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Chapter

Quantized Field of Single Photons
Constantin Meis

Abstract

We present theoretical developments expressing the physical characteristics of a
single photon in conformity with the experimental evidence. The quantization of
the electromagnetic field vector potential amplitude is enhanced to a free of cavity
photon state. Coupling the Schrödinger equation with the relativistic massless
particle Hamiltonian to a symmetrical vector potential relation, we establish the
vector potential - energy equation for the photon expressing the simultaneous wave-
particle nature of a single photon, an intrinsic physical property. It is shown that the
vector potential can be naturally considered as a real wave function for the photon
entailing a coherent localization probability. We deduce directly the electric and
magnetic field amplitudes of the cavity-free single photon, which are revealed to be
proportional to the square of the angular frequency. The zero-energy electromag-
netic field ground state (EFGS), a quantum vacuum real component, issues natu-
rally fromMaxwell’s equations and the vector potential quantization procedure. The
relation of the quantized amplitude of the photon vector potential to the electron-
positron charge results directly showing the physical relationship between photons
and electrons-positrons that might be at the origin of their mutual transformations.
It becomes obvious that photons, as well as electrons-positrons, are issued from
the same quantum vacuum field.

Keywords: single photon, vector potential, photon wave-particle equation,
photon wave function, photon electric field, electromagnetic field ground state,
electron-positron charge

1. Introduction

During the last decades, an impressive technological development has been
achieved permitting the manipulation of single photons with a high degree of
statistical accuracy. However, despite the significant experimental advances, we
still do not have a clear physical picture of a single photon state universally accepted
by the scientific community, especially involved in quantum electrodynamics. In
this chapter, based on the present state of knowledge, we make a synthesis of the
physical characteristics of a single photon put in evidence by the experiments, and
we advance theoretical developments for its representation. Accordingly, the
concept of the wave-particle nature of a single photon becomes physically compre-
hensive and in agreement with the experimental evidence.

However, before advancing in the theoretical developments, we consider that it
is important starting with a brief historical review on the efforts carried out previ-
ously for understanding the nature of light while simultaneously making a synthesis
of the main experimental results which are of crucial importance for the
comprehension of the birth of the photon concept.
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The very first scientific publications on the nature of light are due to ancient
Greeks who believed light is composed of corpuscles [1, 2]. Around 300 BC Euclid
published the book Optica in which he developed the laws of reflection based on the
rectilinear propagation of light. Two centuries later, Ptolemy of Alexandria
published the book Optics, in which he included extensively all the previous knowl-
edge on light. In this book, colours as well as refraction of the moonlight and
sunlight by the earth’s atmosphere were analysed. After Ptolemy of Alexandria,
almost no progress has been reported until the seventeenth century.

In the year of 1670, Newton revived the ideas of ancient Greeks and advanced
the theory following that light is composed of corpuscles that travel rectilinearly
[3]. Ten years later, Huygens developed the principles of the wave theory of light
[1, 4, 5]. Huygens’wave theory was a hard opponent to Newton’s corpuscle concept.
In the beginning of the nineteenth century, Young obtained experimentally inter-
ference patterns using different sources of light and explained some polarisation
observations by assuming that light oscillations are perpendicular to the propaga-
tion axis [1, 6]. Euler and Fresnel explained the diffraction patterns observed
experimentally by applying the wave theory [6]. In 1865, Maxwell published his
theory on the electromagnetic waves establishing the relations between the electric
and magnetic fields and showing that light is composed of electromagnetic waves
[7]. A few years later, Hertz confirmed Maxwell’s theory by discovering the long-
wavelength electromagnetic radiation [1, 7]. Thus, at the end of the nineteenth
century, the scientific community started to accept officially the wave nature of
light replacing Newton’s theory.

Nevertheless, new events supporting the particle nature of light occurred in the
beginning of the twentieth century. Stefan and Wien discovered the direct rela-
tionship between the thermal radiation energy and the temperature of a black body
[8, 9]. However, the emitted radiation energy density as a function of the temper-
ature calculated by Rayleigh failed to describe the experimental results at short
wavelengths. Scientists had given the name “UV catastrophe” to this problem
revealing the necessity of a new theoretical approach. Planck managed to establish
the correct energy density expression for the radiation emitted by a black body with
respect to temperature, in excellent agreement with the experiment [8]. For that
purpose, he assumed that the bodies are composed of “oscillators” which have the
particularity of emitting the electromagnetic energy in “packets” of hν, where ν is
the frequency and h is a constant that was later called Planck’s constant. During the
same period, the experiments carried out by Michelson et al. [10] demonstrated that
the speed of light in vacuum is a universal physical constant corresponding to the
product of the frequency ν times the wavelength λ, that is, c = λ ν.

In 1902, Lenard pointed out that the photoelectric effect, discovered by Hertz 15
years earlier [11], occurs beyond a threshold frequency of light and the kinetic
energy of the emitted electrons does not depend on the incident light intensity.
Based on Planck’s works, Einstein proposed a simple interpretation of the photo-
electric effect assuming that the electromagnetic radiation is composed of quanta
with energy hν [12]. He advanced that the energy of a light ray when spreading from a
point consists of a finite number of energy quanta localised in points in space, which move
without dividing and are only absorbed and emitted as a whole. Although that was a
decisive step towards the particle theory of light, the concept of the light quanta was
still not generally accepted, and Bohr, who was strongly opposed to the particle
concept of light [13], announced in his Nobel lecture (1922) that the light quantum
hypothesis is not compatible with the interference phenomena and consequently it cannot
throw light in the nature of radiation. Bohr’s statement was rather surprising because
Taylor’s experiments, consisting of repeating Young’s double slit diffraction at
extremely low light intensities, had already demonstrated since 1909 that light rays
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are composed of discrete parts whose spots compose the diffraction patterns by
gradual accumulation on the detection screen [14]. Compton published his studies
on X-rays scattered by free electrons in 1923 advancing that the experimental
results could only be interpreted based on the light quanta model [15].

Thus, the photoelectric effect and Compton scattering have been initially con-
sidered as the undoubtable demonstrations of the particle nature of light and his-
torically were the strongest arguments in favour of the light quanta concept, which
started to be universally accepted, and Lewis introduced the word “photon”, from
the Greek word phos (Φωs, which means light) [1, 4].

