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Chapter

Ubiquitous Filtering for Nonlinear
Problems

Valeri Kontorovich and Fernando Ramos-Alarcon

Abstract

This chapter develops and extends the general theoretical results, previously
published in the chapter “Nonlinear filtering of weak chaotic signals”, and presents
detailed implementations of a computationally simple, robust (filtering fidelity
almost insensitive to changes of the desired input signal properties) and rather
precise approach for the filtering of weak signals of different physical nature
(biological, seismic, voice, etc.) in presence of white Gaussian noise. The
implementations rely on non-linear filtering techniques that in general can be
considered as either one-moment or multi-moment, in the sense that they operate
with a single sample (instantaneous fashion) or with various adjacent samples
(non-instantaneous fashion). Chaotic modeling of the real input signals allows
achieving an almost ubiquitous filtering approach with a computationally simple
implementation. Application of the linearization strategies (for both one and two-
moment filtering) provide, additionally, “invariance” of the processing algorithms
to variations on the nature and statistics of the input signals.

Keywords: system identification toolbox, linearized models, weak chaos,
quasi-linear filtering algorithms

1. Introduction

The signal filtering plays a fundamental role in the design of signal processing
algorithms for many problems, that is, the first step is to remove (to filter) the
background noise from the input (incoming) signal, and the second step is to
perform the corresponding signal processing [1, 2]. In this sense, the filtering
approach based on the theory of dynamic systems [3-5] pops up immediately as one
of the possible ways to address this issue. The dynamic filtering approach, such as
classic linear Kalman filtering, has been applied for many problems long ago [6] and
recently as well [7]. However, in the following the dynamic filtering is proposed
adopting a different (nonlinear) angle [8, 9], namely, using signals from nonlinear
chaotic attractors as a model for the desired signals arriving at the filtering struc-
ture. The modeling of real phenomena using chaos has been used for more than 50
years, and there is a wide range of scientific and practical applications, such as
seismology [10-12], statistical theory of communication [13, 14], control, geophys-
ics, biomedical telemetry [15, 16] under water signal processing [17], and many
other areas related to applied physics as well [18].

When the signals of interest are significantly weak (smaller than the background
additive white Gaussian noise, AWGN), the problem is far from trivial. The

1 IntechOpen



Research Advances in Chaos Theory

following material will show the effectiveness of using a dynamic nonlinear strategy
(introduced in [4, 5]) for filtering signals, belonging to different types of real
phenomena, which are modeled through components of chaotic attractors, all this
in presence of strong AWGN, which concretely means a signal to noise ratio, SNR,
< 1 (<0 dB). Note that even though weak signals are treated in the literature,

[10, 12], their processing is not addressed from the dynamic filtering point of view,
and therefore (in our opinion) optimum fidelity solutions are still required.

In the following the term, effective filtering is used to indicate high precision
which is evaluated considering values of the normalized mean square error, NMSE,
<1% (in the following the normalization of the MSE will be considered in relation to
the variance of the desired input signal). In the regular practice, there might be
several precision measures corresponding to each specific filtering scenario. The use
of the NMSE, or RMSE (root mean square error for nonstationary scenarios), as a
measure of precision (fidelity) for filtering is well established from the statistical
theory [19], and so, it can be considered as “universal” because its formal definition
is the same irrespectively to specific filtering scenarios [1, 2]. Also note that the case
of small values of the NMSE might adequately correspond to concrete practical
criteria of fidelity [3, 19].

The proposed strategy is robust but not in the sense used in control theory,
where the term “robust” means that the filter’s structure is invariant to a priori
unknown features of the input signals. The proposed chaotic filtering is considered
as robust in the sense that its fixed structure and fidelity are almost invariant to
signals from rather different filtering scenarios, which in the following correspond
to seismic signals, heart beat signals, voice-like signals, and radio frequency inter-
ference (RFI) signals. Actually one can see that such invariance makes the filtering
“ubiquitous.”

