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Chapter

Nonlinear Truss-Based Finite
Element Methods for
Catenary-Like Structures
Jose Rodolfo Chreim and Joao Lucas Dozzi Dantas

Abstract

This chapter is devoted to an application of a finite element method formulation
to forecast the static and mechanical behavior of catenary-like structures subject to
general force distributions, whose development was motivated by the need of
installing assemblies of containment structures, called log boom lines, upstream a
hydroelectric power plant to protect its integrity from the threats that logs carried
through the river pose on it. Each log boom is modeled by a tridimensional truss
element and the entire lines by assemblages of trusses. While the external forces,
modeled with the aid of both simulations from computational fluid dynamics and
experiments from a towing tank, originate from both the river stream and the logs
that accumulate through the extension of the lines, the internal forces are calculated
from classic expressions of solid mechanics; hence, the numerical method imposes
equilibrium between them, which ultimately defines the geometry assembly. Veri-
fication and validation were performed at both model and prototype scales, and the
results corroborated the accuracy of the tool for a series of flow conditions.

Keywords: finite element method, fluid-structure interaction, containment grids,
catenary-like, numerical simulation

1. Introduction

The operation of a hydroelectric power plant at the Madeira River is
compromised due to the presence of many logs carried through the water stream
that can damage the power plant machinery and reduce its production efficiency.
To prevent such damage, nine assemblies of containment structures, called log
booms (Figures 1 and 2), were installed near the power plant and across the river to
retain and deflect these logs. Nevertheless, as the influence of logs and stream can
exert large loads over the assemblies, they are under the risk of structural failure; so
a numerical tool based on the finite element method (FEM) was developed to
predict the distributions of loads and equilibrium configurations of the lines, there-
fore assisting their surveillance and maintenance. The numerical tool was part of a
research and development (R&D) project developed by the Institute for Techno-
logical Research (IPT), and it can be extended to similar problems in which the
structures behave likewise, as is the case of fishing nets and cleaning structures [1].
Moreover, while commercial software could be used for the same purpose, the
intrinsic drawbacks of large computation time, automation, and customization
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difficulties were generally not justified by the potential increase in accuracy, as the
tool would eventually be integrated in a larger numerical simulator.

2. Numerical model

The mathematical model used in the present formulation is based on the works
of Felippa and Gavin [2–4], whereas the numerical implementation was developed
within the Matrix Laboratory (MATLAB) environment [5]. The material deforma-
tions are assumed elastic only (i.e., no plasticity or yielding) as each log boom is

Figure 1.
Log boom unit schematics and its truss element representation with six DoF. The local reference frame is in blue,
while the global in red.

Figure 2.
Log boom lines and example of assembly of trusses used to model them.
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mainly composed of steel, making the unit respond linearly until approximately
80% of the yield stress [6], but the displacements are geometrically nonlinear, as
the forces, the geometric stiffness, and the assembly equilibrium configuration
depend on one another.

2.1 Mathematical model

Consider the three-dimensional truss element composed by six degrees of free-
dom (DoF) that represent all the possible translation directions its nodes have. Such
element is used to model the structural behavior of each log boom (Figure 1).

With this numbering, the element constitutive stiffness matrix KEe is

KEe ¼
EeAϕ
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while its geometric stiffness matrix KGe is

KGe ¼
T
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(2)

These matrices represent the stiffness of the truss due to its constitutiveness (as
KEe depends on the stiffness module Ee, on the cross-sectional area Aϕ, and on the
undeformed length L0) and existence of external influence (counterbalanced by the
tension T). Consequently, the tangential element matrix KTe, defined as the overall
stiffness, is simply their sum:

KTe ¼ KEe þ KGe (3)

An assembly is then modeled by the joint of N trusses, representing its N log
booms, as in Figure 2; thus, to account for the assembly overall stiffness KT, each
KTe is linearly transformed from the truss local coordinate systems to the global
assembly counterpart, and they are later superimposed.

