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Chapter

Density Estimation in Inventory
Control Systems under a
Discounted Optimality Criterion
Jesús Adolfo Minjárez-Sosa

Abstract

This chapter deals with a class of discrete-time inventory control systems where
the demand process Dtf g is formed by independent and identically distributed
random variables with unknown density. Our objective is to introduce a suitable
density estimation method which, combined with optimal control schemes, defines
a procedure to construct optimal policies under a discounted optimality criterion.

Keywords: discounted optimality, density estimation, inventory systems, optimal
policies, Markov decision processes

AMS 2010 subject classifications: 93E20, 62G07, 90B05

1. Introduction

Inventory systems are one of the most studied sequential decision problems in
the fields of operation research and operation management. Its origin lies in the
problem of determining how much inventory of a certain product should be kept in
existence to meet the demand of buyers, at a cost as low as possible. Specifically,
the question is: How much should be ordered, or produced, to satisfy the demand
that will be presented during a certain period? Clearly, the behavior of the inven-
tory over time depends on the ordered quantities and the demand of the product in
successive periods. Indeed, let It and qt be the inventory level and the order quantity
at the beginning of period t, respectively, and Dt be the random demand during
period t: Then Itf gt≥0 is a stochastic process whose evolution in time is given as

Itþ1 ¼ max 0; It þ qt �Dt

� �

≕ It þ qt �Dt

� �þ
, t ¼ 0, 1,…

Schematically, this process is illustrated in the following figure.

(Standard inventory system)
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In this case, the inventory manager (IM) observes the inventory level It and then
selects the order quantity qt as a function of It: The order quantity process causes
costs in the operation of the inventory system. For instance, if the quantity ordered
is relatively small, then the items are very likely to be sold out, but there will be
unmet demand. In this case the holding cost is reduced, but there is a significant
cost due to shortage. Otherwise, if the size of the order is large, there is a risk of
having surpluses with a high holding cost. These facts give rise to a stochastic
optimization problem, which can be modeled as a Markov decision process (MDP).
That is, the inventory system can be analyzed as a stochastic optimal control prob-
lem whose objective is to find the optimal ordering policy that minimizes a total
expected cost.

The analysis of the control problem associated to inventory systems has been
done under several scenarios: discrete-time and continuous-time systems with finite
or infinite capacity, inventory systems considering bounded and unbounded one-
stage cost, as well as partially observable models, among others (see, e.g., [1–5, 7]).
Moreover, such scenarios have their own methods and techniques to solve the
corresponding control problem. However, in most cases, it has been assumed that
all the components that define the behavior of the inventory system are known to
the IM, which, in certain situations, can be too strong and unrealistic. Hence it is
necessary to implement schemes that allow learning or collecting information about
the unknown components during the evolution of the system to choose a decision
with as much information as possible.

In this chapter we study a class of inventory control systems where the density
of the demand is unknown by the IM. In this sense, our objective is to propose a
procedure that combines density estimation methods and control schemes to con-
struct optimal policies under a total expected discounted cost criterion. The estima-
tion and control procedure is illustrated in the following figure:

(Estimation and control procedure)
In this case, unlike the standard inventory system, before choosing the

order quantity qt, the IM implements a density estimation method to get an
estimate ρt, and, possibly, combines this with the history of the system

ht ¼ I0; q0;D0;…; It�1; qt�1;Dt�1; It
� �

to select qt ¼ qt ht; ρtð Þ: Specifically, the density
of the demand is estimated by the projection of an arbitrary estimator on an
appropriate set, and its convergence is stated with respect to a norm which depends
on the components of the inventory control model.

In general terms, our approach consists in to show that the inventory system can
be studied under the weighted-norm approach, widely studied by several authors in

2

Statistical Methodologies



the field of Markov decision processes (see, e.g., [11] and references therein) and in
adaptive control (see, e.g. [9, 12–14]). That is, we prove the existence of a weighted
functionWwhich imposes a growth condition on the cost functions. Then, applying
the dynamic programming algorithm, the density estimation method is adapted to
such a condition to define an estimation and control procedure for the construction
of optimal policies.

The chapter is organized as follows. In Section 2 we describe the inventory
model and define the corresponding optimal control problem. In Section 3 we
introduce the dynamic programming approach under the true density. Next, in
Section 4 we present the density estimation method which will be used to state, in
Section 5, an estimation and control procedure for the construction of optimal
policies. The proofs of the main results are given in Section 6. Finally, in Section 7,
we present some concluding remarks.