For conditions when the SNR < 0 dB, the term “weak chaotic signals” will be
used, keeping in mind that chaos modeling is applied for the abovementioned
filtering scenarios. Chaos modeling might be immensely useful because almost all
quasi-optimum filtering algorithms (which formally are nonlinear but are essen-
tially quasi-linear) show rather high precision in the sense of low NMSE (<1%) and
exhibit low computational complexity among other benefits. These properties were
broadly discussed in [8, 9], where theoretical proofs can be found. The material
presented here contains some experimental applications, for rather different sce-
narios that apply and extend the ideas presented in [9], and so, both have to be
considered together. In [9] it was impossible for the authors to include the present
material, not even partially, for the lack of space.

2. Extraction of some theoretical principles
2.1 Chaotic modeling and filtering

Let us assume that a chaos vector process x(t) can be generated from the
following ordinary differential equation (ODE) of certain attractor [18]:

X = F(x,t) (1)

where the initial condition is x(tg) = x¢ and F(e) is a vector function, which
(for any real application) is a priori unknown (together with the initial conditions)
and needs to be somehow identified beforehand and moreover is usually time
varying. It is worth mentioning that the identification problem for F(+) has
attracted a lot of interest in the last decades, but being rather complex, it has not
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been accomplished so far, at least to the author’s knowledge. The reason behind
this is the identification of Eq. (1) is an identification of the “inertial vector
nonlinear system” which does not have an unique solution and can be formulated
only for a previously defined class of nonlinear systems; the complexity of this task
has been addressed elsewhere [8, 9, 18, 20] and will not be considered in the
following. As examples for F(s), which will be used in the following, there are the
equations for the chaotic attractors corresponding to Rossler, Lorenz, and Chua

types [8, 9]:
Continuous time: Discrete time:

2(t) = —y(t) —2(t) X1 = %k + Te (=9 — 2)

Rossler y(¢) = x(¢) + 0.2y(¢) V1 =Yg + Ts (o +0.2y,) (2)
2(t) =02 =2()(57 =x(t) 2, | =z, + T,(0.2 — 2,(5.7 — xz))
*(t) = 10(x(t) — y(t)) X1 = %, + T5 (10 (v — )

Lorenz y(t) = 28x(t) — y(t) +x(t) -2(t) Yey1 =V + Ts (28xk Y T % .Zk) (3)
o 8 8
£(0) = 320 +x(0) YO g =gt T, <_ Sat yk)

#(t) = 9.205(y(t) — U(x(r))), ¥k+1 = Xksa + Te[9.205(y;, — Ulxw))],
Chua y(z) = x(t) — y(t) +2(2), Ys1 = Jisr T Te[xe — 3 + 23, (4)
Zht1 = Zp1 + T [—14.3)/,6},

where U (xy,) = maxy, +3 (mo — ma)[|x 4+ 1| — |, — 1], mo = —3, and m; = 2 and
T is the sampling time.

In order to neglect the uncertainty effects of the initial conditions, at least for
real data filtering, the approach used in [21], based on the fundamental statement of
statistical dynamics for deterministic systems related to Kolmogorov and Max Born
[18], together with the introduction of the so-called additive “process noise” in
Eq. (1), can be applied. The latter transforms the ODE Eq. (1) into a stochastic
differential equation (SDE) [20]. The transformation of Eq. (1) into SDE is relevant
for the following material.

The equation for strange attractor Eq. (1) can be transformed into the equivalent
stochastic form as a stochastic differential equation (SDE), which “generates” the
n-dimensional Markov stochastic process [18, 20]:

x = f(x(t)) + €§(t) (5)

where f(x(¢)) is identical to F(x(¢)) from Eq. (1). The influence of a weak
external source of white noise is denoted by &(¢); the noise intensities are given in a
matrix form e = [e;]""

The solutions proposed hereafter might be encountered from the structural
analysis of the quasi-optimum filtering algorithms for weak chaos in presence of
AWGN [8, 9] and are synthesized in the following for convenience.