Now, considering a function g uð Þ that represents the unbalance between inter-
nal and external forces (F and R, respectively), for a given geometric configuration
u, there is a relation between g uð Þ and KT:

g uð Þ � R� F ¼ KTΔu (4)

The equilibrium configuration u∗ is achieved when g uð Þ¼0, and in order to
find it, g u∗ð Þ can be expanded into a Taylor series about an arbitrary initial

configuration uj:
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g u ∗ð Þ ¼ g uj
� �

þ dg uð Þ
du u ¼ uj

u ∗ � uj
� �

þ 1

2

d2 g uð Þ
du2 u ¼ uj

u ∗ � uj
� �2 þO u3

� �

¼ 0
�

�

�

�

�

�

�

(5)

Truncating Eq. (5) to the first order, u∗ can be approximated by the unbalance
and its first derivative:

u ∗
≈ uj � d g uð Þ

du u ¼ uj

�

�

�

��1
g uj
� �

�

(6)

which, however, is a linear approximation of this nonlinear formulation. Given
such nonlinearity, the problem must be solved numerically, and all the equations

presented insofar are part of an iterative scheme, in which j (j¼0, 1,…) is the jth

iteration. Therefore, numerically speaking, successive expansions must be taken
about the consecutive values of u until a satisfactory equilibrium u∗Num is achieved
within a specified tolerance. So, from Eq. (6), at each iteration an improved equi-

librium configuration ujþ1 is obtained. Also, rearranging Eq. (4) in terms of the
same improved equilibrium configuration, one obtains:

ujþ1 ¼ uj � K
j
T

h i�1
Rj � Fj
� �

(7)

As expected, by similarity, K
j
T¼

d g uð Þ
du u¼uj

�

� , i.e., the tangential matrix is a func-

tion of uj. So, the numerical method consists of starting from an initial geometry,
calculating the external and internal forces, calculating the assembly tangential
matrix, and updating the geometric configuration. This process is repeated until the
internal and external forces are sufficiently close.

2.2 Force calculations

The loads acting on the assembly originate from the hydrodynamic interaction
and from the log accumulation and must be counterbalanced by the internal forces,
which are a function of the mechanical properties of the material. Although the
formulation is tridimensional, for the purposes by which the model was made, it is
sufficient to obtain the equilibrium configuration on the XZ plane. Hence, the
calculations presented next will only be on this plane.

2.2.1 External loads

To estimate the external forces, a database was created with the aid of compu-
tational fluid dynamics (CFD) (Figure 3). The software Siemens Star-CCM+,
version 12.02.011, was used for these numerical simulations: both water and air
were admitted incompressible, and the flow field was modeled using the unsteady
Reynolds-averaged Navier-Stokes equations implicitly (at the first iterations, the
movements were frozen to ensure fluid stabilization and then gradually released,
still seeking stabilization); the interaction between the fluids was represented by the
volume of fluid Eulerian multiphase model, and the multiphase conditions were
defined by the flat wave model with a numerical damping, added in the momentum
equation on the vertical direction, on both the inlet and outlet boundary conditions
to minimize the effects of reflection and ensure better convergence; finally, the k-ω
SST model was adopted.
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A series of velocity magnitudes V and incidence angles β were simulated such
that normal and tangential coefficients (Cz and Cx, respectively) were calculated
[7–9]. From them, fitting curves in the form of Eq. (8) were adjusted, whose values
of K depend on V (Figure 4):

Cx ¼ K1x cos K2xβð ÞK3x

Cz ¼ K1zsen K2zβð ÞK3z (8)

Each part of the log boom that is free to rotate was assigned with a pair of
coefficients (i.e., the grids and the chassis) such that the total hydrodynamic

force acting on the trusses is retrieved based on them. So, for the ith log boom
(i ¼ 1,…, NÞ,

Rxi Vi; βið Þ ¼ 1

2
ρV2

i CcxiACN þ CGxiAGNð Þ

Rzi Vi; βið Þ ¼ 1

2
ρV2

i CcziACN þ CGziAGNð Þ (9)

Figure 3.
CFD domain used to obtain the external force database.