2. The inventory model

We consider an inventory system evolving according to the difference equation

Itþ1 ¼ It þ qt �Dt

� �þ
, t ¼ 0, 1,…, (1)

where It and qt are the inventory level and the order quantity at the beginning of
period t, taking values in I≔ 0;∞½ Þ and Q≔ 0;∞½ Þ, respectively, and Dt represents
the random demand during period t: We assume that Dtf g is an observable
sequence of nonnegative independent and identically distributed (i.i.d.) random
variables with a common density ρ∈L1 0;∞½ Þ which is unknown by the inventory
manager. In addition, we assume finite expectation

D≔E Dtð Þ<∞: (2)

Moreover, there exists a measurable function ρ∈L1 0;∞½ Þ such that

ρ sð Þ ≤ ρ sð Þ (3)

almost everywhere with respect to the Lebesgue measure. In addition

ð

∞

0

s2ρ sð Þds<∞: (4)

For example, if ρ sð Þ≔Kmin 1; 1=s1þr
� �

, s∈ ½0,∞Þ, for some positive constants K
and r, then there are plenty of densities that satisfy (3)–(4).

The one-stage cost function is defined as

~c I; q;Dð Þ ¼ cqþ h I þ q�Dð Þþ þ b D� I � qð Þþ, I; qð Þ∈ I�Q , (5)

where h, c, and b are, respectively, the holding cost per unit, the ordering cost
per unit, and the shortage cost per unit, satisfying b> c:

The order quantities applied by the IM are selected according to rules known as
ordering control policies defined as follows. Let Ht be the space of histories of the
inventory system up to time t: That is, a typical element of Ht is written as

3
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ht ¼ I0; q0;D0;…; It�1; qt�1;Dt�1; It
� �

:

An ordering policy (or simply a policy) γ ¼ γtf g is a sequence of measurable
functions γt : Ht ! Q , such that γt htð Þ ¼ qt, t≥0. We denote by Γ the set of all

policies. A feedback policy or Markov policy is a sequence γ ¼ gt
� �

of functions

gt : I ! Q , such that gt Itð Þ ¼ qt: A feedback policy γ ¼ gt
� �

is stationary if there

exists a function g : I ! Q such that gt ¼ g for all t≥0:
When using a policy γ ∈Γ, given the initial inventory level I0 ¼ I, we define the

total expected discounted cost as

V γ; Ið Þ≔E
X

∞

t¼0

αt~c It; qt;Dt

� �

" #

, (6)

where α∈ 0; 1ð Þ is the so-called discount factor. The inventory control problem is
then to find an optimal feedback policy γ ∗ such that V γ ∗ ; Ið Þ ¼ V ∗ Ið Þ for all I∈ I,
where

V ∗ Ið Þ≔ inf
γ ∈Γ

V γ; Ið Þ, I∈ I, (7)

is the optimal discounted cost, which we call value function.
We define the mean one-stage cost as

c I; qð Þ ¼ cqþ hE I þ q�Dð Þþ þ bE D� I � qð Þþ

¼ cqþ h

ð

Iþq

0

I þ q� sð Þþρ sð Þdsþ b

ð

∞

Iþq

s� I � qð Þþρ sð Þds, I; qð Þ∈ I�Q:
(8)

Then, by using properties of conditional expectation, we can rewrite the total
expected discounted cost (6) as

V γ; Ið Þ ¼ Eγ

I

X

∞

t¼0

αtc It; qt
� �

" #

, (9)

where Eγ

I denotes the expectation operator with respect to the probability Pγ

I

induced by the policy γ, given the initial inventory level I0 ¼ I (see, e.g., [8, 10]).
The sequence of events in our model is as follows. Since the density ρ is

unknown, the one-stage cost (8) is also unknown by the IM. Then if at stage t the
inventory level is It ¼ I∈ I, the IM implements a suitable density estimation
method to get an estimate ρt of ρ: Next, he/she combines this with the history of the
system to select an order quantity qt ¼ q ¼ γ

ρt
t htð Þ∈Q: Then a cost c I; qð Þ is

incurred, and the system moves to a new inventory level Itþ1 ¼ I
0

∈ I according to
the transition law

Q BjI; qð Þ≔Prob Itþ1 ∈BjIt ¼ I; qt ¼ q
� �

¼

ð∞

0
1B I þ q� sð Þþ
� �

ρ sð Þds
(10)

where 1B :ð Þ denotes the indicator function of the set B∈B Ið Þ, and B Ið Þ is the

Borel σ�algebra on I. Once the transition to the inventory level I
0

occurs, the
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process is repeated. Furthermore, the costs are accumulated according to the
discounted cost criterion (9).

3. Dynamic programming equation under the true density ρ

The study of the inventory control problem will be done by means of the well-
known dynamic programming (DP) approach, which we now introduce in terms of
the unknown density ρ: In order to establish precisely the ideas, we first present
some preliminary and useful facts.

The set of order quantities in which we can find the optimal ordering policy
should be Q ∗ ¼ 0;Q ∗½ �⊂Q ,

where

Q ∗ ¼
bD

c 1� αð Þ
:

Thus, we can restrict the range of q so that q∈Q ∗ : Specifically we have the
following result.

