ϵ≥0 is always available. Furthermore, we have by (12) that

ΔG s; ρð ÞΔH s; ρð Þ
det Im þH sð ÞG sð Þð Þ

det Im þ ΞDð Þ

¼ ΔG s; ρð ÞΔH s; ρð Þ
det ΔG s; ρð ÞΔH s; ρð ÞIm þ �H sð Þ�G sð Þ
 �

Δ
m
G s; ρð ÞΔm

H s; ρð Þdet Im þ ΞDð Þ

which says clearly that if there are imaginary zeros of ΔG s; ρð ÞΔH s; ρð Þ, then
factor cancelation will happen between ΔG s; ρð ÞΔH s; ρð Þ and det Im þH sð ÞG sð Þð Þ.
Such factor cancelation, if any, can be revealed analytically as in the above algebras,
whereas it does bring us trouble in numerically computing the locus (obviously,
numerical computation cannot reflect any existence of factor cancelation rigor-
ously). Consequently, when the standard contour N s is adopted, if there do exist
imaginary open-loop poles, the corresponding stability locus cannot be well-defined
with respect to N s. When this happens, one need to know the exact positions of
imaginary zeros and/or poles and modify the contour accordingly to detour them
before computing the locus; in other words, working with N s brings sufficiency
deficiency when imaginary open-loop poles exist.

On the contrary, if there exist no imaginary open-loop poles, it is not hard to see
that working with N s � ϵ in numerically computing the locus yields no sufficiency
redundance as ε ! 0, noting that ϵ≥0 always exists.

As a z-domain counterpart to Theorem 3, we have.
Theorem 4. Under the same assumptions of Theorem 3; the closed-loop system

is stable if and only if for any s-domain contour N z � ϵ with R>0 large sufficiently
and γ >0, ϵ≥0 sufficiently small, any prescribed πr-sector Hurwitz polynomial
α s; rð Þ; the stability locus

gC z; α z; ρð Þð Þ z∈N z�ϵ ≕
~ΔG z; ρð Þ~ΔH z; ρð Þ

α z; ρð Þ
det

Im þ ~H zð Þ~G zð ÞÞ

det Im þ ΞDð Þ

 

�

�

�

�

z∈N z�ϵ

�

�

�

�

�

�

(27)

satisfies: (i) gC z; α z; ρð Þð Þ 6¼ 0 for all z∈N z � ϵ; (ii)

N


gC z; α z; ρð Þð Þ
�

�

�

z∈N z�ϵ

�

¼ 0. Here, we have
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~ΔG z; ρð Þ ¼ ΔG s; ρð Þ sρ¼z; ~ΔHðz; ρÞ ¼ ΔHðs; ρÞ
�

�

�

�

sρ¼z

~H zð Þ ¼ H sð Þ sρ¼z; ~G zð Þ ¼ G sð Þ
�

�

�

�

sρ¼z

(

In the above, N z � ϵ is the contour by shifting N z to its left with distance ϵ.
Several remarks about Theorems 3 and 4:

• The shifted contour N s � ϵ reduces to the standard contour N s when ϵ ¼ 0.
This is also the case for the shifted contour N z � ϵ and N z.

• Clearly, the detouring treatments in Theorems 3 and 4 do not exist in Theo-
rems 1 and 2, since the stability conditions in the latter ones are claimed directly on
the fractional-order characteristic polynomials, in which transfer functions are not
involved.

4. Numerical illustrations

4.1 Example description for Theorems 1 and 2

Consider a single fractional-order commensurate system [15] with the charac-
teristic polynomial

s2r þ 2asr þ b ¼ 0, a, b∈R

where the commensurate order 0< r ¼ k
m ≤ 1 with k, m, and k≤m being positive

integers as appropriately. In all the numerical simulations based on Theorem 1, the

fractionally commensurate Hurwitz polynomial β s; rð Þ ¼ sþ 1ð Þ2r is employed. In all
the numerical simulations based on Theorem 2, the πr-sector Hurwitz polynomial

α z; rð Þ ¼ zþ 0:1ð Þ2 is adopted.
In what follows, the s-domain contour N s is defined with γ ¼ 0:01 and

R ¼ 100000, while the z-domain contour N z is defined with γ ¼ 0:01 and
R ¼ 10000.

4.2 Numerical results for Theorems 1 and 2

The following cases are considered in terms of a and b. In each figure, the left-
hand sub-figure plots the stability locus in terms of f s; β s; rð Þð Þjs∈N s

, or simply the s-

locus, for some fixed a and , while the right-hand sub-figure presents the stability
locus in terms of g z; α z; rð Þð Þjz∈N z

, or simply the z-locus.