Therein, it is extremely important to mention that Wentzel in 1926 [16] and
Beck in 1927 [17], as well as much later Lamb and Scully in the 1960s [18], demon-
strated that the photoelectric effect can be interpreted remarkably well by only
considering the wave nature of light, without referring to photons at all [19].
Furthermore, the Compton scattering has been fully interpreted by Klein and
Nishina in 1929 [20] also by considering the electromagnetic wave nature of light
without invoking the photon concept. On the other hand, Young’s experiment,
initially presented as the most convincing argument for the wave nature of light,
was applied by Taylor at very low intensities to demonstrate the particle concept of
light [14]. Indeed, much later Jin et al. [21] published an excellent theoretical
interpretation of Young’s diffraction experiments based only on the particle repre-
sentation of light.

Thus, the picture on the nature of light in the 1930s was rather confusing since
both opposite sides defending the wave or the particle nature advanced equally
strong arguments. Hence, Bohr, inspired by de Broglie’s thesis on the simultaneous
wave character of particles, announced the complementarity principle according to
which light has both wave and particle natures appearing mutually exclusively in each
specific experimental condition [1, 2, 19].

The development of lasers [22] in the 1960s and the revolutionary parametric
down-convertion techniques [23, 24] in the 1970s, have made it possible to realise
conditions in which, with a convenient statistical confidence, only a single photon
may be present in the experimental apparatus. In this way, the double-prism
experiment [25] realised in the 1990s contradicted for the first time Bohr’s mutual
exclusiveness demonstrating that a single photon exhibits both the wave and particle
natures in the same experimental conditions.

According to the experimental investigations, it has been always stated that a
photon has circular, left or right, polarisation with spin �h=2π and cannot be
conceived along the propagation axis within a length shorter than its wavelength
[26]. Indeed, since Mandel’s experiments in the 1960s [27, 28], all the efforts to
localise precisely a single photon remained fruitless yielding the conclusion is that a
photon cannot be better localised than within a volume of the order of the cube of
its wavelength [29, 30]. Furthermore, Grangier et al. demonstrated experimentally
the indivisibility of photons [19, 31], while in recent years the entangled state
experiments [29, 30] have shown that the photon should be locally an integral
entity during the detection procedure but with a real non-local wave function.

The lateral expansion of a single photon, considered locally as an indivisible
entity, was always an intriguing part of physics. With the purpose of studying the
lateral expansion of the electromagnetic rays, Robinson in 1953 [32] and Hadlock
in 1958 [33] carried out experiments using microwaves crossing small apertures
and deduced that no energy is transmitted through apertures whose dimensions
are smaller than roughly �λ/4. In 1986, for the same purpose, Hunter and
Wadlinger [34, 35] used X-band microwaves with λ = 28.5 mm and measured the
transmitted power through rectangular or circular apertures of different
dimensions. They concluded that no energy is transmitted when the apertures are
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smaller than �λ/π confirming that the lateral expansion of the photons is a fraction
of the wavelength.

Thus, the experiments have shown that the single photon is not a point and
cannot be localised at a coordinate, as stated by Einstein, while it can exhibit both
the wave and particle natures in the same experimental conditions contradicting
Bohr’s mutual exclusiveness. However, quantum electrodynamics (QED) has been
developed during the 1930s to 1960s based upon the point particle model for the
photon [36–39]. In fact, the point photon concept has permitted to establish an
efficient mathematical approach for describing states before and after an interac-
tion processes [19, 39–41], but it is naturally inappropriate for the description of
the real nature of a single photon.

Finally, what we can essentially draw out by summing up the experimental
evidence is that a single photon is a minimum, local, indivisible part of the electro-
magnetic field with precise energy hν and momentum hν/c, having circular left or
right polarisation with spin �h=2π, respectively. It is not a point particle since it
expands over a wavelength λ along the propagation axis and is detectable within a
volume of the order of λ3 entailing that its lateral expansion is a fraction of its
wavelength. Hence, it appears to be a local “wave-corpuscle” guided by a
non-local wave function, absorbed and emitted as a whole and capable of
interacting with charges increasing or decreasing its frequency and consequently
its energy.

In what follows, we present first the standard theoretical representation of the
electromagnetic field quantization resulting in photons, and next we proceed to
recent advances based on the vector potential quantization enhanced to a single
photon state.

2. The electromagnetic field vector potential

2.1 Reality of the vector potential

Since the formulation of Maxwell’s equations, the vector potential A
!

r
!
; t

� �

was

considered as a pure mathematical artefact [4, 5, 7] used to calculate the electric field:

E
!

r
!
; t

� �

¼ �∂A
!

r
!
; t

� �

=∂t� ∇
!
Φ r

!
; t

� �

(1)

where Φ r
!
; t

� �

is the scalar potential, as well as the magnetic field:

B
!

r
!
; t

� �

¼∇
!
� A

!
r
!
; t

� �

(2)

In 1949, Ehrenberg and Siday were the first to put in evidence the influence of
the vector potential on charged particles [42] deducing that it is a real physical field.
Ten years later, Aharonov and Bohm re-infirmed the influence of the vector poten-
tial on electrons in complete absence of electric and magnetic fields [43]. That was
confirmed experimentally by Chambers [44], Tonomura et al. [45], and Osakabe
et al. [46] demonstrating without any doubt the reality of the vector potential field
end its direct influence on charges.

From a theoretical point of view [43], the behaviour of a particle with charge q
and mass m in the vicinity of a solenoid where the vector potential is present is
described by the Hamiltonian:
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H ¼ 1

2m
�iℏ ∇

!
�qA

!
r
!
; t

� �� �2

þ qΦ r
!
; t

� �

(3)

with ℏ ¼ h=2π as Planck’s reduced constant.
If the solenoid is extremely long along the z axis, then the magnetic field is

uniform in the region inside and zero outside. The scalar potential Φ can be put to
zero by assuming that the solenoid is not charged. In this case, in the outside region,
the electric and magnetic fields are zero, but the vector potential is not zero and
depends on the magnetic field flux in the solenoid:

A
!
¼ 1

2π r

ð

s
B
!
� dS

!
êθ (4)

where r is the radial distance from the z axis of the solenoid, S is the surface of
the circle with radius r perpendicular to z, and êθ is the angular unit vector in
cylindrical coordinates.

The Schrödinger equation for a charged particle outside the solenoid, where the
vector potential is not zero, writes in complete absence of any other external
potential:

iℏ
∂

∂t
Ψ r

!
; t

� �

¼ 1

2m
iℏ ∇

!
þqA

!� �2

Ψ r
!
; t

� �

(5)

with A
!
given by Eq. (4). The solutions of the last equation are the wave func-

tions:

Ψ r
!
; t

� �

¼ Ψp r
!
; t

� �

e
iq
ℏ

Ð r
!