Lemma 3.1 Let γ0 ∈Γ be the policy defined as γ0 ¼ 0;0;…f g, and let γ ¼ γtf g be a
policy such that γk hkð Þ ¼ qk >Q ∗ , for at least a k ¼ 0, 1, :… Then

V γ0; I
� �

≤ V γ; Ið Þ, I∈ I: (11)

That is, γ0 is a better solution than γ:

Proof. Let I0t , t ¼ 0, 1,…, be the inventory levels generated by the application

of γ0, and It; qt
� �

be the sequence of inventory levels and order quantities generated

by γ, where I00 ¼ I0 ¼ I, I0tþ1 ¼ I0t �Dt

� �þ
, and Itþ1 ¼ It þ qt �Dt

� �þ
, t≥0: With-

out loss of generality, we suppose that for a q>Q ∗ we have q0 ¼ q: Note that

I0t ≤ It, for all t≥0: Then observing that cq> bD= 1� αð Þ,

V γ0; I
� �

¼ E
X

∞

t¼0

αtc I0t ;0;Dt

� �

" #

¼ E
X

∞

t¼0

αt h I0t �Dt

� �þ
þ b Dt � I0t

� �þ
� 	

" #

≤ E
X

∞

t¼0

αth It �Dt

� �þ
þ b

X

∞

t¼0

αtE Dtð Þ

≤ E
X

∞

t¼0

αt h It þ qt �Dt

� �þ
þ b Dt � It � qt

� �þ
þ

bD

1� α


 �

" #

≤ E
X

∞

t¼0

αt h It þ qt �Dt

� �þ
þ b Dt � It � qt

� �þ
þ cq

� 	

" #

≤ E
X

∞

t¼0

αt cqt þ h It þ qt �Dt

� �þ
þ b Dt � It � qt

� �þ
� 	

" #

¼ V γ; Ið Þ, I∈ I:∎

Remark 3.2 Observe that for I; qð Þ∈ I�Q ∗ we have

c I; qð Þ ¼ cqþ L I þ qð Þ,
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where, by writing y ¼ I þ q,

L yð Þ≔ hE y�Dð Þþ þ bE D� yð Þþ:

In addition, observe that for any fixed s∈ ½0,∞Þ, the functions y ! y� sð Þþ and

y ! s� yð Þþ are convex, which implies that L yð Þ is convex. Moreover

lim
y!∞

L yð Þ ¼ ∞:

The following lemma provides a growth property of the one-stage cost
function (8).

Lemma 3.3 There exist a number β and a function W : I ! ½1,∞Þ such that
0< αβ< 1,

sup
I;q;sð Þ∈ I�Q ∗�½0,∞Þ

W I þ q� sð Þþ
� �

W Ið Þ
≔φ<∞, (12)

and for all I; qð Þ∈ I�Q ∗

c I; qð Þ ≤ W Ið Þ: (13)

In addition, for any density μ on 0;∞½ Þ such that
Ð∞

0 sμ sð Þ<∞,

ð

∞

0

W I þ q� sð Þþ
� �

μ sð Þds ≤ βW Ið Þ, I; qð Þ∈ I�Q ∗ : (14)

The proof of Lemma 3.3 is given in Section 6.
We denote by BW the normed linear space of all measurable functions u : I ! ℜ

with finite weighted-norm (W�norm) ∥ � ∥W defined as

uk kW ≔ sup
I∈ I

u Ið Þj j

W Ið Þ
: (15)

Essentially, Lemma 3.3 proves that the inventory system (1) falls within of the
weighted-norm approach used to study general Markov decision processes (see,
e.g., [11]). Hence, we can formulate, on the space BW , important results as exis-
tence of solutions of the DP-equation, convergence of the value iteration algorithm,
as well as existence of optimal policies, in the context of the inventory system (1).
Indeed, let

V nð Þ γ; Ið Þ ¼ Eγ

I

X

n�1

t¼0

αtc It; qt
� �

" #

be the n-stage discounted cost under the policy γ ∈Γ and the initial inventory
level I∈ I, and

V nð Þ Ið Þ ¼ inf
γ ∈Γ

V nð Þ γ; Ið Þ; V 0ð Þ Ið Þ ¼ 0, I∈ I

the corresponding value function. Then, for all n≥0 and I∈ I, (see, e.g.,
[6, 10, 11]),
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V nð Þ Ið Þ ¼ min
q∈Q ∗

c I; qð Þ þ α

ð

∞

0

V n�1ð Þ I þ q� sð Þþ
� �

ρ sð Þds

8

<

:

9

=

;

(16)

Moreover, from [11, Theorem 8.3.6], by making the appropriate changes, we
have the following result.