Figure 4.
Example of Cx and Cz coefficients as functions of the velocity magnitude and incidence angle.
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ACN and AGN are the chassis and grid front areas, and ρ is the water density. The
V and β combinations used in the simulations were arithmetically averaged from
velocimetry data measured in situ along a line s that connects the assemblies’
mooring points (Figure 5).

Once the hydrodynamic coefficients were obtained, the contribution from the
logs that accumulate along the lines was assumed to be increments on the normal
coefficients [10] and estimated with the aid of data from experiments at the towing
tank of the IPT (Figure 6). Thus, considering already such increments, Eq. (9)
accounts for the total external forces acting on the center of the element, which are
equally distributed to its nodes and further transformed from local to global
coordinates as well, according to the angle θi between the two reference frames:

RXi ¼ �Rzi sin θið Þ þ Rxi cos θið Þ
RZi ¼ Rzi cos θið Þ þ Rxi sin θið Þ

(10)

So, RXi=2 and RZi=2 act on the X and Z directions of each node element.

2.2.2 Internal loads

The tension distribution throughout the trusses is calculated based on classic
linear relations of solid mechanics, and it acts on the axial direction of the element.

Figure 5.
Example of the variation of the velocity magnitude and incidence angle along a projected line that connects the
mooring points. The angles are measured taking the north coordinate of reference; thus, it is not β itself, but a
function of it.

Figure 6.
Example of experiment to measure the influence of the logs on the assembly.
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Therefore, for the same ith log boom, stretched to a new length Li (thus having new
coordinates ui), the internal tension acting upon it is calculated as in Eq. (11):

Ti ¼ EAϕ

Li � L0

L0

� �

(11)

This tension must be transformed to internal forces Fi that act on the nodes and
are represented on the global coordinate system. Considering the same angle θi, the
internal forces are obtained through a similar transformation:

FXi ¼ Ti cos θið Þ
FZi ¼ Ti sin θið Þ

(12)

2.3 Initial condition

Originally, the solution strategy was to adopt the line completely stretched along
the X direction and then gradually move the leftmost mooring point by small

increments Δ
!

j toward its final location, while the rightmost mooring point would

start at its correct location. Then, at each Δ
!

j the iterative scheme was run until
convergence (Figure 7).

However, such quasi-static approach is computationally expensive because of

the repetitiveness of the iterative procedure. Additionally, Δ
!

j has to be carefully
chosen to avoid numerical divergence. Thus, an improved initial condition was
proposed in which the assembly was initially approximated by a catenary whose
“weight vector” was obtained from the average of the hydrodynamic forces along s
(Figure 8). Then, with the initial geometry determined, the external and internal
forces could be calculated based on node equilibrium (Figure 9), as in Eq. (13):

T
!
i�1 þ T

!
i þ

R
!
i�1 þ R

!
i

2
¼0

!
(13)

in which Ri

!
¼ RiXX̂ þ RiZẐ and T

!
i�1 and Ti

!
are not known a priori (note that

there is no “element 0,” but T
!
0 ¼ T

!
1); thus, a recursive scheme starting from one of

Figure 7.
Example of initial condition and its evolution until final convergence.
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the mooring points is performed, as (13) has only one unknown at any of these
locations. The internal forces are then calculated using Eq. (12), and the iterative

scheme starts by either stretching the geometry by a small amount δ
!
from the

catenary geometry or, equivalently, by creating a small unbalance g.

2.4 Static condensation

An intrinsic characteristic of structural problems is the presence of fixed degrees
of freedom (F) in addition to the free ones (L). Thus, a common practice in FEM,
known as static condensation, is to renumber the DoF seeking to reorder and
split the linear system into two sub-systems. So, the displacement array can be
written as:

Δu ¼
ΔuL

ΔuF

� 	

(14)

and the unbalance array can be similarly split:

g uð Þ ¼
g uLð Þ
g uFð Þ

� 	

(15)

Figure 9.
Example of improved initial condition (catenary shape).