When one uses the SDE Eq. (5) as a model for chaos, the first strategy that
comes up immediately to mind is the nonlinear filtering of chaotic signals which
was rigorously developed in [8, 9]. The kernel presented in [8] is the Stratonovich-
Kushner equation (SKE) [4, 5], which allows to describe the dynamic equation for
the a posteriori probability density function for the chaos x(¢). For the filtering with
this generalized approach, some additional information from the received aggregate
signal has to be incorporated on several sequential time instants, i.e., the
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information has to be considered in the block manner by aggregating data, in our
case, from several time instants (multi-moment processing). Multi-moment algo-
rithms are carried out through the generalization of the Stratonovich-Kushner
Equations for the corresponding multi-moment data. In this way the resulting
heuristics are not arbitrary; they are actually generalized heuristics from the stan-
dard one-moment SKE. All this gives hope that one can achieve rather good MSE
for successively lower thresholds of the SNR using an algorithm with rather low
complexity.

Note that the time evolution for the a posteriori PDF for x(¢) is completely
described by the SKE, but, unfortunately, it does not provide exact analytical
solutions. There are very few exceptions: linear SDE Eq. (4) which yields the well-
known Kalman filtering algorithm [4, 22] and some others [4, 5]. Due to this the
nonlinear filtering algorithms are practically always simplified, as quasi-optimum
or even quasi-linear [4, 5]. In practical applications quasi-linear filters are broadly
applied [4, 5].

One might wonder, what is the reason behind the application of chaotic model-
ing for weak signal filtering? The kernel for this lies in the “singular” properties of
the solution of the SKE (see Egs. (9) and (10) in reference [9]) for the dynamic
ODE for chaos Eq. (1), when the solution of the SKE is almost “tuned” to the
deterministic chaos from Eq. (1) without any dependence to the SNR [8]. Sure, this
statement has to be interpreted as a qualitative explanation for the solution proper-
ties of the SKE, and it is almost true for the behavior of the quasi-linear algorithms
as well [8, 9].

The following is a list of several quasi-linear filtering algorithms for chaotic
signals, based on so-called “Local Gaussian Approximation Approach for the a
posteriori PDF” [4, 9], which was found as rather opportunistic for real-time
implementations:

1.Extended Kalman filter (EKF)
2.Unscented Kalman filter (UKF)
3.Kalman quadrature filter (KQF)
4.Gauss-Hermite quadrature filter (GQF)
5.Conditionally optimum filter

All these algorithms certainly show different filtering precision for a fixed SNR
and completely different computational complexity for a fixed filtering fidelity. So,
in the selection of a concrete filtering algorithm for a concrete scenario, one has to
consider as possible selecting criteria the MSE (NMSE and RMSE) together with the
computational complexity.

Theoretically, the simplest way to get a comparative analysis of the
abovementioned algorithms for the case of weak chaos filtering is in the framework
of the so-called stochastic equivalent approximation of the observable component
of the chaotic attractor, considered as an adequate model of the real process for
filtering.

2.2 Stochastic differential equation of the first order (SDE-1)

The idea of the stochastically equivalent dynamic system (or SDE) was
presented for the first time by Stratonovich and Kushner in [5] and extensively
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developed for many real scenarios [20]. Let a chaotic attractor with certain observ-
able component in Eq. (1) together with its stochastic characterization be a model of
the input data. One might consider a random process, generated by a stochastic
differential equation of the first order (SDE-1), and name it as a stochastic equiva-
lent as long as it has the same probability density function (PDF) and the same
covariance function as the observable component. So, if one assumes that the
stochastic equivalent (through the solution of the scalar SDE-1) is an adequate
approach to substitute the model of the real phenomena (in the form of an observ-
able component of the multidimensional chaotic attractor), then the actual model is
[5, 20]:

% =f(x) + VKEQ) (6)

where the local characteristics, here denoted as K,(x) and K;(x) for Eq. (6), are
Ki(x) =f (x), Ka(x) = K, and &(¢) is AWGN with unitary intensity [5, 20, 23].1 If the
input signal for filtering is:

y(t) = S(x,t) +no(t) 7)

where 74 (t) is AWGN with intensity N, then applying the standard procedure
of local Gaussian approximation approach for the a posteriori PDF (which for this
particular case includes Taylor series representation for all nonlinearities and also
includes the PDF exponent and is limited to only quadratic terms at the SKE [4, 5]),
one can get the following quasi-optimum filtering algorithms:

& =f6) + 200 1y 0) — 53,0

ox 2 ox T No| ox |1
(8)

0S(%,?) Py(t) = K + MP 1 2 [08(9%)} 2P2

where x () and P;4(¢) are a posteriori mean (estimated value) and variance
(error) of filtering, respectively. Applying then the well-known standard EKF syn-
thesis procedure [4] for Egs. (6) and (7), one can also easily obtain the algorithm
Eq. (8). It is worth mentioning that the difference between the above-listed algo-
rithms for the local Gaussian approximation depends only on the way the localiza-
tion of the instantaneous estimation of x(¢) is chosen (as it will be commented in the
following).

For the case of high filtering accuracy, all other algorithms that apply local
Gaussian approximation [8] can be successfully approximated by the EKF, because
the true value of the filtered process and the reference point for application of the
Gaussian approximation are obviously very “close.”

The algorithm Eq. (8) is related to the so-called one-moment (1IMM) regime
which is classical for the EKF. In the 1IMM regime during each processing cycle, one
sample from one instant of time is processed (instantaneous processing). The 2MM
regime was exhaustively presented at [8, 9] as a special case of multi-moment
filtering and could be easily reviewed by the interested reader. In the 2MM
regime during each cycle, two samples from two instants of time are processed
(non-instantaneous processing). The main parameter for 2MM algorithm is “p”,
which is the correlation coefficient between two adjacent samples of the processing
algorithm.

" One can see that for the SDE Eq. (5) the Stratonovich and Ito forms for K;(x) and K>(x) are identical.
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Let us stress here that the concept of stochastic equivalence of the observable
component together with the SDE-1 was used only to make our statements in a
simple and “friendly” way and to provide computationally simple algorithms. For
the general case of the vector SDE (vector ODE) Eq. (1), when the stochastic
equivalence in the above presented form cannot be applied, because the high-order
statistics (HOS) play a significant role [4], all of the above qualitative comments are
true as well; the term % at Eq. (8) has to be substituted by the Jacobian matrix,
which is usually considered as a “linearization coefficient” at the pointx = x [4]. It
follows that the synthesis approach for the filtering algorithms (in the framework of
the local Gaussian approximations for the a posteriori PDF) can be considered as an

instantaneous (miscellaneous) linearization approach.

2.3 Computational complexity

The next issue, which has to be analyzed here, is the computational complexity
of the quasi-linear algorithms. This subject is crucial for the applications addressed
in the next section.

For the general case, when EKF, UKF, GHF, and QKF algorithms are applied
considering Chua, Lorenz, and Rdssler attractor signals as desired input signals, the
computational complexity for the processing is presented in the following table,
where all operations, additions (subtractions), multiplications (divisions), Cholesky
decompositions, Jacobian calculation (linearization), and nonlinear propagation are
included.

From Table 1, it can be easily seen that UKF involves the bigger complexity,
while EKF seems to be the simplest algorithm. However, the linearization process
performed by the Jacobian calculation involves partial derivatives. For that reason,
and depending on the mathematical model of the attractor, the EKF may not always
be the fastest algorithm. It follows from Table 1 that the EKF algorithm provides
the simplest implementation. Moreover, as it will be shown in the following section,
the EKF fidelity for weak signal detection is acceptable in all practical cases.
Together with the simple theoretical analysis, the EKF can be considered as an
opportunistic approach for applications (see the next section as well).

But one has to notice that for the robust (ubiquitous) solution and applications
(see above) the EKF has to be additionally modified by the following heuristics. One
can assume, as an alternative to the quasi-linear EKF algorithms, where the linear-
ization is instantaneously updated, that the robust solution for the EKF applications
might be found if a “fixed linearization” (with predefined linearization matrix) is
used instead of an “instantaneous” one. It actually means that instead of the EKF,
the standard Kalman filtering (SKF) approach is applied [3-7], and obviously one
has to admit some “losses” in the filtering accuracy for this case. At the same time, it

EKF UKF GHF QKF
Additions 8 50 25 25
Multiplications 15 77 33 40
Cholesky decomposition 1 2 2 2
Nonlinear propagation 0 15 21 6
Jacobian calculation 1 0 0 0

Table 1.
Computational complexity.