Theorem 3.4 (Dynamic programming) (a) The functions V nð Þ and V ∗ belong to
BW : Moreover

V nð Þ Ið Þ ≤
W Ið Þ

1� αβ
, V ∗ Ið Þ ≤

W Ið Þ

1� αβ
, I∈ I: (17)

(b) As n ! ∞, V nð Þ � V ∗
�

�

�

�

W
! 0:

(c) V ∗ is convex.
(d) V ∗ satisfies the dynamic programming equation:

V ∗ Ið Þ ¼ min
q∈Q ∗

c I; qð Þ þ α

ð

∞

0

V ∗ I þ q� sð Þþ
� �

ρ sð Þds

8

<

:

9

=

;

¼ min
I ≤ y ≤ Q ∗þI

cyþ L yð Þ þ α

ð

∞

0

V ∗ y� sð Þþ
� �

ρ sð Þds

8

<

:

9

=

;

� cI, I∈ I:

(18)

(e) There exists a function g ∗ : I ! Q such that g ∗ Ið Þ∈Q ∗ and, for each I∈ I,

V ∗ Ið Þ ¼ c I; g ∗ Ið Þð Þ þ α

ð

∞

0

V ∗ I þ g ∗ Ið Þ � sð Þþ
� �

ρ sð Þds, I∈ I:

Moreover, γ ∗ ¼ g ∗f g is an optimal control policy.

4. Density estimation

As the density ρ is unknown, the results in Theorem 3.4 are not applicable, and
therefore they are not accessible to the IM. In this section we introduce a suitable
density estimation method with which we can obtain an estimated DP-equation.
This will allow us to define a scheme for the construction of optimal policies. To
this end, let D0, D1,…, Dt,… be independent realizations of the demand whose
density is ρ:

Theorem 4.1 There exists an estimator ρt sð Þ≔ ρt s;D0;D1;…;Dt�1ð Þ, s∈0,∞Þ, of
ρ, such that (see (2) and (3)):

D.1. ρt ∈L1 0;∞½ Þ is a density.
D.2. ρt ≤ ρ �ð Þ a.e. with respect to the Lebesgue measure.

D.3.
Ð∞

0 sρt sð Þds ≤ D:

D.4. E
Ð∞

0 ρt � ρ sð Þj jds ! 0, as t ! ∞:

D.5. E ρt � ρk k ! 0, as t ! ∞, where

kμk≔ sup
I;qð Þ∈ I�Q ∗

1

W Ið Þ

ð

∞

0

W I þ q� sð Þþ
� �

μ sð Þds (19)

for measurable functions μ on 0;∞½ Þ:
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It is worth noting that for any density μ on 0;∞½ Þ satisfying (14), the norm kμk is
finite. The remainder of the section is devoted to prove Theorem 4.1.

We define the set D⊂L1 0,∞½ Þð Þ as:

D≔ μ : μ is a density;

ð

∞

0

sμ sð Þds ≤ D; μ sð Þ ≤ ρ sð Þ a:s:

8

<

:

9

=

;

:

Observe that ρ∈D.
Lemma 4.2 The set D is closed and convex in L1 0,∞½ Þð Þ:
Proof. The convexity of D follows directly. To prove that D is closed, let μt ∈D

be a sequence in D such that μt !
L1

μ∈L1 0,∞½ Þð Þ: First, we prove

μ sð Þ ≤ ρ sð Þ a:e: (20)

We assume that there is A⊂ ½0,∞Þ with m Að Þ>0 such that μ sð Þ> ρ sð Þ, s∈A, m
being the Lebesgue measure on ℜ. Then, for some ε>0 and A0 ⊂A with m A0ð Þ>0,

μ sð Þ> ρ sð Þ þ ε, s∈A0: (21)

Now, since μt ∈D, t≥0, there exists Bt ⊂0,∞Þ with m Btð Þ ¼ 0, such that

μt sð Þ ≤ ρ sð Þ, s∈ ½0,∞Þ\Bt, t≥0: (22)

Combining (21) and (22) we have

μt sð Þ � μ sð Þj j≥ ε, s∈A0∩ 0,∞½ Þ\Btð Þ, t≥0:

Using the fact that m A0∩ 0,∞½ Þ\Btð Þ ¼ m A0ð Þ>0ð , we obtain that μt does not
converge to μ in measure, which is a contradiction to the convergence in L1: There-
fore μ sð Þ ≤ ρ sð Þ a.e.