0
A
!

r
!0ð Þ�d r!0

(6)

where Ψp r
!
; t

� �

is the solution of Schrödinger’s equation in absence of the vector

potential:

iℏ
∂

∂t
Ψp r

!
; t

� �

¼ � ℏ
2

2m
∇
!2

Ψp r
!
; t

� �

(7)

The exponential part of the wave function of Eq. (6) entails that two particles
have equal charge and mass moving both outside the solenoid at the same distance

from the axis, but the first in the same direction with the vector potential A
!
and the

second in the opposite direction will suffer a phase difference:

δΘ ¼ q

ℏ

ð

s
B
!
� dS

!
(8)

Interference patterns for electrons in analogue conditions have been observed
experimentally [44–46] demonstrating that the vector potential is a real physical
field and interacts directly with charged particles in complete absence of magnetic
and electric fields and of any other potential.

2.2 The radiation vector potential: classical to quantum link

The vector potential, being a real field, is considered as the fundamental link
between the electromagnetic wave theory issued from Maxwell’s equations and the
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particle concept in quantum electrodynamics (QED) [19, 36, 39]. We will show
analytically how this link is established.

In the classical theory [5, 7], the energy density of a mode k of the electromag-
netic wave writes:

Wk r
!
; t

� �

¼ 1

2
ε0 E

!
k r

!
; t

� ��

�

�

�

�

�

2

þ 1

μ0
B
!
k r

!
; t

� ��

�

�

�

�

�

2
� �

(9)

where ε0 and μ0 are the electric permittivity and magnetic permeability of the
vacuum, respectively, related to the speed of light in vacuum c by ε0μ0c

2 ¼ 1.
In the case of a monochromatic plane wave with angular frequency ωk, the

electric Ek

!
r
!
; t

� �

and magnetic Bk

!
r
!
; t

� �

fields are proportional to the vector

potential amplitude A0k ωkð Þ:

Ek

!
r
!
; t

� �

¼ �2ωkA0k ωkð Þ ε̂ sin k
!
� r! �ωk t

� �

(10)

Bk

!
r
!
; t

� �

¼ � 1

c
2ωkA0k ωkð Þ k̂ � ε̂

� �

sin k
!
� r! �ωkt

� �

(11)

where ε̂ is a unit vector perpendicular to the propagation axis, k
!�
�

�

�

�

� ¼ 2π=λk is the

wave vector along the propagation axis, and λk is the wavelength of the mode k.
Introducing Eqs. (10) and (11) in Eq. (9), the energy density now depends on

the square of the vector potential amplitude:

Wk r
!
; t

� �

¼ 4ε0ω
2
k A0k ωkð Þj j2 sin 2 k

!
� r! �ωk t

� �

(12)

The mean value over a period, thus over a wavelength, is time independent:

Wk ¼ 2ε0ω
2
k A0k ωkð Þj j2 (13)

Note that the last equation expressing the mean energy density over a period of
the mode k of the electromagnetic wave is independent on any external volume
yielding that in the classical description, a free of cavity electromagnetic radiation
mode expands naturally within a minimum volume. In a given cavity, this volume
corresponds roughly to that imposed by the boundary conditions and the cut-off
wave vectors [4, 5, 7].

On the other hand, in the quantum description, the energy density for a number
N ωkð Þ of k-mode photons with angular frequency ωk and energy ℏωk in a volume V
writes simply:

Wk ¼
N ωkð Þℏωk

V
(14)

In order to link the classical to the quantum description [4, 9, 19], the classical
mean energy density over a period, expressed by Eq. (13), is imposed to be equiv-
alent to the quantum mechanics expression of Eq. (14) for N ωkð Þ ¼ 1 getting the
vector potential amplitude for a single k-mode photon:

A0k ωkð Þj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏ

2ε0ωkV

s

(15)
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The last relation is the fundamental link between the classical and quantum
theory of light which is used to define in QED the vector potential amplitude
operators for a single photon [19, 26, 29, 36–41]:

~Akλ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏ

2ε0ωkV

s

akλ
~A

∗

kλ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏ

2ε0ωkV

s

aþkλ (16)

where akλ and aþkλ are, respectively, the annihilation and creation non-Hermitian
operators for a k-mode and λ-polarisation photon.

Therein, it is worth noting that an external arbitrary volume parameter V
appears in the vector potential amplitude of the single photon, expressed by
Eq. (15), which is supposed to be an intrinsic physical property. This could entail
the unphysical interpretation that a single photon in an infinite cavity has zero
vector potential, thus zero electric and magnetic fields and consequently zero
energy. This ambiguity, which is scarcely quoted in the literature, is lifted by
considering that, in the case of a single photon, the volume V in Eq. (15) is equiva-
lent to that defined by the boundary conditions in a cavity for the single radiation
mode k.

3. Electromagnetic field quantization and the photon description

3.1 Harmonic oscillator representation of the electromagnetic field

The energy of the electromagnetic field in a volume V considered as a
superposition of different k-modes and λ-polarisations is obtained directly from
Eq. (13):

EEM ¼ 2ε0V
X

k, λ
ω2
k Akλ ωkð Þj j2 (17)

where the summation over the λ-polarisations takes only two values
corresponding to circular left and right [19, 36–41].

Replacing in Eq. (17) the vector potential amplitude and its conjugate by the
relations of the vector potential amplitude operators defined in Eq. (16), we get the
“normal ordering” radiation Hamiltonian corresponding to the order aþkλakλ of the
creation and annihilation operators:

~HNO ¼
X

k, λ
aþkλakλℏωk (18)

and the “anti-normal ordering” Hamiltonian corresponding to the order akλa
þ
kλ

~HANO ¼
X

k, λ
aþkλakλ þ 1
� 	

ℏωk (19)

where we have used the fundamental commutation relation in quantum
electrodynamics:

akλ; a
þ
kλ


 �

¼ 1 (20)

7

Quantized Field of Single Photons
DOI: http://dx.doi.org/10.5772/intechopen.88378



In Dirac’s representation the eigenfunctions take the simple expression nkλj i,
and the action of the creation and annihilation operators of a single k-mode and
λ-polarisation photon writes:

aþkλ nkλj i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nkλ þ 1
p

nkλ þ 1j i; akλ nkλj i ¼ ffiffiffiffiffiffi

nkλ

p
nkλ � 1j i (21)