Ubiquitous Filtering for Nonlinear Problems
DOI: http://dx.doi.org/10.5772/intechopen.88409

has to be taken into account that the local Gaussian approximation of the a
posteriori PDF assumes that actually all the model components are almost linear and
therefore the accuracy losses might be rather moderate.

These filtering assumptions seem to be valid for several practical problems such as
interference mitigation, seismology, biomedical telemetry, etc. For weak chaotic
signals, in this condition it is possible to consider the EKF with “linear” Jacobian
matrix or even SKF instead of the EKF, which additionally simplifies the problem. To
obtain the linearization procedure, i.e., operate with a linear matrix A(¢) at Eq. (1),
that comes from the linear approximation of the attractor’s model for chaos, one can
use the broadly applied “system identification toolbox” (SIT), [24, 25], which actu-
ally provides a solution for A(#) with the spectral properties of the real data. It is
worth mentioning that the way how the SIT identifies the linear matrix A(¢) follows
from four “canonical representations” for the linear systems stated at [3].

Once more, it is only an approximation of an instantaneous linearization proce-
dure required by the quasi-optimum filtering using local Gaussian approximation,
but it gives a hope that for a high filtering precision NMSE of about 1% or less (see
comments above) the filtering precision losses (by use of the mentioned identifica-
tion approach) might be moderate and rather acceptable for practice (see also
results of the experimental setup). As a final comment, let us note that the “linear-
ization ideology,” as an approach, is rather common (see the references already
cited above) for quasi-optimum filtering algorithms with varying input data.

3. Results and discusion

The aim of this section is twofold and it will be considered separately. On one
side the aim is to show that the stochastic equivalent approach (SDE-1) is efficient
and has good accuracy for filtering purposes, taking the sufficiently nonlinear Chua
attractor Eq. (4) as the most attractive example. On the other side, the aim is to
illustrate the efficiency of the proposed methodology when it is applied to several
real-world signals, of absolutely different physical nature, namely, seismic signals,
electrocardiogram (ECG) signals, voice-like signals, and RFI signals. These experi-
mental settings have been associated to nonlinear chaotic signals [10-12, 15, 26, 27],
and very often, the scenario of such kind of signals includes a strong AWGN
background, and so the desired signals are rather weak.

An experimental real-time test bed was developed, containing block generators
for the AWGN, the EKF estimation (with their SDE-1 equivalents), the SKF esti-
mation (with the linearization matrix coefficients evaluated from the SIT block),
and the real input signals. The chaos EKF segment is a discrete implementation of
the EKF which internally contains the discrete version of the equations for the
strange attractors of Rossler, Lorenz, and Chua. It also performs a linearization by
calculating the Jacobian in each processing cycle. For each signal setting, one of the
attractor components (x, y or z) has to be adapted as a possible signal model.

For this purpose, first, the sampling time of the chaotic discrete equations is
varied so as to achieve a “match” between the temporal variations of the selected
attractor component and the desired signal (make the time scales as close as possi-
ble). Second, the desired signal is normalized in relation to the mean and variance of
the attractor component. The material of [8, 9] shows that the x-component of the
three strange attractors might be suitable for modeling the signals from the exper-
imental settings.

The SKF segment is a discrete implementation of the standard Kalman filter
which in this case is tridimensional in order to make a fair comparison with the
tridimensional EKF. In this segment the linearization matrix is obtained from the
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Figure 1.
Block diagram of the experimental test bed.

experimental signal (seismic, EGG, voice-like) using MATLAB’s SIT. The matrix
evaluation is made offline, calling the MATLAB’s command “ident.” Once the signal
is loaded in the workspace, the identification is made selecting the option “state
space models” [3, 22] for the tridimensional case. The program offers three estima-
tion options, and at the end it yields the confidence percentage for the selected
estimation option. It was found experimentally that the PEM option (prediction
error method) gives the best confidence for the estimated matrix. Note that for a
fixed scenario from the real life, the matrix should be evaluated for each incoming
signal offline before the signal processing is done (to obtain information both a
priori and (or) from experimental data) as it is illustrated in Figure 1 by introducing
a “virtual” delay “p,” which means the separation in time of the matrix identifica-
tion and filtering procedure; as the signals are stationary, the identification made
for a large vector signal will suffice for any short vector signal. This experimental
strategy is shown at Figure 1.