Figure 8.
Schematics of the new initial condition to obtain the tension distribution throughout the elements.
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For the log boom assembly, the fixed DoF are related to the mooring points, so
ΔuF are their known displacements, and g uFð Þ are the unknown reaction forces,
whereas the free DoF are related to the unknown displacement of the rest of the
line; ΔuL and g uLð Þ are the known difference between the external hydrodynamic
and internal loads. Thus, the linear system (Eq. (4)) can be rewritten as:

ΔuL

ΔuF

� 	j

¼ � K
j
T

h i�1 g uLð Þ
g uFð Þ

� 	j

(16)

Additionally, the matrix KT can be interpreted as follows:

KT ¼
KLL KLF

KFL KFF

" #

(17)

Thus, from Eq. (4),

K
j
LLΔu

j
L þ KLFΔu

j
F ¼ g uj

� �

L

K
j
FLΔu

j
L þ K

j
FFΔu

j
F ¼ g uj

� �

F

8

>

<

>

:

(18)

These sub-systems are solved recursively: the first of Eq. (18) is solved for Δu
j
L

and, sequentially, the reaction forces as calculated from the second one. Moreover,
static condensation is needed regardless of the initial condition used.

2.5 Sub-relaxation

Several times, the initial condition itself is not sufficient to ensure convergence
because the average velocity used to calculate the catenary “weight” might not
create a representative starting geometry. So, whenever the direct method fails, a
sub-relaxation parameter is applied to the force unbalance as a way to prevent large
deflections through the line, which is especially interesting during the first itera-
tions; the restrained deflections are generally sufficient to adequately converge the
simulation. The sub-relaxation Ω, 0 <Ω≤ 1 is applied in the updating process of
g uð Þ such that

g uj
� �

¼ g uj�1
� �

þ Ωj Rj � Fj
� �

(19)

Ω is usually a function of the iteration, but it must necessarily achieve unity
prior to final convergence. An example of how this parameter varies with the
iteration is shown in Figure 10.

2.6 Post-processing

After numerical convergence, a series of variables can be outputted, such as the
final geometry, the velocity magnitude and incidence angle acting over each log
boom, the reaction forces, and the tension distribution along the length of the line
LA. These variables, especially the last one, are of great importance, once they help
predict whether or not the simulated condition threatens the integrity of the line.
Examples of converged line and tension distribution are presented on Figures 11
and 12.
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Figure 11.
Example of configuration after convergence, evidencing the final geometry, the velocity profile, and the reaction
forces.

Figure 10.
Example of Ω behavior as a function of the iteration.

Figure 12.
Example of tension distribution along the assembly length LA.
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3. Results

In order to verify and validate the tool, thus assessing the numerical method
developed, many simulations were compared to theoretical, experimental, and
numerical data. As the ASME Verification & Validation Committee defines [11],
validation determines the degree of accuracy that a numerical model has in
representing the real world from its perspective, whereas verification evaluates its
intrinsic errors and uncertainties. So, the committee states that verification pre-
cedes validation, as they must be performed to ensure the numerical reliability of
the solution. In this work code and solution verifications were done by systemati-
cally refining the discretization and comparing the outputs with theoretical data
from the problem of a catenary [12]. Following, the validation was done for two
major cases: by comparing the solution with experimental results from a 1:10 scale
model tested in the towing tank at the Naval and Ocean Engineering Laboratory of
the IPT [13] and by comparing the solution with numerical simulations from
SIMPACK® Multi-Body Simulation software in prototype scale [12, 14]; the later
comparison had to be done against numerical data because it was unfeasible to
instrument the in situ assemblies. Additionally, only hydrodynamic cases (i.e.,
without logs) were compared.