Figure 4.
Stability loci with a ¼ 2 and b ¼ 1.
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• a>0, b>0, and a2 ≥ b. By examining the s-loci of Figure 4 graphically, no
encirclements around the origin are counted in each case of

r∈ 0:2;0:4;0:6;0:8; 1:0f g; indeed, N


f s; β s; rð Þð Þ
�

�

�

s∈N s

�

¼ 0 for each

r∈ 0:2;0:4;0:6;0:8; 1:0f g can be verified numerically without locus plotting.
Therefore, the system is stable in each case.

The same conclusions can be drawn by examining the z-loci of Figure 4. More

precisely, we have N


f z; α z; rð Þð Þ
�

�

�

z∈N z

�

¼ 0 for each r∈ 0:2;0:4;0:6;0:8; 1:0f g

numerically.

• a>0, b>0, and a2 < b. By the s-loci of Figure 5, no encirclements around the
origin are counted in each case of r∈ 0:2;0:4;0:6;0:8; 1:0f g graphically; or

N


f


s; β s; rð Þ
��

�

�

s∈N s

�

¼ 0 for each r∈ 0:2;0:4;0:6;0:8; 1:0f g numerically. There-

fore, the system is stable in each case.
The same conclusions can be drawn by examining the z-loci of Figure 5. More

precisely, we have N


f


z; α z; rð Þ
��

�

�

z∈N z

�

¼ 0 for each r∈ 0:2;0:4;0:6;0:8; 1:0f g

numerically.

• a<0, b<0, and thus a2 ≥ b holds always. By the s-loci of Figure 6, one net
encirclement around the origin is counted in each case of r∈ 0:2;0:4;0:6;0:8; 1:0f g

graphically; alternatively, N


f


s; β s; rð Þ
��

�

�

�

�

�

s∈N s

�

∣ ¼ 1 for each

r∈ 0:2;0:4;0:6;0:8; 1:0f g numerically. Therefore, the system is unstable in each case.
The instability conclusions in each r∈ 0:2;0:4;0:6;0:8; 1:0f g can be revealed by

means of the z-loci of Figure 6. More precisely, we have N


f


z; α z; rð Þ
��

�

�

z∈N z

�

¼ 1

for each r∈ 0:2;0:4;0:6;0:8; 1:0f g numerically.

Figure 5.
Stability loci with a ¼ 1=2 and b ¼ 1.

Figure 6.
Stability loci with a = �1 and b = �1.
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• a>0, b<0, and thus a2 ≥ b holds always. By the s-loci of Figure 7, one net
encirclement around the origin is counted in each case of r∈ 0:2;0:4;0:6;0:8; 1:0f g

graphically; alternatively, N


f


s; β s; rð Þ
��

�

�

�

�

�

s∈N s

�

∣ ¼ 1 for each

r∈ 0:2;0:4;0:6;0:8; 1:0f g numerically. Therefore, the system is unstable in each case.
The instability conclusions in each r∈ 0:2;0:4;0:6;0:8; 1:0f g can be drawn again

by means of the z-loci of Figure 7. More precisely, we have

N


f


z; α z; rð Þ
��

�

�

z∈N z

�

¼ 1 for each r∈ 0:2;0:4;0:6;0:8; 1:0f g numerically.

• a<0, b>0, and a2 ≥ b. By the s-loci of Figure 8, one net encirclement around

the origin is counted in the case of r ¼ 0:2 graphically, or N


f


s; β s; rð Þ
��

�

�

�

�

�

s∈N s

�

∣ ¼ 1

for r ¼ 0:2 numerically; two net encirclements around the origin are counted in

each case of r∈ 0:4;0:6;0:8; 1:0f g, or N


f


s; β s; rð Þ
��

�

�

�

�

�

s∈N s

�

∣ ¼ 2 for each

r∈ 0:4;0:6;0:8; 1:0f g numerically. Therefore, the system is unstable in each case of
r∈ 0:2;0:4;0:6;0:8; 1:0f g.

The instability conclusions in each r∈ 0:2;0:4;0:6;0:8; 1:0f g can be drawn again
by means of the z-loci of Figure 8. More specifically, we have

N


f


z; α z; rð Þ
��

�

�

z∈N z

�

¼ 1 for r ¼ 0:2 and N


f


z; α z; rð Þ
��

�

�

z∈N z

�

¼ 2 for each

r∈ 0:4;0:6;0:8; 1:0f g numerically.

• a<0, b>0, and a2 < b. By the s-loci of Figure 9, no encirclements around the
origin are counted in each case of r∈ 0:2;0:4;0:6f g graphically, or

N


f


s; β s; rð Þ
��

�

�

�

�

�

s∈N s

�

∣ ¼ 0 for each r∈ 0:2;0:4;0:6f g numerically. Therefore, the

system is stable in each case of r∈ 0:2;0:4;0:6f g. However, two net encirclements
around the origin are counted in each case of r∈ 0:8; 1:0f g graphically or

Figure 7.
Stability loci with a = 1 and b = �1.