In the following, the experimental results apply the IMM and 2MM filtering
strategies. The 2MM strategy requires for its processing the correlation between two
samples which in our case was set to p = 0.85. The 2MM shows a bit better NMSE
values as it is intuitively expected. For the scenario of seismic signals, it was not
possible to calculate the linearization matrix from the SIT, as the signals are not
tractable (limited signal durations for the spectral analysis). For all filtering scenar-
ios, a weak process noise value (Q) has been introduced (EKF and SKF) in order to
exclude the uncertainty of the initial conditions and is indicated in the
corresponding tables.

3.1 Experiment one

This experiment shows the efficiency of the stochastic equivalent SDE-1 for
filtering. For illustration purposes, the intended signal here is the x-component of
the chaotic attractor from Chua. It is worth noticing that upon taking x(¢) in Eq. (4)
as the observable component, the correspondent PDF is bimodal due to the function
U(-) [20]. The statistically equivalent SDE-1 for the case of Chua’s x-component can
be obtained straightforward from Eq. (8) [8, 9]:

2p(t) — 1) = K P? ;
%01) Py =—S+2+4K(py +4;)Pn (9)

3é1 = —2](32'1(}71 +q1) + 2 N

where p; = 3.5and ¢, = 1.5.
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Figure 2 shows the result for the NMSE. The dotted line corresponds to the SDE-1
filtering according to Eq. (9) and the continuous line to the 1IMM 3D EKF using
Eq. (4) in (A3), and in both cases the input signal is the Chua’s x-component. The
reason for doing this is that when one filters the input signal (Chua’s x-component)
using the Chua’s Eq. (4), it is almost the best one can do (quasi-optimum solution),
and that is why it gives the most adequate benchmark. From Figure 2 it is possible to
see that there are some very moderate losses due to the use of the SDE-1 methodology,
as it is logically expected; however the NMSE for the SDE-1 does not differ too much
from the 1IMM 3D EKF, and so the SDE-1 approach offers almost the best accuracy.

The following examples are devoted to the filtering of real data, which obviously
differ from the theoretical chaos. The NMSE will increase because there is a mismatch
between the input signal and the “chaotic signal component” from the filtering
algorithm. This “mismatch” as it was mentioned above can be “compensated” by
introducing a process noise with intensity Q, in the filtering structure (A3).

3.2 Experiment two: fetal electrocardiogram signals (FECG)

The experimental data were obtained from a database ATM at PhysioNet [28].
The signal for this experiment corresponds to a baby’s heart in fetal stage at the 36th
week of the pregnancy cycle. For an SNR = —3 dB, Figure 3 shows the original
signal and the filtered signal using 1IMM EKF with Rossler x-component as a model.
Full results for the NMSE are shown in Table 2.

—————— SDE 1 EKF
Smp Time =0.0001 — 1MM 3D EKF

Figure 2.
Comparison between SDE method and 3D EKF.

Experiment 2: Abdominal Fetal ECG

e T T \ T T T T
05 : | FECG Signal
| SNR=0.49, i f : ; N EKF Rossler x (1MM)

Amplitude

' i 1
o 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
samples

Figure 3.
Snapshot for signals in experiment two.
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SNR 0dB -3dB —10 dB Processing time

SKF Q = 0.04 (with matrix from SIT)

1MM 0.0025 0.0037 0.0078 0.43s

2MM 0.0021 0.0032 0.0065 0.89 s

EKF Rossler x Q = 0.21

1MM 0.0026 0.0040 0.0098 1.825s

2MM 0.0023 0.0036 0.0079 3.503 s

EKF Lorenz x Q = 0.42

1MM 0.0029 0.0042 0.010 1.782s

2MM 0.0023 0.0034 0.0083 3.59s

EKF Chua x Q = 0.075

1MM 0.0034 0.0053 0.015 1.812s

2MM 0.0026 0.0042 0.012 3.61s
Table 2.