3.1 Verification from a theoretical catenary model

While evaluation of the error was performed through comparison with the
catenary model, estimation of the error was done through classical Richardson
extrapolation [12]. Code and solution verifications were performed by systematic
grid refinement, with the coarsest mesh having 100 elements, the finest 800, and in
between these two, successive meshes were created such that the number of trusses

was consecutively increased by a value of approximately
ffiffiffi

2
p

, as recommended by
the committee [11]. For the analysis, a refinement ratio r that is a dimensionless
form of representing the number of elements was defined:

r ¼ hN

hNMax

(20)

hN is a representative grid size that, for the present formulation, assumes the
form of Eq. (21):

hN ¼
PN

i¼1 L0

N
¼ L0 (21)

Thus, according to Eq. (20), r¼1 represents the finest grid and r¼0 an
extrapolation in which the number of elements would hypothetically tend to infin-
ity, as their length would decrease accordingly. In the convergence region, the
behavior of the solution takes the form of Eq. (23), in which fext is the extrapolated
value, p the order of convergence, and C a constant to be determined. From this
expression, a fitting curve is plotted against r for the assessment of the convergence
behavior:

f hNð Þ ¼ fext þ Ch
p
N (22)

The relative error is simply evaluated by calculating the difference between the
theoretical and numerical values:
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Er ¼
fext � f hNð Þj j

fextj j (23)

and the uncertainty σ estimated through a grid convergence index (GCI):

GCI ¼ FS f hNMaxð Þ � fðh NMax�1ð Þ
�

�

�

�

hNMax

h NMax�1ð Þ

� �p

� 1

(24)

σ ¼ GCI

ψ� fext
(25)

FS and ψ are assigned, 1.25 and 1.1, respectively, so a safe value for σ is esti-
mated. The catenary used for verification has a total length of LC ¼ 200 m, and the
mooring points are at 0; 200ð Þ and 10; 20ð Þ. A vertical force per unit length
F0 ¼ 617:32 N=m acts throughout, and the minimum and maximum forces over the
catenary are used as variables of verification, f hNð Þ; they are both functions of the
curve parameter a, which in turn is obtained by solving a transcendental equation
that depends on the geometric parameters and on the force distribution:

Fmin ¼ a� F0 (26)

Fmax ¼ max
l� F0

sin tan �1 l
a

� �
 �

( )

(27)

l is the length of a segment measured from one of the catenary vertices.
Figure 13 shows the trends of the numerical forces as a function of the refinement
ratio along with the theoretical values, which are Fmin ≈ 110:793 kN and
Fmin ≈ 133:492 kN. On both cases p is close to 1, i.e., a convergence accuracy of first
order. Furthermore, the extrapolated values differ from the theoretical ones by no
more than 0:2%, and for the finest grid, the error is within the numerical uncer-
tainty. Finally, all the values are close to the fitting curve, indicating that even for
the poorest grids they seem to be within the convergence region: in fact, if the
uncertainties remain of the same order regardless of the level of discretization, the
disparity between the poorest grid and theoretical value is acceptable [12].

Finally, Figure 14 shows a comparison between numerical and theoretical
geometries; as they practically overlap, the verification corroborates the precision
of the proposed model. As a note, in order not to be much close to the correct

Figure 13.
Convergence of the numerical catenary maximum and minimum forces versus refinement ratio. Values are
normalized by the theoretical ones.
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catenary geometry, the verification was conducted with the line completely
stretched along the X direction.

3.2 Model scale validation

Reduced model experiments were conducted at the facilities of the IPT in a 1:10
scale with the purpose of studying the hydrodynamic behavior of such structures
[13]. To do so, the model, developed mainly in polycarbonate and polymer, was
constructed with the aid of a laser cutting machine and a 3D printer; the assembly
was ballasted by adding lead stripes along the structure but without changing its
front area as to minimize drag interference; to test both symmetric and asymmetric
setups, log booms were added from a five-unit symmetric configuration, while the
left mooring point was offset by distances ΔZ along the flow direction, since the
model width was limited by the basin; flat plates were attached on both extremities
to reduce the interference of the structures and to better control the flow incidence.

Four S-Type S9M uniaxial load cells, produced by HBM, were used at each
extremity, each of which with a nominal measure limit of 500 N, so the tensile
forces acting on the leftmost and rightmost log booms could be acquired. Addition-
ally, to understand how the stain behaves on each log boom and also how it is
transferred throughout the structure, water strain gages, manufactured by Kyowa
Electronic Instruments, were placed on one of the modules, as shown schematically
in Figure 15. These locations were appropriately chosen with the aid of numerical
simulations from finite element method: the criterion was to locate the stress con-
centration area that increased the measurement sensitivity while avoided the high
strain gradients, since the latter can contribute to unreliable measurements.