On the other hand, applying Holder’s inequality and using the fact that
ρ∈L1 0;∞½ Þ, from (20),

1�

ð

∞

0

μ sð Þds

























¼

ð

∞

0

μt sð Þds�

ð

∞

0

μ sð Þds

























¼

ð

∞

0

μt sð Þ � μ sð Þj j
1
2 μt sð Þ � μ sð Þj j

1
2ds

≤

ð

∞

0

2ρ sð Þ

0

@

1

A

1=2
ð

∞

0

μt sð Þ � μ sð Þj j

0

@

1

A

1=2

! 0 as t ! ∞,

(23)

which implies
Ð∞

0 μ sð Þds ¼ 1: Now, as μ≥0 a:e:, we have that μ is a density.
Similarly, from (4),

ð

∞

0

s μt sð Þ � μ sð Þj jds ¼

ð

∞

0

s μt sð Þ � μ sð Þj j
1
2 μt sð Þ � μ sð Þj j

1
2ds

≤

ð

∞

0

s22ρ sð Þds

0

@

1

A

1=2
ð

∞

0

μt sð Þ � μ sð Þj jds

0

@

1

A

1=2

≤ 2
1
2M0

ð

∞

0

μt sð Þ � μ sð Þj jds

0

@

1

A

1=2

,

(24)
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for some constant M0
<∞: Letting t ! ∞ we obtain

ð

∞

0

sμt sð Þds !

ð

∞

0

sμ sð Þds

which, in turn, implies that

ð

∞

0

sμ sð Þds ≤ D:

This proves that D is closed.∎
Let ρ̂t sð Þ≔ ρ̂t s;D0;D1;…;Dtð Þ, s∈ ½0,∞Þ, be an arbitrary estimator of ρ such that

E ρ� ρ̂tk kL1
¼ E

ð

∞

0

ρ sð Þ � ρ̂t sð Þj j ! 0 as t ! ∞: (25)

Lemma 4.2 ensures the existence of the estimator ρt which is defined by the
projection of ρ̂t on the set of densities D: That is, the density ρt ∈D, expressed as

ρt ≔ argmin
σ ∈D

σ � ρ̂tk kL1
,

is the “best approximation” of the estimator ρ̂t on the set D, that is,

ρt � ρ̂tk kL1
¼ inf

μ∈D
μ� ρ̂tk kL1

: (26)

Now observe that ρt satisfies the properties D.1, D.2, and D.3. Hence, Theorem
4.1 will be proved if we show that ρt satisfies D.4 and D.5. To this end, since ρ∈D,
from (26) observe that

ρt � ρk kL1
≤ ρt � ρ̂tk kL1

þ ρ̂t � ρk kL1
≤ 2 ρ̂t � ρk kL1

, t≥0,

which implies that, from (25),

E

ð

∞

0

ρ sð Þ � ρt sð Þj jds ≤ 2E ρ̂t � ρk kL1
! 0, as t ! ∞: (27)

That is, ρt satisfies Property D.4. In fact, since
Ð

∞

0

ρ sð Þ � ρt sð Þj jds ≤ 2 a.s., from

(27) it is easy to see that

E

ð

∞

0

ρ sð Þ � ρt sð Þj jds

0

@

1

A

q

! 0, as t ! ∞, for any q>0: (28)

Now, to obtain property D.5, observe that from (12)

kρt � ρk ¼ sup
I;qð Þ∈ I�Q ∗

1

W Ið Þ

ð

∞

0

W I þ q� sð Þþ
� �

ρ sð Þ � ρt sð Þj jds ¼ φ

ð

∞

0

ρ sð Þ � ρt sð Þj jds: (29)
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Therefore, property D.4 yields

Ekρt � ρk ! 0, as t ! ∞, (30)

which proves the property D.5.

5. Estimation and control

Having defined the estimator ρt, we will now introduce an estimate dynamic
programming procedure with which we can construct optimal policies for the
inventory systems.

Observe that for each t≥0, from (14),

ð

∞

0

W I þ q� sð Þþ
� �

ρt sð Þds ≤ βW Ið Þ, I; qð Þ∈ I�Q ∗ : (31)

Now, we define the estimate one-stage cost function:

ct I; qð Þ ¼ cqþ h

ð

Iþq

0

I þ q� sð Þþρt sð Þdsþ b

ð

∞

Iþq

s� I � qð Þþρt sð Þds

¼ cqþ Lt I þ qð Þ, I; qð Þ∈ I�Q ∗ ,

(32)

where (see Remark 3.2) for y ¼ I þ q,

Lt yð Þ≔ h

ð

y

0

y� sð Þþρt sð Þdsþ b

ð

∞

y

s� yð Þþρt sð Þds:

In addition, observe that for each t≥0, Lt yð Þ is convex and

lim
y!∞

Lt yð Þ ¼ ∞: (33)

We define the sequence of functions Vtf g as V0 � 0, and for t≥ 1

Vt Ið Þ ¼ min
q∈Q ∗

ct I; qð Þ þ α

ð

∞

0

V t�1 I þ q� sð Þþ
� �

ρt sð Þds

8

<

:

9

=

;

¼ min
I ≤ y ≤ Q ∗þI

cyþ Lt yð Þ þ α

ð

∞

0

Vt�1 y� sð Þþ
� �

ρt sð Þds

8

<

:

9

=

;

� cI, I∈ I:

(34)

We can state our main results as follows:
Theorem 5.1 (a) For t≥0 and I∈ I,

Vt Ið Þ ≤
W Ið Þ

1� αβ
: (35)
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Therefore, Vt ∈BW :

(b) As t ! ∞, E sup
I;qð Þ∈ I�Q ∗

ct I; qð Þ � c I; qð Þj j

W Ið Þ

" #

! 0:

(c) As t ! ∞, E Vt � V ∗k kW ! 0:
(d) For each t≥0, there exists Kt ≥0 such that the selector gt : I ! Q defined as

q ∗
t ¼ gt Ið Þ≔

Kt � I if 0 ≤ I ≤ Kt

0 if I>Kt

�

attains the minimum in (34).
Remark 5.2 From [10, Proposition D.7], for each I∈ I, there is an accumulation

point g∞ Ið Þ∈Q ∗ of the sequence gt Ið Þ
� �

. Hence, there exists a constant K ∗ such that

g∞ Ið Þ≔
K ∗ � I if 0 ≤ I ≤ K ∗

0 if I>K ∗

�

(36)

Theorem 5.3 Let g∞ be the selector defined in (36). Then the stationary policy

γ ∗ ≔ g∞
� �

is an optimal base stock policy for the inventory problem.

6. Proofs

6.1 Proof of Lemma 3.3

Note that, for each I; qð Þ∈ I�Q ∗ ,

c I; qð Þ ≤ cQ ∗ þ h I þ Q ∗ð Þ þ bD

≤ cþ hð ÞQ ∗ þ hI þ bD ≤ MG Ið Þ,
(37)

where M≔max cþ hð ÞQ ∗ þ bD; h
� �

and G Ið Þ ¼ I þ 1: Moreover, for every

density function μ on 0;∞½ Þ and I; qð Þ∈ I�Q ∗ ,

ð

∞

0

G I þ q� sð Þþ
� �

μ sð Þds ≤ G Ið Þ þQ ∗ : (38)

On the other hand, we define the sequence of functions wtf g, wt : I ! ℜ, as

w0 Ið Þ≔ 1þMG Ið Þ (39)

and for t≥ 1 and any density function μ on 0;∞½ Þ

wt Ið Þ≔ sup
q∈Q ∗

ð

∞

0

wt�1 I þ q� sð Þþ
� �

μ sð Þds:

Observe that, for each I∈ I,

w1 Ið Þ ¼ sup
q∈Q ∗

ð

∞

0

1þMG I þ q� sð Þþ
� �� �

μ sð Þds

≤ 1þMG Ið Þ þMQ ∗ :
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Thus,

w2 Ið Þ ¼ sup
q∈Q ∗

ð

∞

0

1þMG I þ q� sð Þþ
� �

þMQ ∗
� �

μ sð Þds

≤ 1þMG Ið Þ þMQ ∗ þMQ ∗ , I∈ I:

In general, it is easy to see that for each I∈ I,

wt Ið Þ ≤ MG Ið Þ þ 1þ
X

t�1

j¼0

MQ ∗ ¼ MG Ið Þ þ 1þMQ ∗ t: (40)

Let α0 ∈ α; 1ð Þ be arbitrary, and define

W Ið Þ≔
X

∞

t¼0

αt0wt Ið Þ: (41)

Then, from (40),

W Ið Þ ≤
X

∞

t¼0

αt0 MG Ið Þ þ 1þMQ ∗ t½ �

¼
X

∞

t¼0

αt0 MG Ið Þ þ 1ð Þ þMQ ∗
X

∞

t¼0

tαt0 ≤
MG Ið Þ þ 1

1� α0
þ

MQ ∗ α0

1� α0ð Þ2
:

(42)

Therefore, W Ið Þ<∞ for each I∈ I, and since w0 > 1, from (41),

W Ið Þ> 1: (43)

Furthermore, using (42) and the fact that W �ð Þ≥w0 �ð Þ, a straightforward cal-
culation shows that

φ≔ sup
I;q;sð Þ∈ I�Q ∗�0,∞Þ

W I þ q� sð Þþ
� �

W Ið Þ
<∞: (44)

Now, from (37) and (39), c I; qð Þ ≤ w0 Ið Þ, which yields, for all I; qð Þ∈ I�Q ∗ ,

c I; qð Þ ≤ W Ið Þ: (45)