The successive action of both operators in the normal order corresponds to the
photon number Hermitian operator ~nkλ ¼ aþkλakλ having the eigenvalue nkλ

representing the number of k-mode and λ-polarisation photons:

aþkλakλ nkλj i ¼ ~nkλ nkλj i ¼ nkλ nkλj i (22)

In this representation the normal and anti-normal ordering radiation
Hamiltonians write, respectively:

~HNO ¼
X

k, λ
~nkλℏωk; ~HANO ¼

X

k, λ
~nkλ þ 1Þℏωk

�

(23)

We obtain a harmonic oscillator Hamiltonian for the electromagnetic field by
considering the mean value of the normal ordering and anti-normal ordering Ham-
iltonians:

~HEM ¼ 1

2
~HNO þ ~HANO

� 	

¼
X

k, λ
~nk,λ þ

1

2

� �

ℏωk (24)

Thus, in QED the electromagnetic field is considered to be an ensemble of
harmonic oscillators each represented by a point particle, the photon, whose
eigenfunction is denoted simply by 1kλj i [19, 39, 41].

Although we have no experimental facts showing the harmonic oscillator nature
of a single photon, this representation has been adopted since the 1930s [37].

In a different way, a harmonic oscillator representation for the electromagnetic
field can be obtained by the intermediate of the canonical variables of position Qkλ

and momentum Pkλ. For that purpose we introduce the definitions expressing the
vector potential amplitude and its complex conjugate with respect to Qkλ and Pkλ

[19, 29, 41]:

Akλ ¼
ωkQkλ þ iPkλð Þ
2ωk

ffiffiffiffiffiffiffiffi

ε0V
p ; A ∗

kλ ¼
ωkQkλ � iPkλð Þ
2ωk

ffiffiffiffiffiffiffiffi

ε0V
p (25)

Introducing the last expressions in Eq. (17), we get the electromagnetic field
energy:

EEM ¼ 1

2

X

k, λ
P2
kλ þ ω2

kQ
2
kλ

� 	

� iωk Qkλ;Pkλ½ � (26)

where the (+) sign is obtained when Eq. (17) is considered initially to be in the
“normal order”, A ∗

kλAkλ, and the (�) one when in the “anti-normal order” AkλA
∗

kλ.
With the purpose of establishing a harmonic oscillator representation for the

electromagnetic field, it is generally considered that Qkλ;Pkλ½ � ¼ 0 in Eq. (26),
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because Qkλ and Pkλ are simply canonical variables, getting the energy of an
ensemble of harmonic oscillators:

EEM ¼ 1

2

X

k, λ
P2
kλ þ ω2

kQ
2
kλ

� 	

(27)

Replacing in the last equation the classical canonical variables of position and
momentum with the corresponding Hermitian operators [19, 29, 41]:

~Pkλ ¼ i

ffiffiffiffiffiffiffiffi

ℏωk

2

r

aþkλ � akλ

� 	

; ~Qkλ ¼
ffiffiffiffiffiffiffiffi

ℏ

2ωk

s

aþkλ þ akλ

� 	

(28)

and putting aþkλakλ ¼ ~nkλ, one gets the harmonic oscillator Hamiltonian for the
radiation field:

~HEM ¼
X

k, λ
~nk,λ þ

1

2

� �

ℏωk (29)

At that level it is important to note that, for a harmonic oscillator of a particle

with mass m and momentum p
!¼ mdq

!
=dt, with canonical variables of position

Q ¼ q
!
�

�

�

�

�

�

ffiffiffiffi

m
p

and momentum P ¼ p
!
�

�

�

�

�

�=
ffiffiffiffi

m
p

, the transition from the classical expres-

sion of energy:

E ¼ 1

2
P2 þ ω2Q2
� 	

(30)

to the quantum mechanics Hamiltonian:

~H ¼ 1

2
~P
2 þ ω2 ~Q

2
� �

¼ aþaþ 1

2

� �

ℏω ¼ ~n þ 1

2

� �

ℏω (31)

where ~P ¼ i
ffiffiffiffiffi

ℏω
2

q

aþ � að Þ, ~Q ¼
ffiffiffiffi

ℏ

2ω

q

aþ þ að Þ, and ~n ¼ aþa is direct and needs no

commutation operations between the canonical variables P and Q [19, 39].
Consequently, the harmonic oscillator Hamiltonian for a particle of mass m

expressed by Eq. (31) is a quite physical result (e.g., phonons in solid-state physics)
obtained with a perfect correspondence between the classical canonical variables of
momentum and position P and Q, respectively, and the corresponding Hermitian

operators ~P and ~Q .
Conversely, this is not the case for the electromagnetic field [19, 29, 39] because

commutations between the canonical variables Qkλ and Pkλ occur during the math-
ematical transition from Eq. (17) to Eq. (26). It is then considered that Qkλ;Pkλ½ � ¼ 0
in order to obtain Eq. (27) just before replacing the canonical variables by the
corresponding quantum mechanics operators. Therein, it is important to remark

that Heisenberg’s commutation relation ~Qkλ;
~Pk0λ0 � ¼ iℏδkk0δλλ0




is a fundamental

concept of quantum mechanics, which should not be ignored when replacing
classical variables by the corresponding quantum mechanics operators [19]. In fact,
without dropping Qkλ;Pkλ½ � in Eq. (26) and replacing the canonical variables by the
corresponding quantum operators of Eq. (28), we get naturally the same normal
ordering and anti-normal ordering radiation Hamiltonians as in Eq. (23):
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~H
þð Þ
EM

¼ 1

2

X

k, λ

~P
2

kλ þ ω2
k
~Q

2

kλ

� �

þ iωk
~Qkλ; P̂k0λ0


 �

~H
�ð Þ
EM ¼ 1

2

X

k, λ

~P
2

kλ þ ω2
k
~Q

2

kλ

� �

� iωk
~Qkλ;

~Pk0λ0

 �

0

B

B

B

B

@

1

C

C

C

C

A

¼

~HNO ¼
X

k, λ
~nkλℏωk

~HANO ¼
X

k, λ
~nkλ þ 1ð Þ ℏωk

0

B

B

@

1

C

C

A

(32)

Obviously, as frequently quoted [2, 19, 39], the fundamental mathematical
ambiguity consisting of cancelling the commuting classical variable term
Qkλ;Pkλ½ � ¼ 0 before the substitution by non-commuting quantum mechanics

operators ~Qkλ;
~Pk0λ0 � ¼ iℏδkk0δλλ0




leads to the harmonic oscillator Hamiltonian for the

electromagnetic field.
In fact, since no experiment has yet demonstrated that a single photon is a

harmonic oscillator, the main reason for considering the electromagnetic field as an
ensemble of harmonic oscillators lies in the importance of the zero-point energy
(ZPE) issued in absence of photons from the eigenvalue nkλ ¼ 0 of Eq. (29)
corresponding to the vacuum energy:

EZPE ¼
X

k, λ

1

2
ℏωk (33)

The summation of the last expression over all modes and polarisations is
infinite and represents the principal singularity in the QED formalism
[19, 26, 29, 36, 39].