Figures 16–18 compare experimental and numerical results for three different
configurations as the function of the velocity. “LE” indicates “left extremity” and
“RE” “right extremity,” while “Exp” and “Num” refer to experimental and numer-
ical values. No numerical uncertainty was provided since the number of trusses was
maintained equal the number of log booms.

The results agree satisfactorily: the differences are more evident as the free
stream velocity increases; the numerical method reproduces the experimental
observation that the tensile force is larger at the leftmost log boom, an expected
trend since tensile loads are higher for elements that are parallel to the stream; the

Figure 14.
Geometry comparison for the theoretical formulation and numerical method.
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number of log booms seems not to affect the accuracy of the results, as the error
remains practically the same regardless of the configuration; the larger differences
are within 6:0% and are possibly due to reasons such as the model material proper-
ties, the modeling of the external forces, and the few number of elements. For the

Figure 15.
Schematics of the experimental setup.

Figure 16.
Force comparison as a function of free stream velocity. Six log boom lines.

Figure 17.
Force comparison as a function of free stream velocity. Seven log boom lines.
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later reason, better agreement could result from finer grids, although the one-to-
one representation would be lost.

3.3 Prototype-scale validation

A prototype-scale validation is presented, and the results were compared to
simulations from SIMPACK® Multi-Body Simulation software. The variables of
comparison are again the reaction forces at the leftmost and rightmost anchor
points, and the relative differences uLE and uRE use the values of SIMPACK® for
normalization. In the following tables, SP refers to the results from SIMPACK®,
while FEM to the results from the current method. Three validation cases were
performed: line 02, line 12, and the set of line 13.

3.3.1 Line 02

The first prototype validation was performed for line 02 with a variable velocity
profile, similar to the one presented in Figure 5. An example of converged solution
for line 02 is presented in Figure 19, in which the equilibrium configuration,
projected line, and velocity distribution are depicted.

The results from SIMPACK® and the current method are presented in [14]: the
first simulation considers a 20% increase in the normal external force (Cz), while
the second a 50% increase.

Table 1 shows that the maximum relative difference for the simulations that
happen at the RE (approximately 7.6%), while for the LE the maximum difference
is about 5.3%. Such values are satisfactory given the simplicity of the tool, in
comparison to SIMPACK®.

SP (kN) FEM (kN) u (%)

LE RE LE RE LE RE

1025 814 1076 876 5.0 7.6

1239 1029 1305 1104 5.3 7.3

Table 1.
Comparison of results between SIMPACK® and the current method—Line 02.

Figure 18.
Force comparison as a function of free stream velocity. Eight log boom lines.
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3.3.2 Line 12

The second validation was performed for line 12 with several velocity profiles,
also similar to the one presented in Figure 5. Analogously, Figures 19 and 20 depict
an example of a converged solution.

Table 2 presents the comparison between SIMPACK® and the developed for-
mulation. For this set of simulations, the maximum percentage difference happens
at the LE, and its value is approximately 6.6%, while at the RE this difference is
about 5.2%; the values are comparable to those for line 02, except that the extrem-
ities at which the maximum occurs are swapped.

3.3.3 Lines 13

The last validation was conducted for the group of lines 13, i.e., for lines 13A, 13B,
13C, and 13D. Figure 21 is an example of a converged simulation for line 13C/13D.

Figure 20.
Example of converged solution for line 12.

Figure 19.
Example of converged simulation for line 02.
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Particularly for line 13, the magnitude and incidence angle remained constant
throughout them, varying from simulation to simulation. In Table 3 these parame-
ters are summarized: the first columns indicate the velocity range (VR) used in each
simulation for the choice of the coefficients of Eq. (8), even though the actual
velocity magnitude was sometimes not within that range.