In addition, for every density function μ on 0;∞½ Þ and I; qð Þ∈ I�Q ∗ ,

ð

∞

0

W I þ q� sð Þþ
� �

μ sð Þds ¼

ð

∞

0

X

∞

t¼0

αt0wt I þ q� sð Þþ
� �

μ sð Þds

¼
X

∞

t¼0

αt0

ð

∞

0

wt I þ q� sð Þþ
� �

μ sð Þds

≤
X

∞

t¼0

αt0wtþ1 Ið Þ ¼ α�1
0

X

∞

t¼0

αt0wt Ið Þ �w0 Ið Þ

" #

¼ α�1
0 W Ið Þ �w0 Ið Þ½ � ≤ α�1

0 W Ið Þ:
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Therefore, defining β≔ α�1
0 , we have that 0< αβ< 1, and

ð

∞

0

W I þ q� sð Þþ
� �

μ sð Þds ≤ βW Ið Þ, I; qð Þ∈ I�Q ∗ ,

which, together with (43), (44), and (45), proves Lemma 3.3.∎

6.2 Proof of Theorem 5.1

(a) Since
Ð∞

0 sρt sð Þds ≤ D, from (32) (see (37)) ct I; qð Þ ≤ MG Ið Þ for each

t≥0, I; qð Þ∈ I�Q ∗ : Hence, it is easy to see that ct I; qð Þ ≤ W Ið Þ for each
I; qð Þ∈ I�Q ∗ (see (45)). Then we have V1 Ið Þ ≤ W Ið Þ, and from (31), and

by applying induction arguments, we get

Vt Ið Þ ≤
W Ið Þ

1� αβ
, t≥0, I∈ I: (46)

(b) Observe that from (39), for each I∈ I,

W Ið Þ≥w0 Ið Þ ¼ 1þMG Ið Þ,

which implies that (see (43))

MG Ið Þ

W Ið Þ
≤ 1�

1

W Ið Þ
<∞: (47)

In addition, from (37),

h I þQ ∗ð Þ ≤ MG Ið Þ: (48)

On the other hand, similarly as (24), from (4), it is easy to see that

ð

∞

0

s ρt sð Þ � ρ sð Þj jds ≤ 2
1
2M0

ð

∞

0

ρt sð Þ � ρ sð Þj jds

0

@

1

A

1=2

, (49)

for some constant M0
<∞: Hence, combining (47)–(49), from the definition of

ct I; qð Þ and c I; qð Þ, we have

ct I; qð Þ � cðI; qÞj j

W Ið Þ
≤

h

W Ið Þ

ð

∞

0

I þQ ∗ð Þ ρt sð Þ � ρ sð Þj jdsþ
b

W Ið Þ

ð

∞

0

s ρt sð Þ � ρ sð Þj jds

≤
MG Ið Þ

W Ið Þ

ð

∞

0

ρt sð Þ � ρ sð Þj jdsþ b2
1
2M

0

ð

∞

0

ρt sð Þ � ρ sð Þj jds

0

@

1

A

1=2

:

Finally, taking expectation, (28) and Property D.4 prove the result.
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(c) For each I∈ I and t≥0, by adding and subtracting the term

α
Ð

∞

0

V t�1 I þ q� sð Þþ
� �

ρ sð Þds, we have

Vt Ið Þ � V ∗ Ið Þj j ≤ sup
q∈Q ∗

ct I; qð Þ � ðI; qÞj j þ sup
q∈Q ∗

α

ð

∞

0

V t�1 I þ q� sð Þþ
� �

ρt sð Þ � ρ sð Þj jds

þ α

ð

∞

0

V t�1 I þ q� sð Þþ
� �

� V ∗ I þ q� sð Þþ
� �





ρ sð Þds

≤ sup
q∈Q ∗

ct I; qð Þ � ðI; qÞj j þ
α

1� αβ
sup
q∈Q ∗

ð

∞

0

W I þ q� sð Þþ
� �

ρt sð Þ � ρ sð Þj jds

þ αβ∥Vt�1 � V ∗ ∥WW Ið Þ,

where the last inequality is due to (35), (17), (14), and (15). Therefore, from
(15) and (19) and by taking expectation,

E∥Vt � V ∗ ∥W ≤ E sup
q∈Q ∗

ct I; qð Þ � c I; qð Þj j þ
α

1� αβ
E ρt � ρk k þ αβE∥V t�1 � V ∗ ∥W :

(50)

Finally, from (17) and (35), η≔ limsupt!∞E V ∗ � Vtk kW <∞. Hence, taking
limsup in both sides of (50), from part (a) and property D.5 in Theorem 4.1, we get
η ≤ αβη, which yields η ¼ 0 (since 0< αβ< 1). This proves (c).