Nevertheless, the zero-point energy is very important because it is considered to
be the basis for the explanation of the vacuum effects such as the spontaneous
emission, the Lamb shift and the Casimir effect. However, as pointed out by many
authors [19, 26, 39, 41], it is important to underline that the explanation of the
spontaneous emission and the Lamb shift in QED is not due to Eq. (33) but precisely
to the commutation properties of the photon creation and annihilation operators, aþkλ
and akλ, respectively. It has to be emphasized that in quantum mechanics theory
Eq. (33), being a constant, commutes with all Hermitian operators corresponding
to physical observables and consequently has absolutely no influence to any
quantum process.

Conversely, the zero-point energy expressed by Eq. (33) is useful for the expla-
nation of the spontaneous emission and the Lamb shift in the classical description of
radiation [2, 39, 47].

Regarding the Casimir effect, it is often commented that caution has to be taken
concerning the interpretation of its physical origin because it has been demon-
strated by different methods [48–50] that it can be easily explained using classical
electrodynamics without invoking at all the zero-point energy.

Hence, in view of the above, the normal ordering Hamiltonian is the one mainly
used in QED, casting aside the vacuum singularity issued from the harmonic oscil-
lator formalism, while the zero-point energy issued from the harmonic oscillator
Hamiltonian is principally useful in the classical formalism for the interpretation of
the vacuum effects [2, 19, 39, 47].

3.2 Electromagnetic field vector potential quantization in QED

We have analysed in Section 3.1 the electromagnetic field energy quantization
according to the harmonic oscillator representation. Now, we will analyse the vector
potential field quantization following the second quantisation process.
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Considering the natural units ℏ ¼ c ¼ 1ð Þ, the radiation vector potential writes
within the frame of the quantum field theory (QFT) [26, 38]:

A
!

xð Þ ¼
ð

d3k

2πð Þ32k0

X

2

λ¼1

ε̂kλ α λð Þ kð Þe�ikx þ α λð Þþ kð Þeikx
h i

(34)

with

α λð Þ kð Þ; α λ0ð Þþ k0
� 	

h i

¼ 2k0 2πð Þ3δλλ0δ3 k
!
� k

!0
� �

(35)

where δλλ0 is the Kronecker delta, δ
3 k

!
� k

!0
� �

is the Dirac delta function, and

α λð Þ kð Þ ¼ 2k0ð Þ1=2 2πð Þ3=2αkλ; α λð Þþ kð Þ ¼ 2k0ð Þ1=2 2πð Þ3=2αþkλ (36)

Using Eq. (36) in Eq. (34), the vector potential becomes:

A
!

xð Þ ¼
ð

d3k

2πð Þ3=2 2k0ð Þ1=2
X

2

λ¼1

ε̂kλ αkλe
�ikx þ αþkλe

ikx

 �

(37)

with ωk ¼ k
!2

þ l2
� �1=2

and k2 ¼ k20 � k
!� �2

¼ l2.

For k ¼ l ¼ 0 then k0 ¼ k
!�
�

�

�

�

� ¼ ωk and Eq. (37) writes:

A
!

xð Þ ¼
ð

d3k

2πð Þ3=2

ffiffiffiffiffiffiffiffi

1

2ωk

r

X

2

λ¼1

ε̂kλ αkλe
�ikx þ αþkλe

ikx

 �

(38)

Suppressing the natural units (i.e., introducing c and ℏ) and transforming
the last equation in the SI system, which is generally used in QED, we get
[38, 41, 51].

A
!

xð Þ ¼
ð

d3k

2πð Þ3=2

ffiffiffiffiffiffiffiffiffiffiffiffi

ℏ

2ε0ωk

s

X

2

λ¼1

ε̂kλ αkλe
�ikx þ αþkλ kð Þeikx


 �

(39)

On the basis of the density of state theory, the quantization of a field in a cavity
of volume V permits to transform the continuous summation over the modes to a
discrete one [19, 51]:

ð

d3k

2πð Þ3=2
¼

ffiffiffiffi

1

V

r

X

k

(40)

The last transformation is only valid for an ensemble of modes k whose
wavelengths λk are much shorter than the characteristic dimensions of the volume V
[19, 29, 39, 41].

Switching now to Heisenberg’s representation:

αkλ tð Þ ¼ αkλe
�iωkt ; αþkλ tð Þ ¼ αþkλe

iωkt (41)
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Generalizing the coordinate system, adapting the phase and using Eq. (40),
the vector potential of the electromagnetic field writes in QED [19, 29, 39, 41, 51]:

A
!

r
!
; t

� �

¼
X

k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏ

2ε0ωkV

s

X

2

λ¼1

ε̂kλ αkλe
i k

!
� r!�ωkt

� 	

þ αþkλe
�i k

!
� r!�ωkt

� 	

� 

(42)

Considering the scalar potential to be constant, the electric field is:

E
!

r
!
; t

� �

¼ i
X

k

ffiffiffiffiffiffiffiffiffiffiffi

ℏωk

2ε0V

r

X

2

λ¼1

ε̂kλ αkλe
i k

!
� r!�ωkt

� 	

� αþkλe
�i k

!
� r!�ωkt

� 	

� 

(43)

The last expressions represent in a given volume V the quantized vector poten-
tial and the electric field of the electromagnetic radiation composed of a large
number of modes k each with angular frequency ωk and wavelength λk ¼ 2πc=ωk

much smaller than V1/3:

λk ≪V1=3
∀kð Þ (44)

The amplitudes in Eqs. (42) and (43) have been obtained using the density of
state theory and are valid only on the condition of Eq. (44). Furthermore, the
boundary conditions of the electromagnetic waves considered in cavities and
waveguides impose the wave vectors k of the modes to be higher than a character-

istic cut-off value k>kcut�off λk < λcut�off

� 	

depending on the dimensions and the

shape of the volume containing the radiation field [4–7]. Consequently, for a
volume V with finite dimensions, the summation in Eqs. (42) and (43) runs only
over the modes k with wave vectors higher than the minimum cut-off value
kcut�off Vð Þ imposed by the shape and dimensions of V so that we can write more

precisely:

A
!

r
!
; t

� �

¼
X

k>kcut�off Vð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏ

2ε0ωkV

s

X

2

λ¼1

ε̂kλ αkλe
i k

!
� r!�ωkt

� 	

þ αþkλe
�i k

!
� r!�ωkt

� 	

� 

(45)

E
!

r
!
; t

� �

¼ i
X

k>kcut�off Vð Þ

ffiffiffiffiffiffiffiffiffiffiffi

ℏωk

2ε0V

r

X

2

λ¼1

ε̂kλ αkλe
i k

!
� r!�ωkt

� 	

� αþkλe
�i k

!
� r!�ωkt

� 	

� 

(46)

The last equations represent the vector potential and the electric field of a large
number of modes k of the quantized electromagnetic field in a finite volume V

with λk ≪V1=3
∀kð Þ.