Table 4 presents the comparison between SIMPACK® and the developed
formulation.

The maximum percentage difference of the simulations happens again at the LE
and is approximately 7.0% for line 13A/13B and 7.1% for line 13C/13D. At the RE,
the difference is about 5.5% for line 13A/13B and 6.3% for line 13C/13D.

Figure 21.
Example of converged solution for line 13C/13D.

SP (kN) FEM (kN) u (%)

LE RE LE RE LE RE

1566 1234 1666 1295 6.4 4.9

1540 1204 1641 1267 6.6 5.2

1866 1479 1983 1543 6.3 4.3

2028 1578 2158 1659 6.4 5.2

1463 1124 1559 1181 6.6 5.1

1793 1387 1910 1459 6.5 5.2

1946 1487 2071 1564 6.4 5.2

1789 1382 1905 1454 6.5 5.2

1767 1359 1877 1424 6.2 4.8

1710 1306 1821 1374 6.5 5.2

2255 1748 2405 1840 6.6 5.3

1701 1314 1811 1381 6.4 5.1

1820 1414 1888 1425 3.7 0.8

Table 2.
Comparison of results between SIMPACK® and the current method—Line 12.
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4. Conclusions

A simple truss-based finite element method was proposed to simulate the load
distributions and geometric configurations of assemblies that behave in a catenary-
like manner, subject to external, variable loads. The formulation was tailored to the
particular problem of log booms (structures that retain logs from reaching the
machinery of hydropower plants) under the influence of river streams and the logs
they convey. The nonlinear formulation imposes equilibrium between internal and
external forces so that an iterative scheme must be numerically solved. The method
was verified by comparison against analytical results from a theoretical catenary
model: the relative error and uncertainty for the maximum and minimum forces
were within 0.2%, while the mesh refinement order of convergence was close to 1.
The tool was later validated against experimental model-scale data from the towing
tank at the Institute for Technological Research [12] and prototype-scale numerical
data from commercial software SIMPACK®, and all the results agree adequately
[14]: for the experimental data validation, the numerical method was capable of
reproducing the observations of the experiments, and the maximum relative dis-
crepancy observed was about 6%. The differences are invariant to the increase in
the assembly length, but they seem sensible to variations of the free stream. Like-
wise, the prototype-scale validations all show adequate agreement, regardless of the
line configurations, and a maximum relative error, considering SIMPACK® as the
reference, of less than 8%. These percentages corroborate the adequacy of the
method for the purpose by which it was developed: to a have a fast, yet reliable,

Line 13A/13B Line 13C/13D

SP (kN) FEM (kN) u (%) SP (kN) FEM (kN) u (%)

LE RE LE RE uLE uRE LE RE LE RE uLE uRE

1550 1263 1655 1329 6.8 5.2 822 647 876 679 6.6 5.0

934 759 1000 801 7.0 5.5 1501 1318 1607 1401 7.1 6.3

745 618 793 650 6.5 5.2 537 436 572 458 6.5 5.1

577 486 615 512 6.7 5.5 600 525 639 556 6.6 5.9

429 358 455 376 6.0 5.2 209 165 221 173 5.8 4.7

280 234 297 247 6.2 5.4 341 301 361 318 6.0 5.5

Table 4.
Comparison of results between SIMPACK® and the current method—Lines 13.

Line 13A/13B Line 13C/13D

VR (m/s) V (m/s) Angle (°) V (m/s) Angle (°)

2.5 < V < 3.5 3.18 54.44 2.11 59.60

2.5 < V < 3.5 2.49 54.81 2.04 42.00

1.0 < V < 3.5 2.14 52.11 1.60 56.26

1.0 < V < 3.5 1.80 49.56 1.33 42.48

1.0 < V < 2.0 1.69 53.06 1.13 61.03

1.0 < V < 2.0 1.36 52.80 1.05 43.53

Table 3.
Parameters for simulations of lines 13.
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tool, to forecast the tension distributions throughout the lines such that it can be
used as a simulator for the assessment of the structural safety of log boom
assemblies.
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