NMSE vesults for experiment two.

3.3 Experiment three: voice sounds

For this experiment sustained vowel sounds were used. These kinds of signals
are used for voice synthesis procedures [26]. Figure 4 shows the snapshot (contin-
uous line) of the vowel sound “O” (recorded in a sustained fashion for 5 s at
22050 Hz) and also the filtered signal (broken line) using 2MM SKF with its matrix
evaluated with the SIT. Almost identical results as in the previous experiments are
shown in Table 3. For this experiment none of the components from the Lorenz
attractor were suitable as a model for the voice-like signals.

3.4 Experiment four: seismic signals

For this experiment a MATLAB simulator based on the seismic models of [29]
was used. For an SNR = —3 dB, Figure 5 shows the seismic signal and its filtered
version using 2MM EKF with Rossler x-component as a model. Full results are
presented in Table 4. For the seismic signals, it was not possible to obtain an
adequate linearization matrix, and so the SKF was not applied for this scenario.

3.5 Experiment five: radio frequency interference (RFI) signals

This experiment considers the RFI generated by computing equipment [27, 30]
that affects the transmission of the desired information signals. For an SNR = —3 dB,

Experiment 3: Voice signal
03 \ T T T T \ I _ :
SNR = 0.50 Voice Signal
0.2 |
Lo |

b ) ; 10
ll TRTANEE
§ 11, i
o) || State U HL LG e kI
B Ay 3 At

"""" 2MM SKF with Matrix from SIT

01

Amplitude

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
samples

Figure 4.
Snapshot for signals in experiment three.
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SNR 0dB -3dB —10 dB Processing time

SKF Q = 0.0081 (with matrix from SIT)

1IMM 0.0025 0.0037 0.0079 0.47s

2MM 0.0015 0.0024 0.0053 0.95s

EKF Rossler x Q = 0.23

1IMM 0.0029 0.0044 0.0124 1.792s

2MM 0.0027 0.0039 0.011 3.611s

EKF Chua x Q = 0.76

1MM 0.0031 0.0048 0.0137 1.81s
2MM 0.0025 0.0043 0.0130 3.58s
Table 3.

NMSE results for experiment three.

Experiment 4: Earthquake signal

Seismic Signal
EKF Rossler x (2MM)

Amplitude

03 | | | | 1 | | | |
0 100 200 300 400 500 600 700 800 900 1000
samples

Figure 5.
Snapshot for signals in experiment four.

SNR 0dB —-3dB —-10 dB Processing time

EKF Rossler x Q = 0.35

1IMM 0.0048 0.0074 0.0178 179s

2MM 0.0047 0.0073 0.0135 3.53s

EKF Lorenz x Q = 0.135

1IMM 0.0058 0.0093 0.0245 1.807 s

2MM 0.0054 0.0081 0.0187 3.62s

EKF Chua x Q = 0.135

1MM 0.0057 0.0095 0.029 1.816s
2MM 0.0051 0.0084 0.023 3.65s
Table 4.

NMSE results for experiment four.

Figure 6 shows the RFI signal and its filtered version using 1IMM SKF with its
matrix evaluated with the SIT. Full results are presented in Table 5.

The simulation results obtained from the linearization approach, applying SIT,
are presented at Tables 2, 3, and 5. Comparative analysis of the data in the tables
allows the following conclusions. All the filtering approaches presented above are
rather effective, as all of them show low values of NMSE. One can notice that for the
worst-case scenario (—10 dB), signals are visually impossible to be distinguished
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50 Experiment 5: Radio Frequency Signal
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Figure 6.
Snapshot for signals in experiment five.