4. Quantized vector potential of a single photon

We have seen in Section 3.1 that according to the energy quantization proce-
dure, a k-mode and λ-polarisation photon is considered to be a point harmonic
oscillator represented by the simplified eigenfunction 1kλj i. On the other hand,
following the field quantization procedure in Section 3.2, it appears clearly that the
established vector potential and electric field expressions in Eqs. (42) and (43),
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under the condition of Eq. (44), concern a large number of modes in a considerably
big volume compared to their wavelengths. Thus, with the aim of obtaining a
clearer picture of the single photon, we will now complement the previous descrip-
tions by enhancing the vector potential amplitude quantization to the photon level.

4.1 Photon vector potential amplitude and quantization volume

As mentioned in Section 2.2, the classical expression of the mean energy density
over a period for a single electromagnetic mode k, represented by Eq. (13), can be
considered equivalent to that for a single photon in the quantum representation,
given by Eq. (14) for N ωkð Þ ¼ 1, on the condition that the volume V is not arbitrary
but corresponds to that defined by the boundary conditions in a cavity for the
considered electromagnetic mode. In fact, the physical properties of a free photon
are independent on any surrounding volume unless the characteristic dimensions of
the last one are of the order of the photon wavelength [52].We recall again that the
experimental evidence has shown [19, 27, 29, 51] that a single photon with angular
frequency ωk and wavelength λk ¼ 2πc=ωk can only be localised within a volume Vk

whose dimensions are roughly the cube of its wavelength:

Vk ∝ λ3k ) Vk ∝ω�3
k (47)

From a theoretical point of view, this is also compatible with the density of state
theory according to which the spatial volume corresponding to a single state of the
quantized field is proportional to ω�3

k [19, 29, 39, 41].
On the other hand, the dimension analysis of the vector potential issued from

the general solution of Maxwell’s equations yields that it is proportional to an
angular frequency [5, 7, 9]:

A
!

r
!
; t

� �

¼ μ

4π

ð J
!

r
!
', t� j r!� r

!
'j

c

� �

j r! � r
!
'j

d3r'∞ ∝ ω (48)

where J is the current density (C m�2 s�1) and μ the magnetic permeability.
Indeed, it is well established experimentally that the energy density radiated by

a dipole is proportional to ω4 entailing from Eq. (12) that the vector potential
amplitude is normally proportional to ω [4, 5, 7].

This result is gauge independent since it concerns the natural units of the vector
potential.

According to the previous considerations, for a free single k-mode photon with
λ-polarisation (left or right circular), the vector potential can be written in quantum
and classical formalism:

~αkλ r
!
; t

� �

¼ α0k ωkð Þ ε̂kλαkλe
i k

!
� r!�ωkt

� 	

þ ε̂ ∗

kλα
þ
kλe

�i k
!
� r!�ωkt

� 	

� 

αkλ
!

r
!
; t

� �

¼ α0k ωkð Þ ε̂kλe
i k

!
� r!�ωkt

� 	

þ ε̂ ∗

kλe
�i k

!
� r!�ωkt

� 	

� 

(49)

where, following to the above analysis, the amplitude writes:

α0k ωkð Þ ¼ ξj jωk (50)
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with ξ being a constant [2, 53–55].
We can evaluate ξ [2, 53] by using Eqs. (49) and (50) in Eq. (13) and

normalising the energy to that of a single photon, ℏωk, by integrating over a
wavelength along the propagation direction while taking into
account the experimental results on the lateral expansion of the photon [32–35, 56].
We get:

ξj j ¼ 1

2πð Þ3=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏ

8αε0c3

r

�

�

�

�

�

�

�

�

�

�

¼ ℏ

4π ec

�

�

�

�

�

�

�

�

¼ 1:747 10�25 Volt m�1s2 (51)

where α ¼ e2=4πε0ℏc≈ 1=137:036 is the fine structure constant and e is the elec-
tron charge. Obviously, when introducing Eq. (50) in Eq. (17) for a single k-mode
photon, an appropriate volume Vk has to be considered for the equation to hold:

Ek ¼ ℏωk ¼ 2ε0Vkξ
2ω4

k (52)

Thus, the characteristic volume of a free single photon writes in agreement with
Eq. (47):

Vk ¼
ℏ

2ε0ξ
2

� �

ω�3
k (53)

Replacing ξ expressed by Eq. (51) in Eq. (53), we obtain the photon quantization
volume:

Vk ≈ 4αλ3k (54)

Equations (50) and (53) express the quantized vector potential amplitude and
the spatial extension of a single photon with the constant ξ evaluated to be
ξj j ¼ ℏ=4π ej jc.

4.2 Photon classical-quantum (wave-particle) physical properties

For a free k-mode photon, the volume Vk corresponds to the space in which the
quantized vector potential oscillates at the angular frequency ωk over a period along
the propagation axis generating orthogonal electric and magnetic fields whose
amplitudes are, respectively:

εk
!j ¼ �∂αkλ

!
r
!
; t

� �

=∂tj∝ ξj jω2
k ; βk

!
j∝ ffiffiffiffiffiffiffiffiffiffi

ε0μ0
p

ξj jω2
k

�

�

�

�

�

�

�

�

� (55)

which are independent on any external arbitrary volume parameter and are
directly proportional to the square of the angular frequency [2, 54, 55].