(d) For each t≥0, let Ht : I ! ℜ be the function defined as

Ht yð Þ≔ cyþ Lt yð Þ þ α

ð

∞

0

Vt�1 y� sð Þþ
� �

ρt sð Þds:

Hence, (34) is equivalent to

Vt Ið Þ ¼ min
q∈Q ∗

Ht I þ qð Þ � cI, I∈ I: (51)

Moreover (see (33)), observe that Ht is convex and limy!∞Ht yð Þ ¼ ∞: Thus,
there exist a constant Kt ≥0 such that

Ht Ktð Þ ¼ min
I ≤ y ≤ Q ∗þI

Ht yð Þ,

and

gt Ið Þ ¼
Kt � I if 0 ≤ I ≤ Kt

0 if I>Kt

�

attains the minimum in (51).∎

6.3 Proof of Theorem 5.3

We fix an arbitrary I∈ I. Since g∞ Ið Þ is an accumulation point of gt Ið Þ
� �

(see

Remark 5.2), there exists a subsequence tm Ið Þf g of tf g (tm ¼ tm Ið ÞÞ such that
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gtm Ið Þ ! g∞ Ið Þ as m ! ∞:

Moreover, from (34) and Theorem 5.1(d), letting tm ¼ m, we have

Vm Ið Þ ¼ cm I; gm
� �

þ α

ð

∞

0

Vm�1 I þ gm � s
� �þ

� 	

ρm dsð Þ: (52)

On the other hand, following similar arguments as the proof of Theorem 5.1(c),
for each m≥0 and I; qð Þ∈ I�Q , we have

α

ð

∞

0

Vm�1 I þ q� sð Þþ
� �

ρm sð Þds� α

ð

∞

0

V ∗ I þ q� sð Þþ
� �

ρ sð Þds

























≤ α

ð

∞

0

Vm�1 I þ q� sð Þþ
� �

� V ∗ I þ q� sð Þþ
� �





ρm sð Þdsþ α

ð

∞

0

V ∗ I þ q� sð Þþ
� �

ρm sð Þ � ρ sð Þj jds

≤ αβ∥Vm�1 � V ∗ ∥WW Ið Þ þ
α

1� αβ
ρm � ρk k:

Then, for each I∈ I,

E sup
q∈Q ∗

α

ð

∞

0

Vm�1 I þ q� sð Þþ
� �

ρm sð Þds� α

ð

∞

0

V ∗ I þ q� sð Þþ
� �

ρ sð Þds

























! 0, as m ! ∞:

(53)

Now,

α

ð

∞

0

Vm�1 I þ gm � s
� �þ

� 	

ρm dsð Þ

¼ α

ð

∞

0

Vm�1 I þ gm � s
� �þ

� 	

ρm dsð Þ � α

ð

∞

0

V ∗ I þ gm � s
� �þ

� 	

ρ sð Þds

2

4

3

5

þ α

ð

∞

0

V ∗ I þ gm � s
� �þ

� 	

ρ sð Þds:

(54)

Taking expectation and liminf as m ! ∞ on both sides of (54), from (53) we
obtain

lim inf
m!∞

Eα

ð

∞

0

Vm�1 I þ gm � s
� �þ

� 	

ρm dsð Þ ¼ lim inf
m!∞

Eα

ð

∞

0

V ∗ I þ gm � s
� �þ

� 	

ρ sð Þds

≥

ð

∞

0

V ∗ I þ g∞ � s
� �þ

� 	

ρ sð Þds,

where the last inequality follows by applying Fatou’s Lemma and because the

function q ! I þ q� sð Þþ is continuous. Hence, taking expectation and liminf in
(52), we obtain
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c I; g∞
� �

þ α

ð

∞

0

V ∗ I þ g∞ � s
� �þ

� 	

ρ sð Þds ≤ V ∗ Ið Þ, I∈ I: (55)

As I was arbitrary, by (18), the equality holds in (55) for all I∈ I. To conclude,
standard arguments on stochastic control literature (see, e.g., [10]) show that the
policy γ ∗ ¼ g∞

� �

is optimal.∎

7. Concluding remarks

In this chapter we have introduced an estimation and control procedure in
inventory systems when the density of the demand is unknown by the inventory
manager. Specifically we have proposed a density estimation method defined by the
projection to a suitable set of densities, which, combined with control schemes
relative to the inventory systems, defines a procedure to construct optimal ordering
policies.

A point to highlight is that our results include the most general scenarios of an
inventory system, e.g., state and control spaces either countable or uncountable,
possibly unbounded costs, finite or infinite inventory capacity. This generality
entailed the need to develop new estimation and control techniques, accompanied
by a suitable mathematical analysis. For example, the simple fact of considering
possibly unbounded costs led us to formulate a density estimation method that was
related to the weight function W, which, in turn, defines the normed linear space
BW (see (15)), all this through the projection estimator. Observe that if the cost
function c is bounded, we can take W � 1 and we have �k k ¼ �k kL1

(see (19) and

(25)). Thus, any L1�consistent density estimator ρt can be used for the construction
of optimal ordering policies.

Finally, the theory presented in this chapter lays the foundations to develop
estimation and control algorithms in inventory systems considering other optimal-
ity criteria, for instance, the average cost or discounted criteria with random state-
action-dependent discount factors (see [14, 15] and references therein).
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