SNR 0dB -3dB -10 dB Processing time

SKF Q = 0.02 (with matrix from SIT)

1MM 0.0018 0.003 0.0098 0.51s

2MM 0.0015 0.0025 0.0085 0.92s

EKF Rossler x Q = 0.2

1IMM 0.0026 0.005 0.019 1.872s

2MM 0.0023 0.0036 0.011 39s

EKF Lorenz x Q = 0.6

1IMM 0.0023 0.0032 0.04 1.76 s

2MM 0.0016 0.0027 0.0083 3.81s

EKF Chuax Q = 0.4

1MM 0.0034 0.0053 0.035 1.86s
2MM 0.0026 0.0042 0.029 3.77s
Table 5.

NMSE results for experiment five.

from noise; however, the NMSE is around 1% for both strategies (SKF and EKF)
with either 1IMM or 2MM.

The tables also show the average time (in seconds) required to process 5000
samples applied for statistical processing, for each filtering scenario. One has to
notice that the 2MM approach consumes more time than the 1IMM algorithm but
(roughly speaking) no more than the double of the time required for the 1IMM
processing, as an upper bound. Second, the use of SKF is faster (almost 3 times)
because there is no time consumed for the linearization process. The processing
time together with the filtering complexity and fidelity might be considered as
“criteria” while choosing the appropriate filtering algorithm for concrete
implementations.

The SKF with the linearization approach yielded the best results; this once more
confirms what was pointed above that for the processing of the quasi-linear algo-
rithms of filtering, the influence of the spectral properties of the input data for these
algorithms prevails over the influence of the “non-Gaussian” statistics of the data.
The values of the NMSE, obtained by simulations, can be regarded as below or equal
to the requirements for many cases of the practice, at least from the study of the
corresponding references [1, 2] and the author’s knowledge as well. Moreover, one
can see that the NMSE values are rather close for all filtering scenarios, and for the
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practice, it is not so important what particular model of chaotic attractor or linear-
ization matrix from SIT is applied!

Why it happened? This spectacular issue was briefly mentioned above, but in
the following the feasible explanation is presented once more. It is worth to stress
that all the chaotic attractors mentioned and applied for modeling of the real data
are “generating” chaos as quasi-deterministic stochastic process Egs. (1) and (5).
Therefore all quasi-optimum filtering algorithms listed before (including EKF and
its modifications) that apply chaotic modeling are working in almost “singular”
regime, i.e., the shape of the a posteriori PDF is “concentrated” along the a priori
PDF of the desired signal “irrespective” to the value of the SNR [8, 9]. That is why it
is possible to obtain so low values of NMSE for weak signals (SNR <0 dB and down
to —10 dB). Thus, for high filtering fidelity, the linear term of the Taylor expansion
for the quasi-linear algorithm [4, 5, 22] significantly prevails over the terms related
to the “nonlinearities” (Jacobian matrix, etc.), i.e., the linear approximation is
“enough.” So the influence of the nonlinear character of the ODE of the attractors
on the value of the NMSE will be relatively small, which follows from the
experimental data in tables. Sure, the explanation above is “qualitative” but
well corresponding to the theoretic development of the quasi-optimum
algorithms [4, 22].

4, Conclusions

In this material a rather simple and robust structure for weak signal filtering is
proposed, based on the EKF algorithm and its 2MM modification. In addition, the
linearized filtering approach is considered as well.

Based on this it is possible to suggest, for chaotic modeling of input of non-
Gaussian data, a “high degree of freedom” for the filtering block design depending
on certain fidelity requirements and computational complexity.

Taking advantage of the quasi-linear character of the effective real-time filtering
algorithms for stochastic non-Gaussian real signals, an approach using the well-
known “system identification toolbox” was proposed as well and might be
selected as a reasonable compromise between computational complexity and
filtering accuracy.

The experimental results show that the filtering accuracy losses for the lineari-
zation case and even for the application of the simplified SDE-1 equivalent
approach are very moderate and almost negligible for practical implementations.
This issue might significantly simplify the theoretical study applied for comparative
selection of the filtering algorithms.

For the interested reader, it is highly recommended to consider together the
material of the previous chapter “nonlinear filtering of weak chaotic signals” and
the material presented above as it gives a complete “panorama” of the
recommended algorithms and their real-life implementations.

All the results presented in the plots and in the tables clearly show that the
implementation of the proposed strategy for solving filtering problems might be
recommended for the practical scenarios.
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