We can now express the quantum properties of the photon, energy, momentum,
and spin by integrating the classical electromagnetic expressions over the volume
Vk and by using the vector potential amplitude obtained in Eq. (50), linking in
this way the classical (wave) to the quantum (particle) representations [2]. The
energy writes:

Ek ¼
ð

Vk

2ε0α
2
0kω

2
kd

3r ¼
ð

Vk

2ε0ξ
2ω4

kd
3r ¼ 2ε0ξ

2ω4
kVk ¼ ℏωk (56)
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With the same token considering circular polarisation [4, 5, 7, 9] for the ampli-
tudes of the electric and magnetic fields in Eq. (55), the momentum is:

pk
!¼

ð

Vk

ε0 εkλ
! �βkλ

!
d3r ¼ ε0

ffiffiffi

2
p

ωkα0k

� �

ffiffiffi

2
p

ωkα0k=c
� �

Vk k
!
= k

!�
�

�

�

�

� ¼ ℏ k
!

(57)

According to the classical electromagnetic theory, the spin can be written
through the electric and magnetic field components; hence, using again the circular
polarisation, we get:

S
!�
�

�

�

�

� ¼
ð

Vk

ε0 r
! � εkλ

! �βkλ
!
Þ

� �

�

�d3r ¼ ε0 c=ωkð Þ
ffiffiffi

2
p

ωkα0k

� �

ffiffiffi

2
p

ωkα0k=c
� �

Vk ¼ ℏ

�

�

� (58)

where we have taken the mean value < r
!
�

�

�

�

�

�>k ¼ c=ωk obtained for a single

photon state [57].
The fact that the quantum properties, energy, momentum, and spin, of the

photon can be expressed through the classical electromagnetic fields integrated over
the volume Vk signifies that the photon has naturally a spatial extension, and
consequently when employing the term “wave-particle”, one must have in mind
that a single photon is a “three-dimensional particle”.

We can now obtain Heisenberg’s uncertainty relation for position and momen-
tum using Vk. Indeed, replacing V in Eq. (16) by Vk, we get the photon vector
potential amplitude operators:

~α0kλ ¼ ξj jωkαkλ ; ~α
∗

0kλ ¼ ξj jωkα
þ
kλ (59)

The corresponding position ~Qkλ and momentum ~Pkλ Hermitian operators
[19, 29, 51] write:

~Qkλ ¼
ffiffiffiffiffiffiffiffiffiffi

ε0Vk

p

~α0kλ þ ~α ∗

0kλ

� 	

; ~Pkλ ¼ �iωk

ffiffiffiffiffiffiffiffiffiffi

ε0Vk

p

~α0kλ � ~α ∗

0kλ

� 	

(60)

Thus, introducing Eq. (59) in Eq. (60) and using Eq. (20) with Eq. (53),
Heisenberg’s commutation relation, a fundamental concept in quantum theory,
results directly [2]:

~Qkλ;
~Pk0λ0


 �

¼ �iε0ω
2
k0ωk

ffiffiffiffiffiffiffiffiffiffiffiffiffi

VkVk0
p

ξakλ þ ξaþkλ
� 	

; ξak0λ0 � ξaþ
k0λ0

� �h i

¼ iℏδkk0δλλ0 (61)

The fundamental properties of the photon, energy Ek, momentum pk
!

, and wave

vector k
!
, are complemented by the vector potential amplitude α0k expressing its

electromagnetic nature:

Ek=ℏ ¼ pk
! jc=ℏ ¼ k

!�
�

�

�

�

�c ¼ α0k= ξj j ¼ ωk

�

�

� (62)

Considering Heisenberg’s energy-time uncertainty principle:

δEk δ t≥ℏ (63)

we directly deduce from Eq. (62) the vector potential-time uncertainty:

δα0kδ t≥ ξj j (64)
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The energy and vector potential uncertainties with respect to time are intrinsic
physical properties of the wave-particle nature of the photon.

4.3 Photon wave-particle equation and wave function

Obviously, the photon vector potential function αkλ
!

r
!
; t

� �

expressed in Eq. (49)

satisfies the wave propagation equation in vacuum issued fromMaxwell’s equations:

∇
!2αkλ

!
r
!
; t

� �

� 1

c2
∂
2

∂t2
αkλ
!

r
!
; t

� �

¼ 0 (65)

as well as the vector potential energy (wave-particle) equation for the
photon [2, 54]:

i
ξ

ℏ

� �

∂

∂t
αkλ
!

r
!
; t

� �

¼
~α0k

~H

� �

αkλ
!

r
!
; t

� �

(66)

where the vector potential operator ~α0k ¼ �iξc ∇
!
and the relativistic

Hamiltonian for a massless particle ~H ¼ �iℏ c ∇
!
have the eigenvalues ξωk and ℏωk,

respectively [2, 53].
It is worth remarking the symmetry between the pairs Ek;ℏf g and α0k; ξf g for a

single photon characterising, respectively, the particle (energy) and electromag-
netic wave (vector potential) natures, having in mind that the energy corresponds
to the integration of the single-mode electromagnetic field energy density over the
volume Vk.

Now, when considering the propagation of a k-mode photon with wavelength
λk, the difficulties for defining a position operator are widely commented in the
literature [27, 29, 30, 39–41, 56]. At the same time, the efforts for defining a wave
function for the photon based on the electric and magnetic fields were rather
fruitless [58–62]. It has been emphasized several times [19, 26, 27, 30, 56] that a
photon cannot be localised along the propagation axis in a length shorter than the

wavelength λk and within a volume smaller than roughly λ3k.
In fact, from a theoretical point of view, for a photon propagating in the z

direction, Heisenberg’s uncertainty for the position z and momentum
Pz ¼ ℏkz ¼ h=λk writes:

δz δPz ≥ h ! δz δ 1=λkð Þ≥ 1 (67)

Notice that the momentum uncertainty along the propagation axis is expressed
through the uncertainty over the inverse of the wavelength.

Considering now the vector potential function with the quantized amplitude
α0k ¼ ξj jωk as a real wave function for the photon, then when a k-mode photon is
emitted at a coordinate ze at an instant te and propagates in vacuum along the z axis,
the probability Πk zð Þ to be localised at time t and at the coordinate z = ze + c (t-te)
corresponds to the square of the modulus of the vector potential and is consequently
proportional to the square of the angular frequency [54, 55]:

Πk zð Þ∝ αkλ
!

z; tð Þj2 ¼ ξ2ω2
k ∝ λ�2

k

�

�

� (68)
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Obviously, the shorter the wavelength of the photon, the higher the
localization probability in agreement with Heisenberg’s uncertainty and the
experimental evidence.