Figure 8.
Stability loci with a ¼ �2 and b ¼ 1.
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N


f


s; β s; rð Þ
��

�

�

�

�

�

s∈N s

�

∣ ¼ 2 for each r∈ 0:8; 1:0f g numerically. Therefore, the

system is unstable in either case of r∈ 0:8; 1:0f g.
Stability in each case of r∈ 0:2;0:4;0:6f g and instability for either case of

r∈ 0:8; 1:0f g can be verified by the z-loci of Figure 9 as appropriately. Indeed, we

have N


f


z; α z; rð Þ
��

�

�

z∈N z

�

¼ 0 for r∈ 0:2;0:4;0:6f g and

N


f


z; α z; rð Þ
��

�

�

z∈N z

�

¼ 2 for each r∈ 0:8; 1:0f g numerically.

Based on the numerical results, the stability/instability conclusions based on the
s-loci completely coincide with those drawn based on the z-loci. This reflects the
fact of Remark 2. These numerical results are also in accordance with those by [15]
about the same example, which are summarized by working with solving polyno-
mial roots. It is worth mentioning that polynomial roots are not always solvable in
general. Fortunately, the suggested Nyquist-like criteria can be implemented
graphically and numerically, independent of any polynomial root solution and
inter-complex-plane transformation. Hence, the suggested technique is applicable
more generally.

4.3 Example description for Theorem 3

Consider the feedback configuration of Figure 1 used for automatic voltage
regulator (AVR) in generators, which is formed by the subsystems [6]:

G sð Þ ¼ KP þ
KI

sλ þ 0:0001
þ
100KDs

μ

sμ þ 100

� �

10

1þ 0:1sð Þ 1þ 0:4sð Þ 1þ sð Þ
, H sð Þ ¼

1

1þ 0:01s

where H sð Þ is a regular-order sensor model and G sð Þ is a cascading model
consisting of a fractional-order PID in the form of
KP þ KI= sλ þ 0:0001


 �

þ 100KDs
μ= sμ þ 100ð Þ 1, an amplifier modeled as

Figure 9.
Stability loci with a ¼ �1=2 and b ¼ 1.

KP KI KD μ λ

Case 1 1.2623 0.5531 0.2382 1.2555 1.1827

Case 2 1.2623 0.5526 0.2381 1.2559 1.1832

Table 1.
PID controller parameters.

1

The fractional-order integral portion in the PID is approximated by KI= sλ þ 0:0001

 �

in order to avoid

definition problem at the origin when it is in the form of KI=s
λ.
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10= 1þ 0:1sð Þ, an exciter modeled as 1= 1þ 0:4sð Þ, and a generator with model
1= 1þ sð Þ. Fractional-order PID parametrization is addressed in [6] by means of
particle swarm optimization.

In the following, we focus merely on verifying the closed-loop stability based on
Theorem 3, based on the parametrization results therein. To this end, the s-domain
shifting contour N s � ϵ is defined with R ¼ 100000, γ ¼ 0:1, and ε ¼ 0:01. To
utilize Theorem 3, the fractionally commensurate Hurwitz polynomial

β s; rð Þ ¼ sþ 1ð Þλþμþ4 is employed.
The so-called optimal controller parameters are listed in Table 1.

4.4 Numerical results for Theorem 3

Based on Table 1, the stability loci in the two cases are plotted in Figure 10.
The stability loci for the two cases cannot be distinguished from each other
graphically. By counting the outmost circle as one clockwise encirclement around
the origin, then one can count another counterclockwise encirclement after
zooming into the local region around the origin; it follows that the net encircle-
ments number is zero. Indeed, our numerical phase increment computations in

either case yields that N


fC



s; β s; ρð Þ
��

�

�

s∈N s�ε

�

¼ 0. From these facts, Theorem 3

ensures that the closed-loop fractional-order system is stable. This coincides with
the results in [6].

5. Conclusions

Stability is one of the imperative and thorny issues in analysis and synthesis of
various types of fractional-order systems. By the literature [28–30], the frequently
adopted approaches are through single/multiple complex transformation such that
fractional-order characteristic polynomials are transformed into standard regular-
order polynomials, and then stability testing of the concerned fractional-order
systems is completed by the root distribution of the corresponding regular-order
polynomials. In view of the root computation feature, such existing approaches are
direct in testing methodology.

In this paper, we claimed and proved an indirect approach that is meant also in
the s-complex domain but involves no root computation at all. What is more, the
main results can be interpreted and implemented graphically with locus plotting as
we do in the conventional Nyquist criteria, as well as numerically without any locus
plotting (or simply via complex function argument integration). This implies that
the complex scaling approach is numerically tractable so that is much more

Figure 10.
Stability loci for cases 1 and 2.
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applicable in fractional-order control design and parametrization. This point is
significant for practical control applications involving fractional-order plants,
which are our perspective topics in the future.
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