4.4 Electromagnetic field ground state, photons, and electrons-positrons

The photon vector potential is composed of a fundamental function Ξkλ times
the angular frequency ωk and writes in the classical (wave) and quantum (particle)
formalisms:

αkλ
!¼ ξj jωk ε̂kλe

i k
!
� r!�ωktþϕ

� 	

þ ε̂ ∗

kλe
�i k

!
� r!�ωktþϕ

� 	

� 

¼ ωkΞ
!
kλ ωk; r

!
; t

� �

(69)

~αkλ ¼ ξj jωk akλε̂kλe
i k

!
� r!�ωktþϕ

� 	

þ aþkλε̂
∗

kλe
�i k

!
� r!�ωktþϕ

� 	

� 

¼ ωk
~Ξkλ akλ; a

þ
kλ

� 	

(70)

In this way, the general equation for the vector potential of the electromagnetic
wave considered as a superposition of plane wave modes writes:

A
!

r
!
; t

� �

¼
X

k, λ
ξj jωk ε̂kλe

i k
!
� r!�ωktþϕ

� 	

þ ε̂ ∗

kλe
�i k

!
� r!�ωktþϕ

� 	

� 

¼
X

k, λ
ωkΞ

!
kλ ωk; r

!
; t

� �

(71)

and that of a large number of cavity-free photons in quantum electrodynamics is:

~A ¼
X

k, λ
ξj jωk akλε̂kλe

i k
!
� r!�ωktþϕ

� 	

þ aþkλε̂
∗

kλe
�i k

!
� r!�ωktþϕ

� 	

� 

¼
X

k, λ
ωk

~Ξkλ akλ; a
þ
kλ

� 	

(72)

According to Eqs. (55) and (62), for ωk ! 0 all the physical properties of the
photon vanish entailing that the photon exists only for a non-zero frequency of
the vector potential oscillation. However, the zero-frequency level does not
correspond to perfect inexistence because the fundamental field Ξkλ does not vanish

for ωk ¼ 0 but reduces to Ξ
0
kλ involving the amplitude ξ and the general expression

of the polarisation vectors ε̂kλ [63, 64] and writes in the classical and quantum
representations:

Ξ
!0

kλ ¼ ξj j ε̂kλeiϕ þ ε̂ ∗

kλe
�iϕ


 �

; ~Ξ
0
kλ ¼ ξj j akλε̂kλe

iϕ þ aþkλε̂
∗

kλe
�iϕ


 �

(73)

The field Ξ
0
kλ is the electromagnetic field ground state (EFGS) permeating all the

space (λk ! ∞) and having zero energy and zero vector potential as well as zero
electric and magnetic fields. This physical state lies beyond the Bohm-Aharonov
situation in which the energy and the electric and magnetic fields are zero but a
vector potential is present in space [43]. Thus, in complete absence of energy and

vector potential, the field Ξ
0
kλ can be assimilated to a quantum vacuum component

constituting the main “skeleton” of any photon which now clearly appears to be a
vacuum oscillation [2, 63, 64].
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Combination of the expression ξj j ¼ ℏ=4π ej jc to the fine structure constant
definition α ¼ e2=4πε0ℏc permits to draw directly the electron-positron elementary

charge e ¼ �1:602 10�19C, a fundamental physical constant, which now is
expressed exactly through the EFGS amplitude ξ [64, 65]:

e ¼ � 4πð Þ2α ξj j
μ0

(74)

Using again Eq. (51) and recalling that the electron mass may be written as
me ¼ eℏ=2μB, where μB is the Bohr magneton, we deduce that the electron mass is
also expressed as a function of the EFGS amplitude ξ [64]:

me ¼ 2πc e2
ξj j
μB

(75)

entailing that the mass derives also from the EFGS and is proportional to the
charge square.

Equations (50), (74), and (75) show the strong physical relationship between
photons and electrons-positrons which are all related directly to the EFGS through
the amplitude ξ. Obviously, photons and electrons-positrons, also probably leptons-
antileptons, are issued from the same quantum vacuum field. This may be at the
origin of the physical mechanism governing the photon generation during the
electron-positron (and probably lepton-antilepton) annihilation and that of the
electron-positron (lepton-antilepton) pair creation during the annihilation of high-
energy gamma photons in the vicinity of very heavy nucleus.

5. Conclusion

In this chapter we have presented recent theoretical developments complementing
the standard formalism with the purpose of describing a single photon state in con-
formity with the experiments. We resume below the principal features.

The quantization of the vector potential amplitude α0k, a real physical entity, for
a single free of cavity k-mode photon with angular frequency ωk is expressed by
α0k ¼ ξj jωk, where ξj j ¼ ℏ=4π ej jc, and leads to the establishment of a vector potential
- energy (electromagnetic wave-particle) formalism (Eq. (66)) expressing the
simultaneous wave-particle nature of the photon. A single photon state is a local
indivisible entity of the electromagnetic field extending over a wavelength λk and
consisting of the quantized vector potential oscillating at the angular frequency ωk,
with circular polarisation, giving birth to orthogonally oscillating electric and mag-
netic fields whose amplitudes are proportional to the square of the angular fre-
quency ξj jω2

k (Eq. (55)). Its lateral expansion, confirmed experimentally, yields a

minimum photon volume Vk which is proportional to λ3k. The quantum properties of
the photon, energy, momentum, and spin are obtained directly from the classical
electromagnetic expressions integrated over the volume Vk (Eqs. (56)–(58)). It is
also shown (Eq. (61)) that the Heisenberg uncertainty can be readily obtained
through the use of the volume Vk.

A single photon, as a local three-dimensional entity of the electromagnetic field,
is absorbed and emitted as a whole and propagates guided by the non-local
vector potential function (Eq. (49)), which appears to be a natural wave function
for the photon satisfying both the propagation equation (Eq. (65)) and the vector
potential - energy equation (Eq. (66)). The probability for detecting a photon around
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a given point on the propagation axis is obtained by the square modulus of the

vector potential and is proportional to the square of the angular frequency ξ2ω2
k

(Eq. (68)) which signifies that the higher the frequency, the better the localization,
in agreement with the experiments.

Finally, the electromagnetic field ground state (EFGS) at zero frequency, a real
quantum vacuum component, issues naturally from the vector potential wave
function putting in evidence that photons are oscillations of the vacuum field.
Furthermore, the electron-positron charge and mass are directly proportional to the
vector potential amplitude quantization constant showing the strong physical rela-
tionship with the photons. Obviously, the origin of the mechanisms governing the
transformations of photons to electrons-positrons and inversely lies in the nature of
the electromagnetic field ground state.
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